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Abstract

Förster resonance energy transfer (FRET) is a quantum-physical phenomenon where energy may 

be transferred from one molecule to a neighbor molecule if the molecules are close enough. Using 

fluorophore molecule marking of proteins in a cell, it is possible to measure in microscopic images 

to what extent FRET takes place between the fluorophores. This provides indirect information of 

the spatial distribution of the proteins. Questions of particular interest are whether (and if so to 

which extent) proteins of possibly different types interact or whether they appear independently of 

each other. In this paper we propose a new likelihood-based approach to statistical inference for 

FRET microscopic data. The likelihood function is obtained from a detailed modeling of the 

FRET data-generating mechanism conditional on a protein configuration. We next follow a 

Bayesian approach and introduce a spatial point process prior model for the protein configurations 

depending on hyperparameters quantifying the intensity of the point process. Posterior 

distributions are evaluated using Markov chain Monte Carlo. We propose to infer microscope-

related parameters in an initial step from reference data without interaction between the proteins. 

The new methodology is applied to simulated and real datasets.
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1. Introduction

In the biology community there is a vast interest in studying the biomolecular structure and 

dynamics of macromolecular assemblies in order to understand their functions [Alber et al. 

(2017), Polo and Jackson (2011), Krissinel and Henrick (2007), Puglisi (2005)]. Because the 
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interactions between proteins and the typical size of proteins (1–100 nm) is at the nanoscale 

level [Erickson (2009)], no information can be obtained from conventional optical 

microscopic techniques, which at best can resolve distances down to ~200 nm [van Putten et 

al. (2011)]. Instead, Förster resonance energy transfer—also referred to as fluorescence 

resonance energy transfer—microscopy is widely used to obtain such information. Förster 

resonance energy transfer (FRET) provides information about distances of the order of 2 to 

10 nm within or between molecular structures and is the preferred tool for investigating 

spatial relationships in biochemistry [Wu and Brand (1994), Gryczynski, Gryczynski and 

Lakowicz (2005), Clegg (1995, 2006)].

FRET is the nonradiative transfer of the surplus of energy from an excited donor fluorophore 

(fluorescent molecule) to a sufficiently nearby acceptor fluorophore by dipole–dipole 

interaction [Heitler (1954), Rohatgi-Mukherjee (1978)]. The widespread use of FRET in 

biological research is based on the possibility to label, in vivo or in vitro, proteins with 

fluorophores that are spectrally matched [Miyawaki, Sawano and Kogure (2003), Bunt and 

Wouters (2004)]. The energy transfer due to the FRET mechanism is a stochastic process, 

and the probability that energy transfer occurs between a donor and an acceptor fluorophore 

is heavily dependent on the distance between them. The probability that energy transfer 

occurs is commonly referred to as the efficiency of the energy transfer. The usefulness of 

FRET lies in the fact that various techniques exist by which the fraction of donor excitations 

that result in energy transfer—that is, the efficiency—can be quantified.

Two main methods for determining the FRET efficiency are as follows: fluorescence 

lifetime measurements [Wallrabe and Periasamy (2005), Lakowicz (2009), Chen et al. 

(2013)] and spectral methods [Sun et al. (2011), Zimmermann, Rietdorf and Pepperkok 

(2003)]. We focus in this paper on the most commonly applied spectral method called three-

cube FRET. Due to the FRET mechanism, a certain fraction of the de-excitations of a donor 

result in energy transfer to an acceptor instead of donor photon emission, thereby the rate by 

which photons are emitted from the donors decreases—a phenomenon referred to as 

quenching of the donor—while instead photons are emitted by the acceptors. Spectral 

methods now rely on determining the decrease in the donor emission due to FRET. For 

three-cube FRET, intensity measurements are carried out using three different filter sets—

often referred to as cubes—each comprising an excitation filter, a dichroic mirror, and an 

emission filter. This results in three digital intensity images [Zal and Gascoigne (2004), 

Wallrabe et al. (2006), Periasamy et al. (2008), Periasamy and Day (2011)]. Two images are 

obtained by exposing the sample to light in the donor absorption spectrum and recording 

emitted intensities both in the donor and the acceptor excitation spectrum. The third image is 

obtained by exposing the sample to light in the acceptor spectrum and also recording light in 

the acceptor spectrum.

Given FRET image data, the task is to obtain information concerning the spatial 

configuration of the donors and acceptors in the sample. For example, Wallrabe et al. (2003) 

study the clustering of ligand–receptor complexes in endocytic membranes using confocal 

FRET microscopy. They differentiate between a clustered or a random distribution of 

proteins by considering the dependence of the FRET efficiency on donor and acceptor 

concentrations. In particular, independence of the efficiency on acceptor concentration or a 
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decrease in the efficiency for a higher unquenched donor signal for a fixed acceptor 

concentration are both indicators for clustering [Kenworthy and Edidin (1998), Kenworthy 

(2001)]. Goswami et al. (2008) instead compare observed distributions of fluorescence 

intensity and fluorescence anisotropy with values expected from a Poisson distribution of 

nanoclusters.

Other, computational, approaches mainly rely on the construction of a configuration of 

donors and acceptors and computing the FRET efficiency related to this configuration by 

numerical computation of the energy transfer probabilities for each of the donors [Wolber 

and Hudson (1979), Corry, Jayatilaka and Rigby (2005)]. This simple approach has been 

extended by various authors by simulating FRET events explicitly using Monte Carlo 

techniques. The extended approach gives the possibility to include additional physical 

complexity into the model to account for possible photobleaching of donors and acceptors 

during a FRET measurement or the effect that temporarily unavailable acceptors can have on 

the FRET efficiency [Frederix et al. (2002), Berney and Danuser (2003), Corry, Jayatilaka 

and Rigby (2005)]. Corry, Jayatilaka and Rigby (2005) further carefully studied the FRET 

efficiency in relation to various fixed donor and acceptor configurations (e.g., pentamers) 

and give a concise overview of the development of the numerical Monte Carlo approaches.

