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RAS proteins are key signaling switches essential for control of proliferation, differentiation,
and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In
addition, mutations in upstream or downstream signaling components also contribute to
oncogenic activation of the pathway. RAS proteins exert their functions through activation of
several signaling pathways and dissecting the contributions of these effectors in normal cells
and in cancer is an ongoing challenge. In this review, we summarize our current knowledge
about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS
effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature devel-
opment and for RAS-induced transformation in vitro and in vivo, especially in lung cancer,
where it is essential for tumor initiation and necessary for tumor maintenance.

The superfamily of small guanosine triphos-
phate (GTP)-binding proteins plays a pivot-

al role in cellular signal transduction. Within
this superfamily, RAS proteins (HRAS, NRAS,
and Kirsten rat sarcoma [KRAS]) are the key
regulators of a large number of processes such
as cell-cycle progression, cell division, and apo-
ptosis. RAS cycles between an active, GTP-
bound state (RAS-GTP), and an inactive, gua-
nosine diphosphate (GDP)-bound state (RAS-
GDP) (Buday and Downward 2008; Vigil et al.
2010; Rojas et al. 2011). Guanine nucleotide
exchange factors (GEFs) catalyze the exchange
of GDP for GTP, whereas GTPase-activating
proteins (GAPs) increase the rate of GTP hydro-
lysis to GDP (Fig. 1) (Quilliam et al. 1995).

RAS proteins have .80% homology se-
quence and differ mostly at the carboxyl termi-
nus hypervariable region (HVR), a stretch of 25
amino acids known as the CAAX box (C, cys-
teine; A, aliphatic amino-acid; X, any amino

acid) (Parker and Mattos 2015). To become fully
active, newly synthetized RAS proteins undergo
a number of posttranslational modifications at
the CAAX box, including the addition of a far-
nesyl group to the cysteine residue of the CAAX
box, the cleavage of the three terminal amino
residues, and, finally, the carboxymethylation
of the new carboxy-terminal cysteine residue
(Tamanoi et al. 1988). HRAS and NRAS
undergo an additional palmitoylation modifi-
cation (Dudler and Gelb 1996). All these mod-
ifications are required for binding to the lipid
membrane and dictate membrane localization
of RAS proteins to specific microdomains. Each
RAS isoform localizes to a distinct, nonoverlap-
ping plasma membrane microdomain, where it
contacts a unique pool of effector and regulato-
ry proteins (Parker and Mattos 2015). The hy-
pothesis that each isoform recruits effector pro-
teins to the membrane via lipid and structural
reorganization (Li and Gorfe 2012; Zhou et al.

Editors: Linda VanAelst, Julian Downward, and Frank McCormick

Additional Perspectives on Ras and Cancer in the 21st Century available at www.perspectivesinmedicine.org

Copyright # 2018 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a031450

Cite this article as Cold Spring Harb Perspect Med 2018;8:a031450

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

mailto:e.castellano-sanchez@qmul.ac.uk
mailto:e.castellano-sanchez@qmul.ac.uk
mailto:e.castellano-sanchez@qmul.ac.uk
mailto:e.castellano-sanchez@qmul.ac.uk
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org/site/misc/terms.xhtml


2014) has emerged as an organizational scheme
to produce overlapping but distinct signaling
outputs from RAS nanoclusters. However, iso-
form-specific protein–lipid interaction and its
connection to RAS-mediated signaling cascades
have not yet been explored.

Wild-type RAS proteins are crucial for
several physiological processes, but it is their
involvement in cancer that has attracted the
most attention (Land et al. 1983a,b; Ruley
1983; Trahey and McCormick 1987; Hirakawa
and Ruley 1988). RAS proteins are mutated in
�30% of human cancers. Point mutations in
certain amino acid residues, most commonly at
positions G12, G13, and Q61, lead to the expres-
sion of constitutively active proteins (Bos 1989;
Prior et al. 2012) that signal to downstream
effectors even in the absence of extracellular
stimuli (Barbacid 1987; Riely et al. 2009). Re-
markably, these mutations predominantly affect
the KRAS locus, with oncogenic KRAS muta-
tions being detected in 25%–30% of all screened

tumor samples (Forbes et al. 2011). RAS onco-
proteins have also been implicated in the devel-
opment of cancer by signaling downstream
with increased intensity or duration (Downward
2003). The importance of RAS signaling in can-
cer is accentuated by the incidence of mutations
in many of its regulators or effector pathways.

