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Don’t go in circles: confounding factors in
gene expression profiling
John Toubia1,2, Vanessa M Conn2,3 & Simon J Conn2,3

Quantification of gene expression is a
crucial research tool in the life sciences,
which makes it important to identify any
factors that could compromise its
accuracy. One of these factors are non-
polyadenylated (poly(A)�) transcripts,
including circular RNAs (circRNAs) that
can skew quantification of gene expres-
sion as they resemble messenger RNAs
(mRNAs). Here, we highlight the impact
circRNAs and other poly(A)� transcripts
have on gene expression profiling and
the biological conclusions drawn from
such experiments. We also propose easily
adoptable strategies to increase the
accuracy of gene expression quan-
tification.
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Introduction

Changes in mRNA expression in response to

experimental perturbations are widely used

as an indicator of biological effect. While a

number of approaches exist to quantify

mRNA abundance—including qRT–PCR,

microarray and next-generation sequencing

(NGS)—all techniques involve mapping data

to a reference genome (Rosenfeld et al,

2012). Reference genomes have traditionally

been populated with all known mRNAs, but,

more recently, the discovery of antisense

RNAs and other non-coding RNAs (ncRNAs)

has led to an expansion of genome annota-

tions (Pruitt et al, 2014). The increased

awareness of genome-wide ncRNA expres-

sion has also prompted the development of

new methods to discriminate between RNA

species. Antisense RNAs can now be distin-

guished from overlapping coding RNAs

owing to the advent of strand-specific/direc-

tional strategies. However, these techniques

do not discriminate against non-coding

transcripts resembling mRNAs, including

circRNAs, truncated transcripts and bimor-

phic transcripts (see Box 1), as we will

discuss below.

Distinct RNA isoforms from a single
genetic locus

All RNAs transcribed from a single gene

can be classified as polyadenylated (poly

(A)+) or non-polyadenylated (poly(A)�)
transcripts (Fig 1A). While mRNAs

comprise the bulk of the coding poly(A)+

transcript pool, some RNA transcripts are

defined as bimorphic, in that they can

exist in both poly(A)+ and poly(A)� popu-

lations, and include antisense RNAs and

ncRNAs (Fig 1A; Yang et al, 2011).

CircRNAs are a recently discovered class

of RNAs derived from pre-mRNAs through

a process known as back-splicing (Jeck

et al, 2013). During back-splicing, a donor

splice site fuses with an upstream acceptor

splice site to generate a covalently closed,

exon-rich circular RNA that lacks a poly

(A) tail (Fig 1A and B; Ashwal-Fluss et al,

2014). Although the circular form of an

RNA possesses a unique back-splice junc-

tion sequence, which can be used to

discriminate it from the cognate linear

mRNA, the rest of the circRNA is identical

to the cognate linear mRNA. As a conse-

quence, current gene expression analyses

cannot automatically distinguish circRNAs

from mRNAs.

Quantifying RNA transcripts: finding a
needle in a large pile of needles

qRT–PCR

The standard approach for quantifying indi-

vidual candidate gene expression is qRT–

PCR. Irrespective of the detection chemistry

used, the approach requires a pair of specific

primers designed to exclusively amplify the

target gene. The quantitative basis of qRT–

PCR relies on primer specificity producing

two amplicons from each target with every

amplification cycle. As a result, qRT–PCR is

sensitive to anything that alters copy

numbers in the starting material as can

occur when the primers amplify from a

circRNA-containing region of an mRNA

(Fig 1B, blue trace). The circRNAs constitute

a non-mRNA template that will result in

earlier amplification and therefore an over-

estimation of mRNA abundance within a

particular sample (Fig 1B). Designing

primers outside known circRNA regions

(Fig 1B, orange trace) and/or priming

reverse transcription with recursive deoxy-

thymidine primers (oligo(dT)), which

cannot prime the majority of circRNAs, are

strategies to limit/avoid overestimating

mRNA abundance.

