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Temporal variation in microbiome measurements can reduce statistical power in research studies. Quantification of
this variation is essential for designing studies of chronic disease.We analyzed 16S ribosomal RNA profiles in paired bio-
logical specimens separated by 6 months from 3 studies conducted during 1985–2013 (a National Cancer Institute colo-
rectal cancer study, a Costa Rica study, and the Human Microbiome Project). We evaluated temporal stability by
calculating intraclass correlation coefficients (ICCs). Sample sizes needed in order to detect microbiome differences
between equal numbers of cases and controls for a nested case-control designwere calculated on the basis of estimated
ICCs. Across body sites, 12 phylum-level ICCswere greater than 0.5. Similarly, 11 alpha-diversity ICCswere greater than
0.5. Fecal beta-diversity estimates had ICCs over 0.5. For a single collection with most microbiomemetrics, detecting an
odds ratio of 2.0 would require 300–500 cases when matching 1 case to 1 control at P = 0.05. Use of 2 or 3 sequential
specimens reduces the number of required subjects by 40%–50% for low-ICC metrics. Relative abundances of major
phyla and alpha-diversity metrics have low temporal stability. Thus, detecting associations of moderate effect size with
thesemetricswill require large sample sizes. Because beta diversity for feces is reasonably stable over time, smaller sam-
ple sizes can detect associations with community composition. Sequential prediagnostic specimens from thousands of
prospectively ascertained cases are required to detectmodest disease associationswith particularmicrobiomemetrics.

epidemiologic methods; microbiome; microbiota; statistical power; temporal stability

Abbreviations: CRC, colorectal cancer; HMP, Human Microbiome Project; ICC, intraclass correlation coefficient; PCoA, principal
coordinates analysis; PCoA1, first principal coordinates analysis; PD_tree, phylogenetic distance—whole tree; rRNA, ribosomal RNA.

Editor’s note: An invited commentary on this article
appears on page 1291.

The human microbiota comprise the collection of microbes
inhabiting the human body, including bacteria, archaea, fungi,
and other eukaryotic microbes. Advances in low-cost high-
throughput sequencing (1) and bioinformatic analyses (2–4)
now allow the characterization of human microbial communities.
Importantly, the human microbiome has been recently shown to
be associatedwith selected health conditions: the fecalmicrobiota
with obesity (5–7), colorectal cancer (CRC) (8), estrogen levels
(9), postmenopausal breast cancer (10), and inflammatory bowel
disease (11); the oral microbiota with pancreatic (12), oral (13),
and gastrointestinal (13) cancers; the vaginal microbiota with

bacterial vaginosis (14); and the skin microbiota with atopic
dermatitis and other skin diseases (15–17). Interventions with
medications or diet produce alterations in microbial communi-
ties (17–19). Together, these results demonstrate the potential
of microbiome research for elucidating the etiology, prevention,
and possibly treatment of complex human diseases. While prom-
ising, some important questions need to be answered in order for
large-scale epidemiologic studies to clarify the role of microbiota
in human health (20).

The aim of a prospective epidemiologic study is to identify
whether selected factors predict a disease outcome. Due to
cost, compliance, and degree of invasiveness, many exposures
are typically measured only at baseline, which works well if
the factor is temporally stable. At the community level, the mi-
crobiome has been reported to be reasonably stable over time
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(21–23). In contrast, other studies found substantial temporal
variability in composition for particular bacteria at different
body sites (15, 23–26), but between-person variability was still
much larger than differences over time. If a variable exposure
is measured at a single time point, its temporal instability dra-
matically reduces the study’s statistical power to detect asso-
ciations and also can bias the estimate of its effect (27). It is
therefore crucial to systematically evaluate the temporal stabil-
ity of microbiome measures, including the relative abundances
of taxa, alpha diversity, and beta diversity, in order to accu-
rately determine sample sizes required for future studies.

