Skip to main content
. Author manuscript; available in PMC: 2018 Sep 1.
Published in final edited form as: Psychol Methods. 2016 Sep 8;22(3):563–580. doi: 10.1037/met0000095

Table 8.

Summary of results for Simulation II: Mean cluster recovery precision for each method and each level of each design feature: Part 3 – the average of the absolute deviation of the true number of clusters minus the algorithmically selected number of clusters.

Design feature Level LCM (AIC2) LCM (AIC3) LCM (BIC) K-means (CH) K-median (MRPC)
Sample size N = 100 0.38 0.55 0.92 1.28 0.79
N = 200 0.31 0.27 0.55 1.23 0.63
N = 400 0.31 0.11 0.27 1.18 0.53
Number of clusters K = 2 0.16 0.01 0.00 0.43 0.07
K = 3 0.20 0.06 0.14 0.59 0.14
K = 4 0.26 0.20 0.43 1.27 0.50
K = 5 0.41 0.47 0.89 1.60 0.96
K = 6 0.63 0.83 1.44 2.26 1.56
Number of variables V = 6 0.34 0.54 0.97 1.49 1.11
V = 9 0.34 0.29 0.57 1.32 0.54
V = 12 0.31 0.11 0.20 0.88 0.29
Cluster sizes Equal 0.23 0.17 0.41 0.91 0.26
60% 0.51 0.55 0.87 1.57 1.25
10% 0.25 0.21 0.46 1.22 0.43
Error level 5% 0.19 0.18 0.28 0.37 0.26
10% 0.29 0.26 0.53 1.36 0.63
15% 0.52 0.50 0.93 1.96 1.06

Overall 0.33 0.31 0.58 1.23 0.65