If all things were equal and circular RNA

expression was constant, confounding

effects would exist but be minor or inconse-

quential. However, in addition to being

abundant—on occasion up to 1,000 times

the abundance of the cognate mRNA

(Salzman et al, 2012; Jeck et al, 2013)—

circRNAs are widespread (present in 17–

30% of expressed genes), cell-type specific

(Salzman et al, 2013) and developmentally
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regulated, often independently of their

cognate mRNAs (Conn et al, 2015). The

consequence is that any claims made about

changes in gene expression may be affected

by changes in circRNA abundance as well

as other “mRNA-indistinguishable” RNA

species including truncated and bimorphic

transcripts. This phenomenon also extends

to housekeeping genes: glyceraldehyde acid

3-phosphate dehydrogenase (GAPDH) and

elongation factor 1a (EF-1a), which are

frequently used to normalise between

samples. Online databases such as circNet

(Liu et al, 2016) show that both genes are

replete with circRNAs that vary in expres-

sion between samples.

Next-generation sequencing (NGS)

While NGS becomes more popular due to

dropping costs, it is still necessary to enrich

for certain transcript types prior to sequenc-

ing to focus on the most relevant popula-

tions. These enrichment approaches simplify

bioinformatic analyses and enhance statisti-

cal power. (Muir et al, 2016). Separation of

poly(A)+ and poly(A)� RNA populations is

the most commonly employed strategy for

enrichment, and transcriptome analysis for

a given sample is normally performed on

poly(A)+ RNA (hereafter called mRNA-seq;

Fig 1C). As the mRNA-seq process precludes

the detection of poly(A)� transcripts, such

as circRNAs and highly abundant ribosomal

RNA (rRNA) species, it provides increased

sequencing depth for poly(A)+ transcripts

and reduces “background noise”. However,

mRNA-seq comes at the cost of reduced

coverage of transcripts from degraded

samples (such as fixed human patient mate-

rial) and an inability to quantify ncRNAs

that lack poly(A) tails but may still act in

gene regulation, cellular homeostasis and

disease (Adiconis et al, 2013; Gallego

Romero et al, 2014; Zhao et al, 2014).

Consequently, strategies for sequencing poly

(A)� RNA, including total RNA-seq, are

becoming more prevalent. Total RNA-seq

requires depletion of rRNA from the total

RNA combined with random-primed cDNA

synthesis to capture both poly(A)+ and

poly (A)� RNA populations (Fig 1C). A

potential disadvantage of total RNA-seq is

that a greater sequencing depth is required

to obtain a coverage of poly(A)+ transcripts

comparable to mRNA-seq from the same

population, since many reads will be

absorbed by poly(A)� transcripts.

To compare the efficiency and reliability

of total RNA-seq and mRNA-seq for gene

expression analysis, we reanalysed published

datasets prepared from the same starting RNA

(Kelly et al, 2015). This study treated human

umbilical vein endothelial cells (HUVECs)

with transforming growth factor beta (TGFb)
over 4 h (time 0, 60, 120, 240 min) in biologi-

cal duplicates and generated both mRNA-seq

and total RNA-seq libraries from the same

starting RNA. If these two quantification

methods were comparable, then comparing

transcript abundances from the same starting

material would manifest as a scatterplot with

all transcripts tightly distributed along the

parity line (a line drawn on the graph where

at each point the x-value is equal to the y-

value, Fig 2A). Deviation from the parity line

for any one particular observation indicates a

discrepancy in the abundance estimation

between the two methods (Fig 2A). Certainly

comparisons by scatter plot within either

mRNA-seq or total RNA-seq libraries found

▸Figure 1. RNA variants and RNA fractionation for mRNA-seq versus total RNA-seq.
(A) Schematic of a three-exon gene and the potential RNAmolecules produced from it, stratified into poly(A)+ RNA, poly(A)� RNA and bimorphic RNA transcripts. Note circular
RNAs can be single or multi-exon, and can retain intervening introns. (B) Linear splicing of RNA into mRNA and back-splicing to produce circRNAs. Schematic showing how
circRNAs increase amplification of target transcripts by qRT–PCR. (C) Library preparation methods for mRNA-seq and total RNA-seq, highlighting RNA species which persist in
the preparations.