Loura and Prieto (2011), Loura, Fernandes and Prieto (2010) and Lakowicz (2009) give 

excellent reviews of methods to extract spatial information in membrane biophysics from 

FRET data. Methods determining the complex structures of a protein or the spatial 

distribution of protein complexes in living cells are given in e.g. Raicu et al. (2009) and 

Bonomi et al. (2014).

The previous mentioned contributions are based on a detailed understanding of the FRET 

data generating mechanism. This knowledge, however, so far has not been applied to obtain 

a complete statistical model of FRET data allowing for a principled statistical analysis. In 

this paper we present a first attempt to conduct a full likelihood-based Bayesian analysis of 

three-cube FRET image data. The potential advantages of such an approach are that the 

posterior distribution gives detailed quantitative information regarding model parameters and 

donor–acceptor interactions as well as measures of uncertainty regarding this information. 

To obtain the likelihood function, we derive, based on physical considerations, an accurate 

statistical model for the distribution of the image intensities, conditional on a point pattern 

consisting of donors and acceptors. We further impose a spatial point process prior [Møller 

and Waagepetersen (2004)] for the unknown configuration of donors and acceptors. Since 

our resulting posterior distribution is of a complicated form, we use Markov chain Monte 

Carlo (MCMC) to sample from the posterior distribution [Gamerman and Lopes (2006), 

Gilks, Richardson and Spiegelhalter (1996)]. It is difficult to infer simultaneously 

microscope-related parameters and possible interactions between donors and acceptors. We 

therefore propose to infer microscope-related parameters in an initial step based on reference 

data without interactions between donors and acceptors. We asses the Bayesian inference 

procedure by a simulation study and by applying it to an empirical in-vitro reference dataset.

Hooghoudt et al. Page 3

Ann Appl Stat. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Observation model for three-cube FRET image data

A three-cube FRET dataset consists of three images each corresponding to a rectangular 

region W which is a union of rectangular pixels, W = ⋃i∈ Ci, indexed by a grid . Each 

pixel Ci records a light intensity due to emission from donors or acceptors. The images are 

created by (1) excitation of donors and measurement of donor emission, (2) excitation of 

acceptors and measurement of acceptor emission or (3) excitation of donors and 

measurement of acceptor emission (due to FRET). We represent the images by vectors 

YDD = (YDD
i )

i ∈ 𝒢, Y AA = (Y AA
i )

i ∈ 𝒢 and YDA = (YDA
i )

i ∈ 𝒢. The first letter in the subscripts 

denotes whether donors (D) or acceptors (A) were excited, and the second letter denotes in 

which channel emission was measured. We assume that a pixel value Yk
i , k = DD, AA, DA, i 

∈ , is subject to additive normal noise; that is,

Yk
i = Ik

i + εi, (2.1)

where Ik
i  denotes light intensity due to emission and the noise terms εi are independent and 

N(0, σ2) distributed.

We now specify models for the Ik
i  given configurations of donor and acceptor proteins in W 

whose positions form point patterns, respectively, XD and XA.

2.1. Some fluorescence resonance energy transfer theory

An excited donor d ∈ XD surrounded by a configuration XA of acceptors can de-excite in 

three ways: either by emission with a rate kDE, by nonradiative decay (e.g., internal heat 

conversion) with a rate kDN, or by FRET to an acceptor a ∈ XA with a rate kF,da. We will 

refer to the sum of the first two mechanisms as the intrinsic de-excitation rate kD, that is, kD 

= kDE + kDN. According to Förster (1948), kF,da is given by

kF, da = kD
R0

‖d − a‖

6
,

where R0 is the so-called Förster distance, defined as the distance between the donor and 

acceptor at which the de-excitation rate due to FRET equals the intrinsic de-excitation rate; 

that is, kF,da = kD if ||d − a|| = R0. The probability that d de-excites due to FRET to a specific 

donor a in XA thus becomes

Pda =
kF, da

kD + ∑a∼ ∈ XA
kF, da∼

=
(R0/‖d − a‖)6

1 + ∑a∼ ∈ XA
(R0/‖d − a∼‖)6

.
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Figure 1 shows an example of the computation of Pda for a specific configuration of 

acceptors a around a donor d. The total probability that d de-excitates due to FRET is PdA = 

Σa∈XA Pda. The probability that d de-excites by emission or by nonradiative decay is PdD = 1 

− PdA.

2.2. Model for intensities given protein configurations

Our model for the intensities given the configurations XD and XA is inspired by the model 

for simulation of FRET data in Corry, Jayatilaka and Rigby (2005). However, in contrast to 

Corry, Jayatilaka and Rigby (2005), we introduce the simplifying assumption that a donor or 

acceptor is always available for excitation [see also Wolber and Hudson (1979), Berney and 

Danuser (2003)]. This is a reasonable assumption if the intensity of the laser is moderate so 

that the inter arrival times of photons at a donor are large compared with the de-excitation 

times. We can then regard the times of excitations of donors and acceptors as Poisson 

processes and use standard results for Poisson processes to obtain closed-form distributional 

results for the Ik
i .

In the Appendix we show that IDD
i = GDNDD

i  and IDA
i = GANDA

i , where NDD
i  and NDA

i  are 

the number of photons detected by the detector in, respectively, the DD-channel and the DA-

channel, and NDD
i  and NDA

i  are both Poisson distributed. Further, GD and GA are unknown 

positive parameters related to the sensitivity of the detector in, respectively, the donor and 

acceptor emission spectrum. The means of IDD
i  and IDA

i  are

μDD
i = MD ∑

d ∈ XD ∩ Ci

(1 − PdA)

and

μDA
i = GMD ∑

a ∈ XA ∩ Ci
∑

d ∈ XD

Pda,

where MD and G are unknown positive parameters. We assume that the means μDD
i /GD and 

μDA
i /GA of, respectively, NDD

i  and NDA
i  are sufficiently large so that the Poisson distributions 

of NDD
i  and NDA

i  can be well approximated by normal distributions. Then

IDD
i N(μDD

i , GDμDD
i ) and IDA

i N(μDA
i , GAμDA

i ) . (2.2)

By a similar line of arguments, we also obtain
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IAA
i N(μAA

i , GAμAA
i ), (2.3)

where

μAA
i = (MD/K)n(XA ∩ Ci),

K is an unknown positive parameter and n(XA ∩ Ci) denotes the number of acceptors within 

pixel Ci. In cases of intensity data with a large proportion of zeros, we instead use truncated 

normal distributions with point masses at zero for IDD
i , IDA

i  and IAA
i ; see Section 2 of 

Supplement B [Hooghoudt and Waagepetersen (2017a)].