We evaluated the temporal stability of specific microbiome
metrics, based on 16S ribsomal RNA (rRNA) gene profiles, in 3
populations of persons who provided 2 biological specimens
separated by approximately 6months: 1) hospital-based controls
from aNational Cancer Institute CRC study (28, 29); 2) randomly
sampled adults in the Guanacaste region of Costa Rica (Dr. Paula
González, Guanacaste Epidemiology Project–INCIENSA Foun-
dation (San José, Costa Rica), unpublished data, 2015); and
3) participants in the National Institutes of Health’s Human
Microbiome Project (HMP) (30–32). Our objective was to esti-
mate the degree of temporalmicrobiome variability within indivi-
duals and the impact that will have on sample size requirements
for future studies. We focused on case-control studies nested
within prospective studies, since sequencing the microbiome
for an entire cohort would be prohibitively expensive. We esti-
mated intraclass correlation coefficients (ICCs) in these 3 stud-
ies; higher ICCs imply larger statistical power and smaller bias
in estimating an exposure’s effect. This research is critical for
designing large-scale epidemiologic studies of complex human
diseases, including cancer (33, 34).

METHODS

CRC case-control study—feces

We used fecal specimens from hospital-based controls of a
National Cancer Institute CRC case-control study (1985–1987)
(8, 28, 29). Control subjects were recruited from patients await-
ing elective surgery for nononcological, nongastrointestinal
conditions at 3Washington, DC-area hospitals. Before hospital-
ization and treatment, participants provided 2-day fecal speci-
mens that were freeze-dried. Forty-four controls made 2 study
visits separated by approximately 6 months (Table 1). DNA
extraction, sequencing, and bioinformatic processing were con-
ducted at NewYork University School ofMedicine (NewYork,
New York) and were described in an earlier publication (8).
Briefly, DNA was extracted from fecal specimens using the
MO BIO PowerSoil DNA Isolation Kit (MO BIO Laboratories,
Inc., Carlsbad, California). We generated 16S rRNA gene ampli-
cons covering variable regions V3–V4 using the 454 Roche
GS-FLX Titanium pyrosequencing system (Roche Diagnostics
Corporation, Indianapolis, Indiana).

Costa Rica study—feces and saliva

In the Costa Rica study, fecal (n = 116) and saliva (n = 42)
specimens were collected at 2 study visits separated by 6months
(2010–2012) in a randomly selected population in Costa Rica

(Table 1). For the fecal collection, participants were provided
with a self-collection kit with detailed instructions on collecting
specimens from the first stool of the day. Fecal specimens were
collected in 20-mL screw-top Sarstedt tubes (Sarstedt AG &
Company KG, Nümbrecht, Germany) that had been prefilled
with 5 mL of RNAlater (QIAGEN, Valencia, California) (9).
After collection, the participant stored the fecal specimen in a
thermal container with dry ice. The study staff collected speci-
mens from the participants’ homes or the participants brought
them to the clinic, where they were transferred for storage in
liquid nitrogen within 24 hours.

Saliva specimens were collected at the time of the clinic vis-
its. Participants were instructed to let saliva collect in themouth
for at least 30 seconds and then spit the saliva into a sterile col-
lection tube. The process was repeated until the target collec-
tion volume of 2–3mLwas reached. In the laboratory, the saliva
samples were mixed with 5 mL of RNAlater and frozen in
liquid nitrogen.

DNA was extracted from both the fecal and saliva samples
and sequenced at the Institute of Genome Sciences, University
of Maryland School of Medicine (Baltimore, Maryland), as
described previously (9, 35). Briefly, the samples were ex-
tracted with a modification of the QIAamp DNA Stool Mini
Kit (QIAGEN) (9). An approximately 469-base-pair segment of
the 16S rRNA gene V3–V4 hypervariable region of the DNA
was amplified with primers that included a linker sequence
(suitable for the MiSeq 300PE Illumina sequencer; Illumina,
Inc., San Diego, California), a 12-base-pair index sequence,
a heterogeneity spacer (tominimize biaswith low-diversity ampli-
cons), and 16S rRNA gene universal primers 319F/806R. The
amplicons were sequenced in a single pool in 1 run on theMiSeq
instrument using the 300PE protocol, generating approximately
2.22GB of data.

Table 1. Sample Sizes Used in ReplicateMeasurements of
Microbiota Collected in 3 Studies, 1985–2013

Study Sample Size, no.