Aberrant RAS signaling is also implicated
in several developmental disorders known as
cardio-facio-cutaneous diseases (i.e., neurofibro-
matosis-type 1, Costello syndrome, and Noonan
syndrome) (Cox and Der 2010; Fernandez-
Medarde and Santos 2011).

RAS EFFECTOR PATHWAYS

RAS proteins play a key part in multiple signal-
ing networks, linking upstream signals to a
broad set of downstream pathways that control
cell-cycle progression (Coleman et al. 2004),
growth, migration, apoptosis, and more (Fig.
2) (Fernandez-Medarde and Santos 2011).
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Figure 1. RAS activation/deactivation cycle by guanine nucleotide exchange factors (GEFs) and guanosine
triphosphate (GTP)ase-activating proteins (GAPs). RAS proteins cycle between an inactive (guanosine diphos-
phate [GDP]-bound) and an active (GTP-bound) state. After receptor tyrosine kinase (RTK) engagement, RAS
are activated by GEFs, which stimulate the exchange of GDP for GTP, and inactivated by GAPs that bind to RAS
and stimulate its intrinsic GTPase activity.
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The cross talk and relative balance between these
pathways determines cellular responses (Fig. 2)
(Rajalingam et al. 2007; Stites and Ravichan-
dran 2009).

RAS effectors share little sequence homolo-
gy but all contain a RAS-binding domain
(RBD) that shows a ubiquitin fold (Herrmann
2003). Recent nuclear magnetic resonance
(NMR) studies provide evidence that RAS pre-
fers certain effectors more than others in the
presence of multiple binding partners. This
preference changes with oncogenic mutations
such as G12V, explaining how small changes

in RAS affinity could substantially modify the
outcome of integrated RAS signaling networks
(Marshall et al. 2012a; Smith and Ikura 2014).
The enhancement of specific effector pathways
plays a critical role in maintaining an appropri-
ate biological response (Morrison and Davis
2003). The specificity in RAS-induced signaling
is primarily determined by the balance between
RAS affinity for each of its effectors and the local
concentrations of those effectors (Rodriguez-
Viciana et al. 2004). Scaffold proteins also
guide activation of specific effector pathway(s)
(Li et al. 2000; Elion 2001).
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Figure 2. RAS effector pathways. Once activated, RAS proteins signal through multiple effector pathways, thus
activating many different signal transduction pathways, such as mitogen-activated protein kinase (MAPK) and
phosphatidylinositol 3-kinase (PI3K). The RAS signaling network gets more complex because PI3K is also
directly activated by receptor tyrosine kinases (RTKs) or G protein–coupled receptors (GPCRs). Besides, there
are several points in which the MAPK and PI3K pathways cross talk, leading to either activation or inhibition at
different levels. Raf can be inhibited by PI3K in different situations. PI3K pathway can also be activated or
inhibited by Raf under certain conditions. Another level of connection of these two pathways involves target of
rapamycin complex 1 (mTORC1) and insulin receptor substrate 1 (IRS1). When these proteins get inhibited, a
feedback signal through RTKs is initiated that activates MAPK in a RAS-dependent manner, thus provoking
extracellular signal-regulated kinase (ERK) and AKT phosphorylation and activation of both pathways. PTEN,
Phosphatase and tensin homolog; PDK1, PI3K-dependent kinase 1; MEK1/2, mitogen-activated protein ki-
nases 1 and 2.
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In humans, there are �100 genes contain-
ing putative RAS-association (RA) or RBDs,
although some of these proteins might not
actually bind to RAS with physiologically rele-
vant affinities. Actual interactions of RAS with
about 20 effectors have been confirmed by
direct affinity measurements (Kiel et al. 2005;
Wohlgemuth et al. 2005).