Equations (2.1), (2.2) and (2.3) specify the distribution of the FRET data conditional on the 

protein configurations XD and XA. The distribution is parameterized by ψ = (MD, G, K, GD, 

GA, σ2). We refer to the components of ψ as microscope-related parameters. The parameters 

G and K are known as the so-called G- and K-factors [Zal, Zal and Gascoigne (2002), Chen, 

Puhl and Ikeda (2007)]. The parameter MD can be interpreted as the mean donor emission 

detector read-out intensity due to one donor excitation.

3. Bayesian inference of spatial characteristics of protein configurations

We adopt a Bayesian approach to infer the microscope-related parameters ψ and spatial 

characteristics of the configurations XD and XA of proteins. A spatial point process prior 

(specified in Section 3.1) is used for X = (XD, XA), where this prior again depends on a 

parameter vector θ. We also assign a prior to θ, thus including also this parameter in the 

posterior inference. As detailed later in Sections 4.4 and 5, we recommend to infer the 

microscope-related parameters in an initial step using reference data without interactions 

between donors and acceptors. In a second step, investigating interactions in a dataset of 

biological scientific interest, ψ can then be fixed at estimates obtained from the first step. 

Letting y denote an observation of Y = (YDD, YDA, YAA) and (xD, xA) a realization of X, 

the joint posterior distribution is

p(xD, xA, θ ∣ y, ψ) ∝ p(y ∣ xD, xA, ψ)p(xD, xA ∣ θ)p(θ) . (3.1)

Here p(z) and p(z|u) are generic notation for a probability density of a random quantity Z 
and the conditional density of Z given another random quantity U = u.

3.1. Priors

We model a priori XD and XA as independent Poisson processes on W with intensities θD 

and θA; that is, the prior density of (XA, XD) with respect to independent unit rate Poisson 

processes is
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p(xD, xA ∣ θ) = θA
n(xA)

θD
n(xD)

exp [ − ∣ W ∣ (θA + θD − 2)], (3.2)

where |W| denotes the area of W and n(x) denotes the number of points in a point 

configuration x [see, for instance, equation (6.2) in Møller and Waagepetersen (2004)]. We 

further impose independent conjugate Gamma hyperpriors for θD and θA. The Poisson prior 

can be viewed as a null model for the case of no interaction between donors and acceptors or 

within donors, respectively, acceptors. Compared with other more complex point process 

models like Markov point processes (like the Strauss hard core model considered in Section 

4), the Poisson prior is advantageous in having a known density function. A potential 

problem is that the Poisson prior is in some sense a strong prior which assigns little 

probability to point configurations with strong clustering or regularity. This can lead to 

biased results as demonstrated in Section 4. Densities for more flexible Markov point 

process prior models, on the other hand, contain intractable normalizing constants that 

depend on the unknown parameters in the point process model. This then precludes the use 

of standard Markov chain Monte Carlo algorithms (Section 3.2) for evaluation of the 

posterior distribution.

The Gamma distributions for θD and θA are defined through shape parameters α and rate 

parameters β. As the mean of the Gamma distribution is α/β and its variance α/β2, the 

signal-to-noise ratio related to the distribution is defined by the square root of the shape 

parameter, that is,

S
N = α/β

α/β2 = α .

In a typical FRET experiment there is quite some uncertainty concerning the true values of 

the numbers of proteins within the sample, and so we have defined not too confined priors 

for the intensities θD and θA. We have chosen to set the signal-to-noise ratio always equal to 

2, resulting in the value of 4 for the shape parameter. In our applications we further specify 

the prior mean m of each of the parameters so that the rate parameter β follows from β = 

α/m = 4/m. We also use Gamma priors for the components of ψ; see the discussion of prior 

elicitation for ψ in Section 6.

3.2. Markov chain Monte Carlo

To evaluate the posterior distribution, we use a Markov chain Monte Carlo algorithm 

[Gamerman and Lopes (2006)] where the components (XD, XA), θD, θA and (if applicable) 

the components of ψ are updated in turn. Gibbs updates are used for the full conditional 

Gamma distributions of θD and θA, while random walk Metropolis updates on the log scale 

are used for the components of ψ. For the point configurations (XA, XD) we first randomly 

choose to either update XA or XD (with probability 1/2 for each choice). We then use birth-

death updates as outlined in Sections 7.1.2–7.1.3 in Møller and Waagepetersen (2004). If, 

for example, XA is chosen to be updated, then with probability 1/2 it is proposed to remove a 
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point chosen from the uniform distribution on XA. Otherwise it is proposed to insert a new 

acceptor point at a location chosen from the uniform distribution on W. In case it is 

proposed to remove a point u ∈ XA, the Metropolis–Hastings ratio becomes

p(xD, xA\{u}, θ ∣ y, ψ)n(xA)
p(xD, xA, θ ∣ y, ψ) ∣ W ∣ =

p(y ∣ xD, xA\{u}, ψ)n(xA)
p(y ∣ xD, xA, ψ)θA ∣ W ∣ .

If it is proposed to insert a new acceptor point v ∈ W, then the Metropolis–Hastings ratio is

p(y ∣ xD, xA ∪ {v}, ψ)θA ∣ W ∣
p(y ∣ xD, xA, ψ)(n(xA) + 1) .