Box 1. Confounding transcript types

Circular RNAs (circRNAs): These arise through alternative back-splicing of pre-mRNA, whereby non-canonical and non-collinear exons (and/or introns) are co-
transcriptionally spliced to form covalently closed, non-polyadenylated circular RNA transcripts. They are identified through their unique back-splice junction
sequence, but are otherwise indistinguishable from the mRNA sequence, yet are practically absent from mRNA-seq.

Truncated transcripts: These early termination transcripts, present in approximately 20% of genes, arise through alternative cleavage and polyadenylation
within the coding region and can significantly impact the transcriptome and functionally impact the proteome (Tian et al, 2007; Li et al, 2015). Like circRNAs,
they are indistinguishable from the mRNA sequence, but are exclusively present in total RNA-seq libraries.

Bimorphic RNA: These transcripts are defined as those that do not clearly fall into either poly(A)+ or ploy(A) � groups as they exist with and without poly(A) tails.
The poly(A)+ form will be detected in mRNA-seq but not so the poly(A)� form however both will be present in total RNA-seq libraries (Yang et al, 2011).

Histone variants: Transcripts encoding the ~ 75 replication-dependent histone genes invariantly terminate with a highly conserved 16 nt long stem-loop
structure, which binds stem-loop binding protein (SLBP), the U7 snRNP, Sm proteins and zinc finger protein 100 (ZFP of 100 kDa) (Marzluff et al, 2008).
This complex leads to the cleavage of the 30 end of the histone transcript producing the only known cellular metazoan mRNAs to lack polyadenylate
tails. The resultant abundant transcripts will align to the relevant exons in total RNA-seq, but will be absent from mRNA-seq datasets.

Long non-coding RNAs (lncRNAs): These non-coding RNAs commonly arise from intergenic regions, or in antisense orientation with respect to the sense
transcript. They have been classified into four major subcategories by the ENCODE project: (i) antisense, (ii) large intergenic non-coding RNAs (lincRNAs), (iii)
sense intronic and (iv) processed transcripts. They commonly have their own promoter/enhancer can be either polyadenylated or non-polyadenylated, and
are emerging as functional transcripts in cellular homeostasis and disease contexts. They are identified through mapping to a unique DNA strand and region
(stranded NGS).
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Figure 1.

ª 2018 The Authors The EMBO Journal 37: e97945 | 2018 3 of 7

John Toubia et al Confounding factors in gene expression The EMBO Journal



the data clustered around the parity line

(Fig 2B). However, comparing between

mRNA-seq and total RNA-seq for the same

RNA generated two obvious disparities

(Fig 2B):

1 The presence of a population of RNAs,

uniquely visible within total RNA-seq

libraries (poly(A)� population)

2 A distinct broadening of the scatterplot

for mRNA transcripts (broad scatter)

The first anomaly, also observed and yet

unexplained in a study by Zhao et al (2014),

predominantly comprises the poly(A)� RNAs

—specifically long non-coding RNAs

(lncRNAs), early termination transcripts and

replication-dependent histone transcripts (see

Box 1 for more details on these species).

While these transcripts distort the graphical

comparison, it is primarily the contribution of

circRNAs as “mRNA-indistinguishable” tran-

scripts that are responsible for the more

significant broadening of the scatterplot.

CircRNA expression can affect
quantification of transcript and
exon levels

CircRNAs have attracted great interest as

their elucidation through NGS studies has

accelerated. Given that circRNAs lack poly

(A) tails, they are rarely detected in mRNA-

seq, yet found abundantly in total RNA-seq

(~ 10,000 unique circRNAs per library; Kelly

et al, 2015): as with random-primed qRT–

PCR, sequencing reads in total RNA-seq

arise from both the mRNA and the circRNA

forms. Since calculations of gene expression

from RNA-seq data combine all reads

mapping to a single transcript, circRNAs

would artificially inflate read counts within

coding regions of circRNA-containing genes

in the total RNA-seq transcriptome. Similar

issues with quantification of circRNA-

producing transcripts are expected for

microarray experiments, the input of which

is commonly total RNA.