NCI CRC case-control study (1985–1987)
(28, 29)

Stool 44

Costa Rica study (2010–2012)a

Stool 116

Saliva 42

HMP (2008–2013) (30)

Stool 107

Saliva 94

Mouth (oral average) 103

Airways (anterior nares) 78

Skin (average) 63

Vagina (average) 37

Abbreviations: CRC, colorectal cancer; HMP, Human Microbiome
Project; NCI, National Cancer Institute.

a Dr. PaulaGonzález, INCIENSAFoundation, unpublished data, 2015.
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HumanMicrobiome Project—multiple body sites

The HMP was established in 2008 and completed in 2013
(30–32). We downloaded the HMP 16S rRNA gene database
with its associated mapping files from the HMP Data Analysis
and Coordination Center (36). The HMP subjects were sam-
pled for microbiota at 15 body sites (for males) or 18 body sites
(for females), including feces, oropharynx (buccal mucosa,
hard palate, keratinized gingiva, palatine tonsils, saliva, sub-
gingival plaque, supragingival plaque, throat, and tongue dor-
sum), anterior nares, skin (left and right antecubital fossa, left
and right retroauricular creases), and vagina (midvagina, pos-
terior fornix, and vaginal introitus). A subset of HMP subjects
(stool: n = 107; saliva: n = 94; mouth: n = 103; airways: n =
78; skin: n = 63; vagina: n = 37) were sampled at a second
time point that was separated from the first by an average of
219 (standard deviation, 69) days (30), which we included for
this analysis. Our analysis focused on the V3–V5 sequence
data.

16S sequence data processing andmicrobiota
measurements

The Quantitative Insights Into Microbial Ecology analysis
pipeline (2) was used to assemble and filter the 16S rRNA
sequence reads, removing reads with low-quality scores and
reads judged to be chimeras or to have sequencing artifacts.
The retained, high-quality sequence reads that had at least 97%
sequence identity were clustered into operational taxonomic
units. Taxonomy was assigned using closed reference opera-
tional taxonomic unit picking in comparison with the Green-
genes reference set, version 12_10 (37, 38). Reads that did not
match a reference sequence at ≥97% sequence identity were
discarded.

We calculated the relative abundance of the top 5 bacterial
phyla (Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria,
and Proteobacteria), 4 alpha-diversity metrics (number of
observed species (Sobs) or operational taxonomic unit, Chao1,
Shannon index, and phylogenetic distance—whole tree
(PD_tree)), and 2 beta-diversity metrics (unweighted and
weighted UniFrac distance). Alpha-diversity metrics were cal-
culated as the average of 20 rarefaction subsampling repeats
to 1,000 sequencing reads to retain individuals analyzed using
454 pyrosequencing. We also performed rarefaction to 5,000
sequencing reads as a sensitivity analysis (data not reported).
Similar to alpha diversity, beta-diversity metrics were also cal-
culated after rarefying to 1,000 sequencing reads. No existing
statistical methods are available with which to appropriately
quantify temporal stability for beta-diversity distance matrices.
Thus, we performed a principal coordinates analysis (PCoA) to
calculate the top factors that captured a large proportion of the
information of the distancematrix to be used for analysis.

ICCs ofmicrobiomemeasurements

The value of an ICC ranges from 0 (no reproducibility) to 1
(perfect reproducibility). For each microbiome metric, we cal-
culated ICCs to quantify the biological variability for each of
the microbiomemetrics, defined as

=
σ

σ + σ
ICC .b

b e

2

2 2

Here σb
2 represents between-individual variability and σe

2

represents the variance component capturing both technical
variability and temporal instability. Note that the 2 variance
components related to technical reproducibility and temporal
instability can be separated if technical replicates are avail-
able. Although we did not separate the 2 components in the
current article due to a lack of technical replicates, the ICC
reflects the effective sample size after accounting for both
technical reproducibility and temporal stability. The param-
eters σb

2 and σe
2 were estimated by a linear mixed-effects

model using the R package “lme” (R Foundation for Statisti-
cal Computing, Vienna, Austria). For the CRC and Costa Rica
data, we adjusted for sex and age in the model. For the HMP
data, we adjusted for sex, age, and sequencing center to
account for the variability introduced by the sequencing centers.
For a given microbiome metric, the ICC is directly related to the
statistical power of testing an association in an epidemiologic
study. The standard error for the estimated ICCwas approximated
by bootstrapping subjects at the cluster level—for example, keep-
ing the relationship of sample pairs for each subject unchanged.