The expressions for updating XD are similar. The described birth-death updates are repeated 

a large fixed number of times between the updates of the parameters θD, θA and ψ.

To keep the MCMC updates for donor and acceptor points numerically feasible, only those 

acceptors that reside within 4R0 of a donor are taken into account as a possible path for 

energy transfer for the donor. This important simplification will not lead to any significant 

difference in posterior results, as the transfer probability Pda for a donor d and an acceptor a 
is very small when ||d − a|| > 4R0, thereby adding or removing a point in pixel i can only 

affect the values of likelihood factors p(yDD
l , yDA

l , yAA
l ∣ xD, xA, ψ) for pixels l in a 

neighborhood of i [note that the likelihood factors as ∏i ∈ 𝒢 p(yDD
i , yDA

i , yAA
i ∣ xD, xA, ψ)]. 

Exploiting this simplification, we have implemented an ingenious algorithm that recomputes 

the transfer probabilities Pda only for donors and acceptors which are influenced by the 

adding/removing of a point. A detailed description of the MCMC sampler is provided in 

Supplement B [Hooghoudt and Waagepetersen (2017a)].

3.3. Inferring spatial characteristics

In statistics for spatial point processes, the K-function is a common tool for inferring 

interactions from a spatial point pattern. We adapt this approach and use the cross K-

function [e.g., Møller and Waagepetersen (2004)] to measure interactions between donors 

and acceptors given point configurations xA and xD. In general, for point processes X1 and 

X2 of intensities ρ1 and ρ2, ρ2K12(t) is the expected number of X2 points within distance t 
from a typical point of X1. In case of no interaction between X1 and X2, K12(t) = πt2. Values 

of K12(t) greater (smaller) than πt2 signifies positive (negative) interaction between X1 and 

X2. It is common to consider the cross L-function L12(t) = K12(t)/π which is equal to t in 

the case of no cross interaction, while L12(t) > t [L12(t) < t] means positive (negative) cross 

interactions. We will refer to L12(t) − t as the “centered” cross L-function. The centered 

cross L-function is equal to zero in the case of no cross interaction, while larger (smaller) 

than zero for positive (negative) cross interactions.
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Given configurations xD and xA of donors and acceptors, we estimate the cross K-function 

by

Kx(t) = ∑
u ∈ xA, v ∈ xD

1 [‖u − v‖ ≤ t]
n (xA)n (xD) ∣ W ∩ Wu − v ∣ ∣ W ∣−2 ,

where Wu − v is W translated by u − v [e.g., Section 4.4.3 in Møller and Waagepetersen 

(2004)]. The cross L-function is estimated by Lx(t) = Kx(t)/π. To infer cross spatial 

interactions between donors and acceptors given FRET data, we consider the posterior 

distribution of LX(t) = KX(t)/π or its centered version. We also considered so-called cross 

G- and J -functions [e.g., Møller and Waagepetersen (2004)], but in our simulation studies 

the cross L-function gave a more clear impression of the nature of donor–acceptor 

interactions.

4. Simulation studies

Our primary target of inference is the cross L-function, L̂
X for the configuration X = (XA, 

XD) of donors and acceptors which is unknown in practice. However, we also need to infer 

the microscope-related parameters ψ. From a Bayesian perspective, if the right prior 

distribution is chosen, the posterior distribution by definition provides the correct inference 

given the data Y and prior information. However, in our case, the Poisson prior (3.2) is 

partly chosen for convenience in order to yield tractable MCMC computations, and is not 

necessarily the best possible representation of prior information. Thus, from a pragmatic 

point of view, it makes sense to assess possible bias of our Bayesian inference procedure.

In particular, we focus in Section 4.3.1 on the posterior mean L|Y of L̂
X as a predictor of L̂

X. 

The posterior mean L|Y is further an estimate of LE = E[L̂
X], which is the expected value of 

L̂
X over replicated data X. Note in this connection that had we used the true distribution of X 

as the prior, then EL|Y and LE would be exactly equal—that is, L|Y would be an unbiased 

predictor/estimate both of L̂
X and LE. In Section 4.3.3 we assess the performance of the full 

posterior distribution of L̂
X given Y for inference regarding L̂

X. In Section 4.3 we consider 

ψ to be a fixed known parameter. Section 4.4 is concerned with inference regarding ψ.

4.1. Simulation of synthetic data

To generate synthetic data for the simulation study, the point configuration X = (XA, XD) is 

generated on a 1000 nm by 1000 nm square region as a realization of a bivariate Strauss hard 

core process. This point process has density (with respect to a bivariate process of 

independent unit rate Poisson processes) of the form

f (xA, xD) ∝ βD
n(xD)

βA
n(xA)

γ
sR(xA, xD)

HC(xA, xD, ℜA, ℜD, ℜDA), (4.1)
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where sR(xA, xD) is the number of unordered pairs of points {u, v} with u ∈ xA, v ∈ xD, and 

interpoint distance ||u − v|| less than R. Values of γ less than one lead to repulsion between 

donors and acceptors, while values of γ greater than one lead to attraction. The term HC(xA, 

xD, ℜA, ℜD, ℜDA) is one if the following hard core condition is satisfied: all donors have an 

interpoint distance greater than ℜD, all acceptors have an interpoint distance greater than 

ℜA, and all pairs of points where one is a donor and the other an acceptor have an interpoint 

distance greater than ℜDA. Otherwise the hard core term is zero, whereby it serves to model 

that donors and acceptors have a physical extent that prevents them from getting arbitrarily 

close to each other. Different settings of the Strauss hard core process parameters are used to 

create different point pattern types described in Section 4.2 below.

Next, conditional on the configuration X and the various microscope-related parameters ψ, 

the intensity data Y is generated from the model specified in Section 2. Regarding the 

observation model, we fix the measurement variance σ2 at 25, let each of G, K, GD, GA 

equal to 1, and consider values 1, 5, 20 of MD in order to generate data of varying signal to 

noise ratios defined by E[μDD
i /(GDμDD

i + σ2)1/2] and E[μk
i /(GAμk

i + σ2)1/2], k = DA, AA. For 

each point pattern type we generate 100 independent synthetic point patterns Xsynth,i and 

associated synthetic image data Ysynth,i, i = 1, …, 100.