One of the first identified mammalian effec-
tors of RAS was Raf (Fig. 2) (Moodie et al. 1993;
Warne et al. 1993). There are three closely relat-
ed RAF proteins, C-Raf1, B-Raf, and A-Raf,
which are known to be activated by RAS-GTP
(Roskoski 2010). Activated Raf phosphorylates
and activates downstream targets such as mito-
gen-activated protein kinases 1 and 2 (MEK1
and MEK2). MEK1 and MEK2 then phosphor-
ylate and activate other mitogen-activated
protein kinases (MAPKs), such as extracellular
signal-regulated kinases 1 and 2 (ERK1 and
ERK2) (Alessi et al. 1994). The substrates for
ERK1/2 include both nuclear and cytosolic
proteins, of which transcription factors, such
as ELK1 and c-Jun, have been widely studied
(Murphy and Blenis 2006; Yoon and Seger
2006). Activation of all of these transcription
factors promotes cell-cycle progression and
proliferation of the cells (Pruitt and Der 2001).

In addition to the RAF/MAPK effector
pathway, RAS can also interact with phosphati-
dyl inositol 3-kinases (PI3Ks) (Rodriguez-Vici-
ana et al. 1994; Pacold et al. 2000). PI3K activity
is a necessity for the activation of Akt family
Ser/Thr kinases, which, in turn, are necessary
in the inhibition of apoptosis and the promo-
tion of cell survival (Khwaja et al. 1997; Datta
et al. 1999). Other PI3K targets include the
Akt-activating kinase PDK1 (PI3K-dependent
kinase 1) and GEFs that target members of
the Rho family of RAS superfamily GTPases
(Rodriguez-Viciana et al. 1996a; Downward
1997, 2004; Hamad et al. 2002; Karnoub and
Weinberg 2008; Yuan and Cantley 2008; Zhao
and Vogt 2008). The functional importance of
the RAS/PI3K signaling pathway will be more
extensively discussed in the next sections.

The third class of well-known effector of
RAS includes three exchange factors for RAS-
related RAL proteins: RAL guanine nucleotide

dissociation stimulator (RALGDS), RGL2/RLF,
and RALGDS-like protein (RGL/RSB2) (Hofer
et al. 1994; Feig et al. 1996; Takaya et al. 2007).
RAL proteins regulate vesicular trafficking with-
in the cell and nuclear factor (NF)-kB activation.

Other proteins known to directly interact
with RAS-GTP are PLC, AF6, TIAM1, RIN,
NORE1, among others (Castellano and Down-
ward 2010; Stephen et al. 2014). The functional
significance of many of these interactions has
not been properly determined yet.

PI3K SIGNALING PATHWAY

PI3Ks are members of a conserved family of
lipid kinases that are split in three classes
according to their substrate preference and
sequence homology (Vanhaesebroeck et al.
2010b). The class I PI3Ks (the most studied in
cancer) comprises p110a (encoded by PIK3CA),
p110b (PIK3CB), p110g (PIK3CG), and p110d
(PIK3CD). p110 subunits were originally divid-
ed into a class IA group (p110a, p110b, and
p110d), which bind the p85 type of regulatory
subunit, and a class IB group (p110g), which
binds to either p101 or p87. Class II PI3Ks in-
cludes PI3K-C2a, PI3K-C2b, and PI3K-C2g.
“Signals feeding into vacuolar protein sorting
34 (VPS34), the only class III PI3K, are becom-
ing apparent, but its physiological importance
is unclear” (Vanhaesebroeck et al. 2010a).

Dissecting the role of RAS proteins in the
activation of PI3K has been particularly com-
plicated because these kinases can be activated
by multiple upstream signals, both dependent
and independent of RAS proteins: G protein–
coupled receptors (GPCRs) and receptor tyro-
sine kinases (RTKs) can activate PI3K indepen-
dently of RAS by its binding to p85. However,
RTKs can also bind to RAS, which in turn bind
to p110a subunit and activate PI3K signaling
(Fig. 2) (Hemmings and Restuccia 2015). In
addition, although H-, N-, and KRAS activate
p110a and p110g subunits of PI3K (Rodriguez-
Viciana et al. 2004), the closely related R-RAS
proteins activate the p110a, p110g, and p110d
subunits (Marte et al. 1997), and p110b is
regulated by the related proteins Rac1 and
Cdc42 (Yang et al. 2012; Fritsch et al. 2013).
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RAS-dependent activation of PI3K requires
a cascade of events that start with the dimeriza-
tion of RTKs in response to growth factor
stimulation. This leads to autophosphorylation
of the RTKs at tyrosine residues and activates
Src homology 2 (SH2) domain-containing
molecules, like GRB2. The signaling cascade
then proceeds through Son of Sevenless (SOS)
onto RAS, which then interacts directly with the
RBD in the p110 subunit of PI3K and activates
it. This process does not depend on the p85
regulatory subunit of PI3K, although GRB2
can be found in a complex with a scaffolding
protein (e.g., GAB), which interacts with p85,
enhancing the chance of p110 activation (Ong
et al. 2001; Castellano and Downward 2010).