For HMP data, we report ICCs for feces, saliva, and anterior
nares. We also present averaged ICCs for 3 sites—the orophar-
ynx (buccal mucosa, hard palate, keratinized gingiva, palatine
tonsils, subgingival plaque, supragingival plaque, throat, and
tongue dorsum), skin (left and right antecubital fossa, left and
right retroauricular creases), and vagina (midvagina, posterior
fornix, and vaginal introitus)—since population studies would
most likely evaluate these microbiomes from a combined-organ
perspective rather than by subsite within the organ (e.g., vagina
rather than midvagina, posterior fornix, and vaginal introitus) in
relation to the outcome. The ICCs for the subsites are presented
separately inWeb Tables 1–4 (available at https://academic.oup.
com/aje). The standard error for the average ICC was approxi-
mated by bootstrapping based on 1,000 random samples with
replacement. To keep the correlation between body sites, boot-
strapping was performed by sampling subjects, and ICCs across
body sites were calculated on the basis of the same set of boot-
strapped subjects.

Estimating required sample sizes for future studies

Our second objective was to evaluate the effect of variability
on statistical power to inform future epidemiologic study
design. We wanted to estimate how much power would be
gained by using longitudinal repeated specimens as compared
with a single-specimen design. We used the estimated ICCs
from the fecal specimens to determine the sample sizes that
would be necessary to detect associations between various mi-
crobiome metrics and disease, given specific effect sizes. We
estimated the numbers of individuals that would be needed for
both a 1:1 matched case-control study and a 1:3 matched case-
control study (nestedwithin a cohort or as an independent study)
in order to have 80% power to detect an association betweenmi-
crobiome metrics and a disease at P values equal to 0.05, 0.001,
0.0001, and 0.00001.
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For estimation of the required sample size based on the cal-
culated ICCs, let y denote the case-control status and x denote a
“long-term” (multiple values averaged over an extended time
period) microbiomemetric (e.g., relative abundance of a taxon,
alpha diversity, or PCoA scores based on a beta-diversity
matrix) (see Web Appendix). We assume a logistic regression
model ( = | ) = ( + )α+β α+βP y x e e1 / 1x x . Let K denote the
number of repeat specimens for each subject. We assume that
we can use the average of the K repeats to estimate the “long-
term”metric. In addition, suppose that the study hasN subjects
with ϕN cases and ϕ( − )N 1 controls. In the Web Appendix,
we derive the noncentrality parameter for a score statistic test-
ing β =H : 00 :

( )
ξ =

μ (α β) − μ (α β)

+ +
ϕ ϕ

+ −

−

−

, ,

1

,

N K

1 1 1

1

11
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⎛
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⎞
⎠⎟

whereμ (α β)+ , andμ (α β)− , are the expectation of the micro-
biome metric in the case group and the control group,
respectively.

Let Ct be the quantile for the standard normal distribution.
The power of detecting an association with P value threshold
p0 is given by
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Thus, to achieve 80% power,

ξ = + −C C .p0.8 1
2
0

Combing the above 2 equations, we derive the sample size
required to achieve 80% power:
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In this analysis, we considered sample size requirements for
the relative abundances of 5 taxa, 4 alpha-diversity metrics,
and the top PCoA scores for the beta-diversity metrics
(unweighted and weighted UniFrac distances) to detect dif-
ferences between cases and an equal number of controls.
Calculations were based on critical values of 0.05, 0.001,
0.0001, and 0.00001. All calculations were performed in R.
The R code for power calculation is provided in the Web
Appendix.

Let d0 be the 25% quantile and d1 be the 75% quantile of the
microbiome metric x. In the Web Appendix, we show that the
power (and required sample size) is a function of the odds ratio
for the top 25%microbiome metric versus the bottom 25%mi-
crobiomemetric.