4.2. Point pattern types

The basic point pattern types considered are dimer, clustered, Poisson hard core and 

repulsive. For all types, ℜD, ℜA and ℜDA are at least 2 nm. The parameters βD and βA are 

further adjusted to have on average 1000 donors and 1000 acceptors.

In case of dimer, we specify large values of ℜD =ℜA, which essentially means that only 

proteins of different types can appear close to each other. Thus the only clusters possible are 

mini-clusters consisting of one donor and one acceptor, that is, dimer clusters. For the 

clustered case, ℜD = ℜA are reduced, which enables formation of a wider range of clusters 

containing several donors and acceptors. In case of dimer and clustered, values of γDA = 2, 8 

correspond to respectively moderate and strong interactions. For Poisson hard core, γDA = 1, 

while all hard core distances are 2. In case of repulsive, varying values of ℜDA, r and γDA < 

1 generate different strengths of repulsive interaction between donors and acceptors. Table 1 

gives an overview of the different parameter settings considered.

4.3. Inference regarding spatial characteristics

We estimate LE by the empirical average of L-functions L̂
Xsynth,i obtained from the Xsynth,i. 

From each synthetic dataset Ysynth,i we further obtain an MCMC estimate L̄
|Ysynth,i of the 

posterior mean L|Ysynth,i of L̂
X given Ysynth,i. The mean posterior L-function EL|Y is 

estimated by the mean of the L̄
|Ysynth,i. The sampling variability of L|Y is further represented 

by the variation of the L̄
|Ysynth,i. When considering inference for the cross L-function in the 

following Sections 4.3.1–4.3.3, ψ is fixed at the value used for generating the synthetic 

datasets.
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4.3.1. Bias of posterior mean—We assess the bias of L|Y by considering the mean (over 

replicated data X,Y) of L̂
X and its prediction L|Y, thereby we also assess how L|Y performs 

as an estimate of LE (the expected cross L-function for X).

In Figures 2 and 3 the estimates of LE(t) − t and EL|Y (t) − t are shown for each of the point 

pattern types in Table 1 for the three values of MD (1, 5, 20). In Figure 2(a), for example, LE 

for dimer-type 1.2 shows that the underlying point patterns are clustered for distances r < 16 

(as LE > 0) and are slightly repulsive for distances 16 < r < 24. Further, for distances 24 < r < 

40, there seems to be some slight clustering again, while, for r > 40, the pattern displays 

complete spatial randomness. The negative values that occur for r < 5 are due to the 

minimum imposed hardcore distance of 2. The negative part for small r is also visible in the 

plots (b)–(h), where LE otherwise indicates clustering among donors and acceptors and in 

plot (i), where LE(t) − t is close to zero otherwise.

The general impression from the plots is that L|Y is biased downward when the true point 

patterns are of dimer or clustered types (a)–(h) and biased upward in the cases of the 

repulsive types (i)–(m) (including the Poisson hard core case). For MD = 1, where the signal-

to-noise ratio is very low, the mean of L|Y is very close to zero, and it does not seem possible 

to infer in this case cross interactions between donors and acceptors. However, for MD = 5, 

20, there is always a pronounced peak (positive or negative) of the mean L|Y-function where 

the peak is of the right sign and located in the right place of the peak of the LE-function. 

Moreover, the bias consistently decreases when MD and hence the signal-to-noise ratio 

increases. Despite the bias, the results suggest that qualitatively correct statements can be 

made regarding independence, clustering or repulsion between donors and acceptors.

4.3.2. Variability of posterior mean L-function—In addition to bias, the extent to 

which valid qualitative conclusions can be made from the posterior L|Y-function of course 

also depend on its variability. Figure 4 shows for each basic point pattern type and MD either 

5 or 20, 98% envelopes for L|Y (t) based for each t on the minimal and maximal values of L|

Y (t) over the 100 replications. These envelopes are fairly narrow for distances up to 100 and 

show that, in the setting of the simulation study, qualitative conclusions regarding the nature 

of interaction between donors and acceptors will be consistently correct over replicates.

4.3.3. Inference based on full posterior distribution—The results in Section 4.3.1 

showed that the posterior mean L-function L|Y can exhibit substantial bias as an estimate of 

LE and hence also as a predictor of L̂
X. This can invalidate the use of the full posterior 

distribution for inferring the uncertainty regarding the estimation of LE or the prediction of 

LX̂. As an example Figure 5 shows L|Ysynth,1(t) − t and the 98% central posterior interval for 

LX̂(t) − t given Y = Ysynth,1 for the same point pattern types as in Figure 4 and MD = 5, 20. 

Also, the true LX̂synth,1(t) − t are shown in each plot.

For the lower signal-to-noise ratio with MD = 5, L̂
Xsynth,1(t) falls outside the 98% posterior 

interval for several point pattern types. Thus the posterior intervals do not always give a 

useful quantification of the uncertainty regarding the knowledge of LX. However, for the 

higher signal-to-noise ratio with MD = 20, the envelopes do include or almost include the 

L̂
Xsynth,1 function.
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4.4. Simulation studies for microscope parameters

So far the vector ψ of microscope-related parameters has been assumed to be known, which 

is rarely the case. We have investigated Bayesian inference for ψ in a simulation study for 

which the full details are given in Supplement C [Hooghoudt and Waagepetersen (2017b)]. 

We here just comment on results obtained for simulations with GD = GA = K = G = 1, MD = 

20 and σ2 = 25. Figure 6 shows boxplots of the posterior mean of each microscope 

parameter over 40 replicated datasets for each point pattern type. The main features are as 

follows:

1. for the Poisson hard core patterns the posterior means of all the parameters 

coincide with or are very close to their respective synthetic values [see plots (a)–

(f) for type number 9].