To illustrate the average global impact of

circRNAs on gene expression quantification

using total RNA-seq relative to the more

focused mRNA-seq, we have annotated the

aforementioned dataset from Kelly et al

(2015) comparing mRNA-seq and total RNA-

seq data (0 min time-point in the TGFb
dataset; Fig 2C). Transcripts were identified

as circRNA-containing if they expressed > 5

reads across their back-splice junction (defini-

tive for circRNAs), which is a modest, yet

high-confidence circRNA expression level.

Fitting linear regression lines to these data

revealed an almost twofold overestimation of

mRNA expression for circRNA-containing
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Figure 2. Comparative expression profiling between total RNA-seq and mRNA-seq on the same RNA input.
(A) Schematic scatterplot illustrating the interpretation of a transcript (square) that deviates from the parity line when comparing two methods of quantification from the
same starting material. (B) Scatter matrix using data from Kelly et al (2015) comparing counts per million (CPM) at four time-points after treatments with TGFb (0, 60, 120 and
240 min). Unique poly(A)-population and broad scatter highlighted for a prototypical mRNA-seq versus total RNA-seq plot. (C) Scatterplot of transcript abundance between
mRNA-seq and total RNA-seq protocols for control HUVEC (0 min time-point) libraries, with circRNA-containing transcripts shown as red dots and circRNA-deficient
transcripts in black. Linear regression analysis for all transcripts (black dotted line), circRNA-containing transcripts (red dashed line) and circRNA-deficient transcripts (blue
solid line). Three transcripts, each with a single prominent circRNA, annotated in blue (HIPK3—square, ADAMTS6—triangle, SMARCA5—star) along with their expression
estimates in mRNA-seq and total RNA-seq (inset). All transcripts with CPM < 1 were removed from the analysis when calculating lines of best fit and intercepts (inset).
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genes over either (i) all genes or (ii) circRNA-

deficient genes (Dlog2 = 0.9, Fig 2C) based

on the linear regression intercepts (Fig 2C).

Three exemplary circRNA-producing genes—

HIPK3, ADAMTS6 (Jeck et al, 2013) and

SMARCA5 (Conn et al, 2015)—contain an

abundant circRNA and exhibit an observable

amplification of mRNA expression in total

RNA-seq of 1.6-fold to 3.2-fold relative to the

value obtained by mRNA-seq (Fig 2C). By

quantifying the expression level of individual

exons from the gene ADAMTS6, it is clear

that there is a significantly higher abundance

in total RNA-seq for those exons which

contain circRNAs compared to those that do

not have circRNAs (Fig 3A). This also mani-

fests on coverage plots where the peak height

in circRNA-containing exons is significantly

higher than non-circRNA-containing exons in

total RNA-seq (Fig 3B, green track). However

for mRNA-seq (Fig 3B, gold track), the exon

read height is fairly uniform across the entire

gene. This shows a global impact of circRNAs

on expression levels of the parent mRNA in

total RNA-seq.

Microarray

Predating NGS technologies and arguably

more widely used, microarrays quantify

expression levels for thousands of genes

simultaneously by hybridisation of labelled

RNA to probes or probe sets custom

designed to capture selected coding and, in

some cases, non-coding regions. The use of

probe sets can increase the accuracy of

expression estimates as well as inform on

isoform usage. However, no single statisti-

cally solid method exists for combining this

information, and inconsistencies between

probes within a probe set have been

reported, but not explained, by many groups

(Schneider et al, 2012; Marakhonov et al,

2014). Again, we argue that circRNAs contri-

bute to these inconsistencies.