RESULTS

Temporal stability of fecal samples

The ICCs for the relative abundance of 5 common phyla, 4
estimates of alpha diversity, and the top PCoA scores based on
unweighted and weighted UniFrac distance matrices are pre-
sented in Figures 1–3 andWeb Tables 1–4. The proportions of
explained variance of the top 5 PCoA scores are reported in
Web Tables 5 and 6. For the stool microbiome (Figure 1), the
ICCs had a wide range, from 0.00 for Proteobacteria to 0.84
for unweighted UniFrac first principal coordinates analysis
(PCoA1). Higher ICCs (>0.50) were noted for the average of
the top 5 PCoA scores based on unweighted UniFrac in all 3
studies. For relative abundance at the phylum level across all 3
studies, 12 ICCs were 0.50 or greater (Web Table 1). However,
as Figures 1–3 show for each study, ICCs were very low for
the relative abundance of Actinobacteria and Fusobacteria
(ICC = 0.00 and ICC = 0.19, respectively) in the HMP, and in
the CRC study, the ICCs for the relative abundance of Firmi-
cutes, Fusobacteria, and Proteobacteria were also low (ICC =
0.03, ICC = 0.16, and ICC = 0.00, respectively). The ICCs for
PD_ tree were 0.66 in the HMP, 0.58 in the Costa Rica study,
and 0.34 in the CRC study.

Temporal stability of saliva samples

Repeat saliva samples were obtained in the Costa Rica study
and the HMP. For all saliva microbiome metrics, ICCs were
higher in Costa Rica than in the HMP, often by 10%–50%
(Figure 2). The lowest saliva ICC was for the relative abun-
dance of Actinobacteria (ICC = 0.16) in the HMP, and the
highest ICC was for the average of the top 5 PCoA scores for
unweighted UniFrac (ICC = 0.73) in the Costa Rica study.

Temporal stability of samples from other body sites

Data for additional body sites were available only from the
HMP (Figure 3). We also included stool and saliva samples in
Figure 3 for comparisonwith other body sites. ICCs for various
body sites in the HMP varied enormously (Figure 3). For the
relative abundance of the different bacterial phyla, the ICCs
were relatively low, except for the relative abundance of Bac-
teroidetes and Firmicutes in the vagina, which had ICCs of
0.57 and 0.59, respectively. Alpha-diversity ICCs were highest
for stool samples compared with other sites. Unweighted Uni-
Frac PCoA1 ICCs were high for stool (ICC = 0.76), saliva
(ICC = 0.54), and averaged vagina (ICC = 0.68). Unweighted
UniFrac PCoA1 ICCs were 0.25 for skin and 0.28 for nares.
Averaged unweighted UniFrac top-5 PCoA ICCs were gener-
ally lower than only PCoA1 ICCs for all sites.Weighted UniFrac
ICCs were also lower than unweighted UniFrac ICCs overall,
except for the saliva sample for the PCoA1 ICC.

