Skip to main content
. 2018 May 1;18(5):1392. doi: 10.3390/s18051392

Table 1.

Effects of CNN depth and data augmentation according to 12 measurement conditions and results of the A-Test for evaluating structural risks.

No Aug Aug EN
VGG-11 VGG-13 VGG-16 VGG-19 VGG-11 VGG-13 VGG-16 VGG-19
Train All 97.46 97.33 97.46 97.19 95.32 95.08 95.27 95.33 -
Test Sit (R) 97.20 97.14 97.57 97.41 93.65 94.22 93.45 95.16 96.37
Stand (R) 97.67 97.73 98.06 97.94 93.86 94.34 93.83 94.06 96.06
Sup (R) 97.30 97.31 97.79 97.83 93.29 93.07 92.77 94.25 96.02
Sit (A) 97.75 97.67 97.92 97.95 93.89 94.54 94.95 92.74 95.33
Stand (A) 97.55 97.53 98.01 97.71 94.11 94.98 95.12 93.11 95.56
Sup (A) 98.16 98.09 98.49 98.21 95.15 95.34 95.82 95.55 97.02
Walk (3.2) 95.19 95.20 95.11 94.79 92.45 91.83 92.07 91.90 93.51
Walk (4.5) 94.49 94.52 94.72 94.54 94.37 92.78 94.05 94.88 94.80
Walk (5.8) 94.54 94.34 94.21 94.15 95.4 94.26 95.01 95.60 94.91
Run (6.4) 93.54 93.31 93.29 93.36 94.69 93.61 94.47 95.03 94.16
Run (8.5) 92.83 92.35 92.57 92.17 95.09 94.98 94.80 95.11 93.84
Run (10.3) 92.48 92.20 92.05 91.70 94.62 95.18 94.85 94.93 93.49
All 95.72 95.62 95.82 95.65 94.21 94.09 94.27 94.36 95.09
A-Test τn^ 7.95 7.83 7.61 7.57 8.40 8.06 7.88 7.81 6.98
minτn 3.11 2.97 2.43 2.44 5.21 5.10 4.67 4.82 2.85

No Aug = No Augmentation; Aug = Augmentation; EN = Ensemble Network. Bolded numbers are the highest accuracy according to 12 measurement conditions in No Aug and Aug models, respectively. Red numbers are the highest accuracy according to 12 measurement conditions in all models. Optimal architecture is the ensemble network of VGG-16 without data augmentation and VGG-19 with data augmentation.