To illustrate the confounding effect of

“non-mRNA species” in microarrays, we

analysed expression levels of ADAMTS6 in

two publicly available human microarray

datasets (GSE25979 and GSE36837;

Appleby et al, 2012; Weigand et al, 2012),

which resulted in the same phenomenon

observed in total RNA-seq (Fig 3B). Specifi-

cally, circRNAs indiscriminately hybridise

to complementary exon probes resulting in

an elevated intensity signal in circRNA-

containing exons compared with non-

circRNA-containing exons (Fig 3B). Unlike

RNA-seq data (processing of which cumu-

lates read counts mapping to coding

sequences of a transcript), microarray data

processing allows for many options when

summarising probe sets: selection of the

probe(s) with the highest normalised

intensity, lowest P-value, likelihood to

cross-hybridise or taking the median inten-

sity of all probes. Critically, no single option

will compensate for the inherent variations

introduced by circRNAs and the wrong

choice will, on occasion, return misleading

results. Again, mRNAs-resembling poly(A)+

RNA species including truncated and

A
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Figure 3. CircRNAs confounding gene quantification at the exon level.
(A) Scatterplot of exon abundance (black points) betweenmRNA-seq and total RNA-seq protocols for TGFb 0 min
time-point libraries highlighting the expression levels of exons in ADAMTS6 and their corresponding CPM (inset
table) for circRNA-containing exons (red) and non-circRNA exons (blue). (B) Upper: Read coverage plot for mRNA-
seq (blue) and total RNA-seq (red) protocols for ADAMTS6 expressing a prominent circRNA from exons 2–6
(shaded grey). Lower: Average microarray exon probe signal over circRNA exons (673.9) and non-circRNA exons
(258.1).
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bimorphic transcripts may impose the

same effect or synergistically elevate the

confounding beyond that of the circRNAs

described here. Of course, prior purification

of poly(A)+ RNA will mitigate the bulk of

the problem.

Potential impact on alternative
splicing predictions

Beyond the impact on gene expression quan-

tification, circRNAs also alter reads that

cross splice junctions of a given transcript

(junction counts). The most abundant class

of circRNAs are two exons in length, and

they could therefore contribute additional

junction counts that do not represent real

alternatively spliced mRNAs. The conse-

quence are skewed predictions in differential

alternative splicing (dAS) of the cognate

mRNA. Currently, a small number of meth-

ods exist to assess dAS from NGS, each rely-

ing on the accurate estimation of either

exon–exon junction counts or exon coverage

(or both). As a result, circRNAs and other

“mRNA-indistinguishable” factors that are

visible in total RNA-seq will likewise artifi-

cially inflate estimations of abundance and

may increase the rate of false-positive dAS

candidates.

Cautionary points for RNA
quantification experiments

An awareness of the confounding effects that

can be caused by ncRNAs lacking poly(A)

tails can help ensure that gene expression

quantification remains an important and reli-

able research tool. To enhance the confidence

in the conclusions drawn when circRNAs are

confounding gene quantification, we suggest

three approaches. Firstly, identify circRNAs

within a gene of interest by cross-referencing

with online circRNA databases, for example

CircNet (http://circnet.mbc.nctu.edu.tw) or

circBase (http://circbase.org). This will

permit design of qRT–PCR primers outside

the circRNA regions, and for NGS, an aware-

ness of the significant impact circRNAs may

have on splice site junction counts and global

gene expression. Secondly, whenever possi-

ble, design qRT–PCR primers towards the 30

end of the transcript, with the reverse primer

anchored in the UTR as this provides greater

specificity, and circRNAs comprising the 30

UTR represent a very minor fraction of the

circRNA population. Finally, to mitigate

cross-talk between sense and antisense

transcripts, we suggest using strand-specific

NGS protocols.

Concluding remarks

As we have explained, gene expression

quantification can be unreliable. Therefore,

all new RNA types that fall in the category

of “mRNA indistinguishable” should be

disseminated among the research commu-

nity to ensure these are considered in quan-

tification strategies. This is of particular

importance as genome-wide expression pro-

filing studies are commonly employed as a

primary screen to inform future research.

We support further evolution of the refer-

ence genome annotation and approaches to

account for gene expression estimates of

circRNA-containing genes. This will support

the continued rise in popularity of total

RNA-seq compared with mRNA-seq.

The circRNAs are exciting transcripts in

their own right and straightforward to identify

from existing total RNA-seq experiments. Far

from being troublesome molecules, the pres-

ence of circRNAs offers us not only a wake-up

call to reflect on experimental design for gene

expression profiling, but to study their expres-

sion and regulation in any system where total

RNA-seq is utilised and to draw novel and

exciting conclusions.
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