Estimates of sample size requirements for a fecal
microbiome study

For a large association (i.e., odds ratio = 3.5) with 1 fecal
specimen at P = 0.05, approximately 100–400 cases would be
sufficient for all microbiome metrics when matching 1 case to
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Figure 1. Within-subject stability intraclass correlation coefficients for fecal samples in 3 studies (a National Cancer Institute (NCI) colorectal can-
cer (CRC) study (28, 29), a Costa Rica study (Dr. Paula González, INCIENSA Foundation, unpublished data, 2015), and the Human Microbiome
Project (HMP) (30)) for 5 phyla, 4 alpha-diversity metrics, and the first principal coordinate (PCoA1) and average of 1–5 principal coordinates
(PCoA1–5) of 2 beta-diversity metrics. OTUs, operational taxonomic units; PCoA, principal coordinates analysis; PD_Tree, phylogenetic distance—
whole tree. Bars, 95% confidence intervals.
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Figure 2. Within-subject stability intraclass correlation coefficients for saliva samples in 2 studies (aCostaRica study (Dr. PaulaGonzález, INCIENSA
Foundation, unpublished data, 2015) and the Human Microbiome Project (HMP) (30)) for 5 phyla, 4 alpha-diversity metrics, and the first principal
coordinate (PCoA1) and average of 1–5 principal coordinates (PCoA1–5) of 2 beta-diversity metrics. OTUs, operational taxonomic units; PCoA,
principal coordinates analysis; PD_Tree, phylogenetic distance—whole tree. Bars, 95% confidence intervals.
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1 control. In contrast, smaller associations (i.e., odds ratio =
1.5) could only be detected in studies that were 6-fold larger
(approximately 1,000–3,000 cases; Table 2). As expected,
fewer cases are needed for metrics with higher ICCs (i.e., lower
within-subject variability), particularly for unweighted UniFrac.
The required sample size is also lower when multiple speci-
mens per subject over time would be collected, and the
benefit is substantial for low-ICC metrics. Detecting an odds
ratio of 1.5 for the relative abundance of Fusobacteria (ICC =
0.18) would require 3,659 cases with 1 specimen, 2,158 cases
with a second specimen, and 1,658 cases with a third speci-
men. Detection of an odds ratio of 1.5 in unweighted UniFrac
(ICC = 0.81) would require only 813 cases, which decreases
to 735 cases if a second specimen is available and 710 cases
if a third specimen is available. In the Web tables, we have
provided detailed sample-size calculations for 1:1 case-control
matching (Web Tables 7–10) and 1:3 case-control matching
(Web Tables 11–14) at different levels of significance (P’s =
0.05–0.00001).

DISCUSSION

In this analysis of the temporal stability of relative abun-
dance, alpha diversity, and beta diversity, we found that ICCs
for temporal stability over a period of 6 months were generally
0.5 or below for the majority of the phylum-level relative abun-
dances and alpha-diversity metrics across different types of spe-
cimens. This finding implies that even nominally significant

associations with these unstable metrics should be inter-
preted with caution and that sample sizes need to be quite large
for these types of analyses. In contrast, unweighted UniFrac,
one measure of beta diversity, was relatively stable not only
for stool specimens but also for oral, oropharynx, and vagina
specimens. Unweighted UniFrac is the pairwise comparison
of the sizes and shapes of each specimen’s phylogenetic tree
without consideration of relative abundances. In contrast,
weighted UniFrac, which considers the relative abundances of
taxa and also utilizes the phylogenetic tree, had lower ICCs.
This observation favors unweighted UniFrac as a useful metric
for identifying disease associations or predictions based on
overall differences in detection of the many different microbes,
as compared with the relative abundance of particular phyla.
For a single collection with most microbiome metrics, detect-
ing an odds ratio of 2.0 would require 300–500 cases when
matching 1 case to 1 control atP = 0.05. Smaller case numbers
would be required to detect associations between particular
pathogenic bacteria that directly cause disease, as is known for
Mycobacterium tuberculosis or Clostridium difficile, since the
hypothesized associationwould be large.

To be successful in conducting an epidemiologic study of
the microbiome, investigators must have knowledge of both
technical reproducibility and the temporal stability of human
microbiota; this can be quantified by the ICC, which is directly
related to statistical power for testing associations. Technical
reproducibility has been reported in some studies for fecal sam-
ples (39, 40). In our recentwork, we have found that the technical
reproducibility in fecal samples is very high (taxa: ICCs >80%;
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Figure 3. Within-subject stability intraclass correlation coefficients for samples of fecal, saliva, average oropharynx, nares, average skin, and
average vagina microbiota in the Human Microbiome Project (HMP) (30) for 5 phyla, 4 alpha-diversity metrics, and the first principal coordinate
(PCoA1) and average of 1–5 principal coordinates (PCoA1–5) of 2 beta-diversity metrics. OTUs, operational taxonomic units; PCoA, principal coor-
dinates analysis; PD_Tree, phylogenetic distance—whole tree. Bars, 95% confidence intervals.
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alpha/beta diversity: ICCs >90%) (41, 42). However, temporal
stability ICCs have not been systematically investigated across
body sites using a large number of subjects. The many low ICCs
that we found contribute to the substantial challenges in replicat-
ing novel associations with the microbiome. These results have
important implications for designing and scaling epidemiologic
studies.