2. for all the clustered patterns (type number 1–8) inference for MD,G and K is 

biased. The posterior means MD̄ are significantly below their synthetic value, 

while Ḡ and K̄ are above their target values. Further, the bias increases for the 

patterns generated with γDA = 8 (type number 2, 4, 6, 8) compared to the 

corresponding patterns generated with γDA = 2 (type number 1, 3, 5, 7).

3. for repulsive patterns (type number 11–13) M̄
D and K̄ are on or close to target, 

while Ḡ is negatively biased.

4. the posterior means of σ, GA and GD are on target for almost all point pattern 

types [plots (d)–(f)].

As explained in detail in Supplement C, the biased results are due to the mismatch between 

the Poisson point process prior and the actual point processes used for the simulations. The 

microscope-related parameters thus a posteriori take on values to “soothe” this mismatch, 

resulting in biased results. Further, in this setting with joint inference of ψ and spatial 

characteristics, the posterior mean L-functions are strongly biased as well, being close to 

zero for all distances for all point pattern types (not shown).

5. Two-step approach to likelihood-based inference

In the previous Section 4.4 we observed that applying the Bayesian inference methodology 

using the Poisson process prior on Poisson hard core patterns gave reliable estimates for all 

microscope parameters. This suggests an approach where microscope-related parameters are 

inferred from reference datasets constructed with absence of donor–acceptor interactions. 

Therefore, we propose a two-step approach where the microscope-related parameters are 

inferred in a first step using reference data. In the second step the values of the microscope 

parameters are fixed at the posterior estimates from the first step in order to make inference 

on the spatial configuration of donors and acceptors of a three-cube FRET sample of 

biological scientific interest. To illustrate the approach, we have carried out the first step on 

empirical reference three-cube FRET data, as discussed in the following section.

Hooghoudt et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Data example

In this section we apply our Bayesian methodology to empirical in vitro three-cube FRET 

data obtained from donor or acceptor fluorophore labeled transferrin proteins [Welch 

(1992)] attached to polylysine slides [Shima and Sakai (1977)]. Transferrin bound to 

polylysine is known to be approximately randomly (i.e., Poisson hardcore) distributed 

[Wallrabe et al. (2007)]. The objective is to infer the microscope parameters related to the 

experimental setup.

We initially conducted an exploratory analysis [described in Supplement A, Hooghoudt, 

Barroso and Waagepetersen (2017)] where we quantified the amount of photobleaching and 

compared empirical mean–variance relationships of the image data with the ones implied by 

our model. From these mean–variance relationships, as well as other non-Bayesian methods 

discussed in Supplement A, we obtained rough estimates for the microscope parameters that 

were used to set the prior means in the Bayesian analysis. We thus use a pragmatic Bayesian 

approach where the rough non-Bayesian estimates entering in the priors are refined by 

introducing information obtained through the likelihood derived from our observation 

model.

Due to certain computational issues discussed in Section 6.2 and Section 6.3.1, we are at this 

stage only able to use a small subset of the full data in the Bayesian inference. Improving the 

computational methodology is an important topic of further research.

6.1. The image dataset

Three cube FRET measurements have been carried out on three samples, to which we refer 

as samples 1, 2 and 3. Sample 1 is prepared to consist of twice as many donors (D) as 

acceptors (A), that is, D:A ≈ 1: 1
2 , while samples 2 and 3 are prepared such that, respectively, 

D : A ≈ 1 : 1 and D:A ≈ 1
2 :1. Three-cube FRET data is obtained on each sample on a square 

grid containing 512 × 512 square pixels. The pixel side length is 0.279 μm and the focal 

volume depth is approximately 5 pixels (1.4 μm) [Wallrabe et al. (2007)]. The image data 

are shown in Figure 7.

The emission in the DD-channel (YDD) and AA-channel (YAA) are corrected for 

background emission, while the DA-channel data (YDA) is also corrected for spectral 

bleedthrough by the methods described in Elangovan et al. (2003).

We noticed that around the edges of the 512 × 512 images, often very low or zero intensity 

regions occurred due to improper sample preparation. Therefore, the exploratory statistical 

analysis has been based solely on the central rectangular section of the images consisting of 

100 × 100 pixels (see also Supplement A, Section 1).

In order to obtain sufficient photon count statistics—that is, sufficiently high signal-to-noise 

ratio for each pixel—each sample has been remeasured ten times. We then create an 

aggregated dataset by summing pixelwise over the ten measured intensities for each channel. 

We note that by remeasuring the sample instead of increasing the measurement time, we 
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obtain information concerning the amount of photobleaching occurring for remeasurements 

(Supplement A, Section 3) and the pixel intensity variance in the three channels. The latter 

information gives the possibility to deduce the empirical mean–variance relationship of the 

image data and to obtain estimates for GD and GA (Supplement A, Section 6).

6.2. Inference procedure setup

The prior distributions for the microscope and Poisson point process parameters were 

specified as Gamma distributions. For each parameter the shape parameter is set to 4 based 

on the reasoning in Section 3.1, and we use a pragmatic Bayesian approach where the prior 

means of five of the microscope parameters are set by aid of the rough estimates MD ≈ 2.6, 
G ≈ 0.7, K ≈ 0.7, GD ≈ 7.4 and GA ≈ 5.5 obtained from the preliminary statistical analysis 

in Supplement A, Sections 3–6 and 8. The prior mean of the measurement noise σ2 we have 

set, rather ad hoc, to 50.

By the statistical analysis in Section 8 of Supplement A, it was further found that the point 

process intensities θA and θD of the samples can be roughly related to the donor and 

acceptor solution concentrations applied for the sample preparation, thereby we found that, 

for sample 1, θD ≈ 2e3 μm−2 and θA ≈ 1e3 μm−2; while, for sample 2, θD ≈ 2e3 μm−2 and 

θA ≈ 2e3 μm−2; and, for sample 3, θD ≈ 1e3 μm−2 and θA ≈ 2e3 μm−2.We use these values 

as prior means for θA and θD for each of the samples. The applied prior means as used in the 

Bayesian analyses are summarized in Table 2.

