Table 4. Prediction performance on 2136 Gal4 variants.
Feature vector input attributes based on in silico mutagenesis using tessellation of the Gal4 dimer.
Method | Se | Sp | PPV | BAR | MCC | AUC |
---|---|---|---|---|---|---|
10-fold CV classification: | ||||||
RF | 0.91 | 0.90 | 0.93 | 0.91 | 0.81 | 0.97 |
SVM | 0.91 | 0.82 | 0.88 | 0.87 | 0.74 | 0.94 |
DT | 0.89 | 0.87 | 0.91 | 0.88 | 0.76 | 0.93 |
NN | 0.91 | 0.83 | 0.89 | 0.87 | 0.75 | 0.88 |
10-fold CV regression: | ||||||
REPTree (r = 0.80) | 0.96 | 0.86 | 0.91 | 0.91 | 0.83 | – |
SVR (r = 0.72) | 0.92 | 0.84 | 0.89 | 0.88 | 0.77 | – |