Previous studies have evaluated the temporal stability of the
microbiome. In 2 individuals examined daily for 1 year, overall
community composition was stable (43). However, next-day
correlations with fiber intake and marked alterations associated
with international travel or enteric infection were also noted.
Zhou et al. (26) and Ding and Schloss (44) investigated tempo-
ral variation of microbiota in the HMP subjects. In the Zhou
et al. study (26), the Spearman correlation between 2 vectors of
taxon relative abundances corresponding to 2 study visits was
calculated for each subject. By averaging across subjects, Zhou
et al. concluded that oral and fecal samples were the most stable
temporally, whereas skin and vaginal samples were the most
unstable. However, their calculations did not reflect the instability
of individual microbiome metrics across participants and thus did
not provide quantified information necessary for prospective epi-
demiologic studies. With such limitations, there is concern that
these conclusions might be used erroneously to guide the design
of epidemiologic studies. For example, it was stated that vaginal
samples were very unstable, with Spearman correlations close to
zero, suggesting no power for association studies. However,
in our analysis, the ICC for unweighted UniFrac was reasonably
high (averaged across 3 vaginal sites, ICC = 0.68 for PCoA1),
implying onlymoderate power loss due to temporal variation. In
addition, temporal stability evaluated with their approach pro-
vides little or no information relevant to the temporal stability of
within-subject alpha diversity or community composition (i.e.,
beta diversity).Ding andSchloss (44) developed a simpleMarkov
model to characterize the temporal stability; however, the inferred

Table 2. Numbers of Cases Required to Detect a Significant
Associationa in 1, 2, or 3 Fecal Specimens Using an Intraclass
Correlation Coefficient From 3 Fecal Sample Populations

Measure and No. of
Specimens

Estimated
ICCb

Odds Ratioc

1.5 2.0 2.5 3.0 3.5

Relative Abundance of Phylum-Level Taxa

Actinobacteria 0.44

1 1,496 498 273 190 151

2 1,077 359 196 136 109

3 938 312 171 119 94

Bacteroidetes 0.37

1 1,780 593 325 226 180

2 1,219 406 222 154 123

3 1,032 344 188 131 104

Firmicutes 0.42

1 1,568 522 286 199 158

2 1,113 371 203 141 112

3 961 320 175 122 97

Fusobacteria 0.18

1 3,659 1,219 668 464 370

2 2,158 719 394 274 218

3 1,658 552 302 210 167

Proteobacteria 0.29

1 2,271 757 414 288 229

2 1,464 488 267 186 148

3 1,196 398 218 151 121

Alpha Diversity

PD_tree 0.58

1 1,135 378 207 144 114

2 897 299 163 113 90

3 817 272 149 103 82

Chao1 0.44

1 1,496 498 273 190 151

2 1,077 359 196 136 109

3 938 312 171 119 94

No. of species 0.43

1 1,531 510 279 194 155

2 1,095 365 199 139 110

3 949 316 173 120 96

Shannon index 0.47

1 1,401 467 255 177 141

2 1,030 343 188 130 104

3 906 302 165 115 91

Beta Diversity

Unweighted
UniFrac PCoA1

0.81

1 813 271 148 103 82

2 735 245 134 93 74

3 710 236 129 90 71

Table continues

Table 2. Continued

Measure and No. of
Specimens

Estimated
ICCb

Odds Ratioc

1.5 2.0 2.5 3.0 3.5

Weighted UniFrac
PCoA1

0.48

1 1,372 457 250 174 138

2 1,015 338 185 128 102

3 896 298 163 113 90

Abbreviations: ICC, intraclass correlation coefficient; PCoA1, first prin-
cipal coordinates analysis; PD_tree, phylogenetic distance—whole tree.

a Number of cases (assuming an equal number of controls) required
to detect an association at a significance level of 0.05with 80%power,
based on 1, 2, or 3 fecal specimens per subject and the ICC estimated
from the fecal samples from the 3 populations.Disease prevalence = 1%.

b ICCs were the median values of 3 estimates from 3 studies: a
National Cancer Institute colorectal cancer study (28, 29), the Human
MicrobiomeProject (30), and a Costa Rica study (Dr. Paula González,
INCIENSA Foundation, unpublished data, 2015).

c Odds ratio for the top 25% microbiome metric versus the bottom
25%microbiomemetric.