In the MCMC computations we used random walk Metropolis–Hastings updates for the log 

microscope-related parameters. The values of the random walk update standard deviations τ 
are also shown in Table 2. We tuned the τ values to get an approximately 30% proposal 

acceptance rate for each of the microscope parameters. The total number of MCMC updates 

is 5e9 for each run. Metropolis– Hastings updates for the microscope parameters and Gibbs 

updates for the point process parameters are made after every 1e4 birth/death updates of 

donor or acceptor points.

The MCMC chains converge slowly due to bad mixing as discussed in Section 6.3. This 

means that we need many rounds of birth-death updates for the donor/acceptor points 

followed by updates of microscope and point process parameters. In each round we need to 

update a large fraction of the donors and acceptors. Thus, for a fixed fraction, each round 

takes more computing time the higher posterior expected number of donors and acceptors. 

The a posteriori expected number of donors and acceptors in each pixel is fairly high (of the 

order 300). To keep the computation time at an acceptable level, we therefore perform the 

inference on a small 10×10 subset of pixels which contain a posteriori of the order of 3e4 

donors and acceptors.

6.3. Results of the inference

6.3.1. Assessment of MCMC samples—In Figure 8 the traceplots of the microscope 

parameters and the Poisson point process intensities for sample 1 are shown. Posterior mean 

values are displayed in the upper left corner of each of the plots. The traceplots indicate poor 

mixing of the MCMC samples except for GA, GD and σ.
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The poor mixing is due to high posterior correlation between certain parameters as 

visualized by the scatterplots in Figure 9 in which the posterior realizations of MD, G, K, 
θD, θA are plotted against each other. Especially MD and θD and G and θA are highly 

correlated, but fairly strong correlations are also evident between MD and K and between K 
and θD. Similar scatterplots of GD, GA and σ2 versus each of the other parameters (not 

shown) do not show any clear correlation with any of the parameters.

6.3.2. Posterior results—InTable3 the 95% posterior intervals and posterior means for 

each of the microscope parameters and Poisson intensities are stated for each of the three 

samples. The microscope parameters MD, G, GA, GD and σ should be equal for all samples, 

and this may seem contradicted by their posterior means that vary across samples. There is, 

on the other hand, considerable overlap between almost all 95% posterior intervals so that 

the Bayesian inference does not contradict that the microscope parameters are equal across 

samples.

Figure 10 shows the posterior distributions of the centered L-function for the three samples. 

As expected, there is no indication of clustering nor repulsion since the centered posterior L-

functions are close to zero and the posterior means are approximately zero.

7. Discussion

This paper presents a first attempt to implement likelihood-based inference for FRET data. 

We thus, based on physical considerations, developed a realistic observational model for 

FRET data given the underlying configurations of donors and acceptors. Based on this 

model, we proposed to implement Bayesian inference using MCMC.

We quantify spatial dependence by considering the posterior mean of the cross L-function 

for the donors and acceptors. Our simulation results show that the posterior mean of the L-

function can be used to distinguish between clustering, absence of interaction and repulsion 

between donors and acceptors. Due to bias, one needs to be careful when making 

quantitative statements regarding strength of interaction based on the posterior means of the 

L-functions. However, we believe that it is meaningful to make relative comparisons of 

strength of interactions between samples observed under the same experimental conditions 

and thus with the same signal-to-noise ratios.

Partly due to poor mixing of the proposed MCMC procedure, we were forced to consider 

only a small subset of the full data. A key objective for further research is therefore to obtain 

a more efficient MCMC scheme so that efficient use of the full data becomes feasible. 

Haario, Saksman and Tamminen (2001) suggest to use joint updates, but they consider 

posterior distributions of fixed dimensional random vectors. However, preliminary 

experiments with this approach indicate that we need joint updates involving both the 

microscope parameters and the donor-acceptor point patterns. It is not clear how to do this. 

Our data example illustrated the use of reference data with no donor–acceptor interactions to 

infer the microscope-related parameters. In future work it would interesting to apply an 

improved MCMC algorithm to conduct Bayesian inference for an experimental sample with 

possible interactions.
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The Poisson point process prior for protein configurations was chosen partly for 

computational reasons. To implement Bayesian inference with more flexible Markov point 

process priors allowing for both repulsive and attractive interactions requires more advanced 

Markov chain Monte Carlo methods developed in Møller et al. (2006) and Murray, 

Ghahramani and MacKay (2006). However, these methods are highly computationally 

demanding since they involve so-called perfect simulation from the point process prior, 

which can lead to unacceptable computing times in the case of protein configurations of high 

cardinality which are frequently encountered for FRET data.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: DERIVATION OF OBSERVATION MODEL

In this section we refer to notation introduced in Section 2. Let Ld denote the set of times in 

the observation time span [0, T] where a donor d in XD is excited by a photon from the laser. 

We assume that Ld is a homogeneous Poisson process on [0, T] with intensity λD > 0. The 

process Ld can be decomposed as

Ld = LdE ∪ LdN ∪
a ∈ XA

Lda,

where LdE denotes the times of excitations of d which resulted in emission in the D channel, 

LdN is the times of excitations resulting in nonradiative de-excitation and Lda denotes the 

times of excitations that resulted in FRET to acceptor a and subsequent emission in the A 
channel. The so-called quantum yield 0 < qD < 1 is the probability of emission for donors 

conditional on that de-excitation is by emission or nonradiatively, that is, qD = kDE/kD. 
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Similarly, qA denotes the quantum yield for acceptors. Invoking the random labeling 

theorem for Poisson processes [e.g., Proposition 3.7 in Møller and Waagepetersen (2004)], 

LdE, Lda and LdN are independent Poisson processes with intensities λDqDPdD, λDqAPda 

and λD[(1 − qD)PdD +Σa∈XA(1− qA)Pda].

