Skip to main content
. Author manuscript; available in PMC: 2018 Sep 1.
Published in final edited form as: Psychol Methods. 2016 Sep 8;22(3):563–580. doi: 10.1037/met0000095

Table 7.

Summary of results for Simulation II: Mean cluster recovery precision for each method and each level of each design feature: Part 2 – the average of the true number of clusters minus the algorithmically selected number of clusters.

Design feature Level LCM (AIC2) LCM (AIC3) LCM (BIC) K-means (CH) K-median (MRPC)
Sample size N = 100 0.16 0.52 0.92 0.91 0.72
N = 200 −0.11   0.18 0.51 1.05 0.61
N = 400 −0.27   0.00 0.22 1.04 0.50
Number of clusters K = 2 −0.16   −0.01   0.00 −0.43   −0.07  
K = 3 −0.18   0.02 0.12 0.52 0.12
K = 4 −0.15   0.13 0.41 1.23 0.48
K = 5 −0.03   0.36 0.84 1.52 0.95
K = 6 0.15 0.66 1.38 2.17 1.55
Number of variables V = 6 0.22 0.51 0.96 0.83 1.01
V = 9 −0.15   0.20 0.55 1.31 0.53
V = 12 −0.29   −0.01   0.14 0.88 0.29
Cluster sizes Equal −0.10   0.17 0.41 0.89 0.26
60% −0.06   0.34 0.78 1.47 1.24
10% −0.06   0.20 0.46 0.65 0.32
Error level 5% −0.11   0.03 0.21 0.13 0.25
10% −0.08   0.20 0.51 1.13 0.60
15% −0.04   0.47 0.93 1.75 0.98

Overall −0.07   0.23 0.55 1.00 0.61