Am J Epidemiol. 2018;187(6):1282–1290

1288 Sinha et al.



model parameters cannot be used directly to calculate the effective
sample size for an epidemiologic study.

There are 3 methods with which to increase statistical power
for microbiome analyses in epidemiologic studies, particularly
for case-control studies nested within prospective cohort stud-
ies. One method for improving power is to have more end-
points in the study, which could be accomplished by recruiting
a larger cohort or following the cohort for a longer time. The
second approach is to collect and test specimens at multiple
time points for each subject and to average across the speci-
mens. Our analyses of stability ICCs revealed that a second or
third specimen per subject is only moderately beneficial for a
stable (high-ICC)metric such as unweighted UniFrac, whereas
additional specimens greatly reduce the required sample size
for unstable (low-ICC) metrics, such as the relative abundance
of Fusobacteria. The multiple-specimen approach also affords
the opportunity to detect temporal changes in the metric that
may predict disease onset. The optimal design depends on the
hypothesis (microbiomemetric) to be tested (average vs. change)
and the relative costs of microbiome sequencing and subject
recruitment and retention. When the cost of recruiting subjects is
much higher than the laboratory costs, sequencing of multiple
specimens over time is expected to have better power. The third
method for improving statistical power is to identify factors that
contribute to the instability of a microbiomemetric and adjust for
these factors in association studies. Except for antibiotic use,which
has a potent but unquantified effect, such factors are currently
under debate.

Investigators in prospective cohort studies need to perform
cost-benefit analyses and decide whether it is more expensive
to recruit more participants into the study or collect multiple
specimens from the same individual. Relatedmethods for increas-
ing the numbers could include pooling ormeta-analysis of partici-
pants from different studies. It may also be possible to collect
multiple samples from a subset of a cohort and use these data to
correct the association, as has been done in nutritional data (45,
46). However, if specimens have been collected or analyzed by
different methods in various studies, the microbiome metric
may not be conducive to being pooled or meta-analyzed. We
have found that different methods of collecting samples show
bias in the microbiome data (41, 42), and study-specific differ-
ences in DNA extraction, polymerase chain reaction amplifica-
tion, and sequencing also contribute to heterogeneity, making it
difficult to pool studies (47). We have evaluated herein a real-
world situation in which the ICCs were not standardized for
study-specific differences in collection, extraction, amplifica-
tion, and sequencing.

Our study had several limitations. First, subjects made only
2 study visits whichwere separated by approximately 6months.
A longitudinal study with multiple sampling over a given time
period (months and years) and fixed sampling methods would
provide more accurate estimates, especially for unstable (low-
ICC) metrics. Second, the number of subjects was low for some
body sites (e.g., antecubital fossa and vagina), and subjects orig-
inated from only 1 study, the HMP, for many of the body sites.
Third, lack of technical replicates prevented the separation of
temporal variation from technical variability. However, techni-
cal reproducibility is usually high in experienced laboratories,
and typical epidemiologic studies are based on single-point
sampling with no technical replicates; thus, the ICCs estimated

here reflect both technical variability and temporal instability
and are directly applicable to statistical power for such epidemi-
ologic studies. However, we have found that the technical
reproducibility is very high; thus, the inclusion of multiple ali-
quots of the same samples will not substantially improve the
statistical power for detecting associations (41, 42). Fourth, be-
cause we focused on microbial communities, as estimated by
16S rRNA gene amplicons, our work has limited application
for research on specific bacterial species or strains or functional
pathways that employ other laboratorymethods, such as whole-
genome shotgun metagenomics. However, because we found
that stability ICCs were lowest for the low-abundance phyla, it
is highly likely that ICCs for uncommon or rare genera, species,
or strains would be as low or even lower.

Identifying which alterations of microbial populations or
functions contribute to disease, treatment response, or remis-
sion will hinge on comparisons of specimens that are collected
prospectively. Researchers conducting prospective studies need
to consider sampling needs for adequate statistical power for the
various microbiome metrics. In this article, we have quantified
temporal variation in microbiome measurements and provided
the sample size requirements to help cohort study investigators
plan for microbiome analyses.
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