For each i ∈  we let

LDD
i = ∪

d ∈ XD ∩ Ci
LdE

and

LDA
i = ∪

d ∈ XD, a ∈ XA ∩ Ci
Lda

be the Poisson processes of donor excitation times which result in photon emissions for 

respectively donors and acceptors in the pixel Ci.

The emitted photons fall on the detector independently of each other with a probability 0 < h 
< 1 of detection. In the point process literature the detected photons are called an 

independent thinning with retention probability h. Further, of the detected photons only 

independent thinnings with retention probabilities 0 < QD < 1 (0 < QA < 1) are registrated in 

the donor (acceptor) channel of the detector. The probabilities QD and QA are respectively 

the detector quantum yields in the donor and acceptor channel [Pawley (2006)]. The 

detected photon counts NDD
i  and NDA

i  of emissions in the pixel Ci are thus Poisson 

distributed with means QDhqDλDT Σd∈XD∩Ci PdD and QDhqAλDT Σd∈XD,a∈XA∩Ci Pda. 

Finally, IDD
i = GDNDD

i  and IDA
i = GANDA

i , where GD and GA are amplification factors 

depending on the detector and channel. Defining MD = GDQDhqDλDT and G = 

(GAQAqA)/(GDQDqD), we arrive at the specified means of IDD
i  and IDA

i .

The mean of IAA
i  is found in a similar fashion. In the AA-channel acceptors are directly 

excited by the laser which is now broadcasting in the acceptor excitation spectrum with an 

intensity λA > 0. An excited acceptor can only de-excite due to emission or nonradiatively, 

and the detected photon counts NAA
i  of emissions in the pixel Ci are Poisson distributed with 

means QAhqAλAT Σa∈XA∩Ci 1 and IAA
i = GANAA

i . Defining MA = GAQAhqAλAT and K = 

MD/MA, we arrive at the specified mean of IAA
i .
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Fig. 1. 

(a) Donor fluorophore surrounded by three acceptors at distances R0, 1
2R0 and 2R0. (b) The 

table shows the de-excitation “path widths” (R0/||d − a||)6 for energy transfer from the donor 

to each of the acceptors and the corresponding energy transfer probabilities Pda.
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Fig. 2. 
In each plot the solid line is the centered LE-function. The other lines show the centered EL|

Y for varying MD: dashed line: MD = 1, dotted line: MD = 5, dashed-dotted line: MD = 20. 

The plots are for the dimer and clustered point pattern types.
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Fig. 3. 
Continuation of Figure 2. Plots are for the Poisson hard core and repulsive types.
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Fig. 4. 
Distribution of the centered L̄

|Y-function for the various point pattern types, summarized by 

98% envelopes based on L̄
|Ysynth,i, i = 1, …, 100, together with the mean value ÊL|Y (middle 

solid line). The value of MD is 5 or 20. In each plot twenty of the L̄
|Ysynth,i’s are shown with 

solid gray curves, the dashed line is the centered LÊ-function.
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Fig. 5. 
Posterior distribution of L̂

X given the first synthetic dataset Ysynth,1 for each point pattern 

type. Dashed: posterior mean L|Ysynth,1, dashed-dotted: 98% envelopes and solid gray: 

twenty posterior realizations of L̂
X. Solid black shows the true L̂

Xsynth,1.
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Fig. 6. 
Boxplots of the posterior mean of all the six microscope parameters for the forty replicated 

runs for each of the point pattern types (referred to by their type number, see Table 1) for 

MD
s = 20. The horizontal lines are drawn at the corresponding synthetic values.
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Fig. 7. 
Channel intensity images of the aggregated channel dataset of sample 2. (a) DD-channel, (b) 

AA-channel, (c) DA-channel. Plots (a)–(c) consist each of 512 × 512 pixels. Plots (d)–(f) 

show enlargements of the square subregions of the plots (a)–(c), each consisting of 100×100 

pixels. Above each plot is stated the mean (me), maximum (ma) and minimum (mi) pixel 

intensity value in the image. In each image the gray levels are constructed by using ten 

equally spaced intervals between zero and the maximum value of the image. Black/white 

refers to the lowest/highest intensity interval.
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Fig. 8. 
Traceplots of the microscope and the Poisson point process parameters for sample 1. 

Posterior mean values are displayed in the upper left corner of each of the plots. For plotting 

a subsampling of 10 has been applied.
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Fig. 9. 
Scatterplots of the posterior realizations of MD,G,K, θD, θA versus each other for sample 1. 

For plotting a subsampling of 100 has been applied.
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Fig. 10. 
Posterior distribution of the L-function for samples 1–3. For each sample the posterior 

distribution is summarized by the posterior mean (solid line) of the L-function and 95% 

envelopes based on minimal (lower dashed-dotted line) and maximal (upper dashed-dotted 

line) values of 39 posterior realizations of the L-function.
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Table 3

Posterior results for each of the three samples: 95% posterior intervals and posterior means (in brackets) for 

each of the parameters. Prior means of the parameters are given in Table 2

Sample

1 2 3

MD 2.3–7.0 (4.2) 3.1–8.6 (5.5) 2.8–6.8 (4.7)

G 0.46–1.21 (0.78) 0.50–1.36 (0.89) 0.19–0.52 (0.32)

K 0.61–1.93 (1.08) 0.31–0.98 (0.60) 0.51–1.49 (0.92)

GA 1.9–6.2 (4.0) 5.3–12.7 (8.9) 8.0–13.4 (10.6)

GD 1.2–5.7 (3.3) 3.0–10.0 (6.3) 1.7–6.5 (3.9)

σ 4.4–12.0 (8.3) 3.8–10.7 (7.2) 4.2–11.6 (7.9)

θD 6.1e2–19.3e2 (11.1e2) 7.8e2–2282 (13.4e2) 9.0e2–23.5e2 (14.7e2)

θA 6.1e2–15.0e2 (9.7e2) 8.3e2–20.4e2 (12.8e2) 15.0e2–34.1e2 (23.5e2)
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