When active, PI3Ks phosphorylate phospha-
tidylinositol (4,5)-bisphosphate (PI-4,5-P2) and
phosphatidylinositol (4)-phosphate (PI(4)P)
on the inositol 30-hydroxyl group, thereby gen-
erating phosphatidylinositol (3,4,5)-trisphos-
phate (PIP3) and phosphatidylinositol (3,4)-
bisphosphate (PI(3,4)P2), respectively (Fig. 2).
An important second messenger is PIP3, which
binds to pleckstrin homology (PH) domains of
effector proteins, causing their activation and/
or translocation (Zhao et al. 2006; Fritsch and
Downward 2013; Cescon et al. 2015). These lip-
ids act on different pathways often through ac-
tivation of either the PDK1, the Ser/Thr kinase
Akt, or the mammalian target of rapamycin
complex 1 (mTORC1) (Martini et al. 2014;
Gyori et al. 2017). Akt regulates prosurvival
signaling pathways by mediating various cellu-
lar processes such as epithelial to mesenchymal
transition, glycogen metabolism, autophagy,
and glucose uptake, whereas mTORC1 stimu-
lates protein synthesis by phosphorylating the
eukaryotic initiation factor 4E and the ribo-
somal S6 protein, among others. Although
mTORC1 relays signals following PI3K/Akt ac-
tivation, a second mTOR complex, mTORC2,
contributes to complete Akt activation by phos-
phorylating Akt on serine 473. Activation of the
mTORC1 target S6 kinase negatively feeds back
to decrease PI3K activation (Polivka and Janku
2014; Mayer and Arteaga 2016).

Negative regulation of PI3K is accomplished
primarily via action of the phosphatase and

tensin homolog (PTEN) deleted on chromo-
some ten. PTEN encodes a lipid and protein
phosphatase whose primary lipid substrate is
PIP3. Mutations within the phosphatase do-
main of PTEN are frequent in many human
cancers and impair its function resulting in
elevated Akt activity and abnormal cell prolif-
eration (Vanhaesebroeck et al. 2012; Martini
et al. 2014).

A common feature of cellular signaling sys-
tems is feedback control, and MEK and PI3K
signaling networks provides many examples.
PI3K/Akt and RAS/MAPK pathways influence
each other, both negatively and positively, at
different stages of signal propagation resulting
in dynamic and complex cross talk whose coor-
dinated action determines the cell fate (Fig. 2).
Such cross talk is often revealed when one
pathway is chemically blocked, thereby releasing
the cross-inhibition and effectively activating
the other pathway (Castellano and Downward
2010; Mendoza et al. 2011; Aksamitiene et al.
2012; Fruman and Rommel 2014).

Oncogenic compensation can severely limit
the anticancer efficacy of PI3K/Akt/mTOR in-
hibitors. Conversely, active PI3K signaling is a
central mechanism of resistance to various tar-
geted therapies (Tan and Yu 2013; Wood 2015).
An important consequence of this feedback is
that inhibitors of different components of the
PI3K signaling pathway can cause elevated ex-
pression and activity of growth factor receptors,
which leads to increased PI3K activity and RAS
signaling, in addition to alternative survival
pathways in cancer cells (Chandarlapaty et al.
2011; Rodrik-Outmezguine et al. 2011). There
are multiple potential strategies to overcome the
“rebound” signaling that occurs in response
to PI3K/Akt/mTOR inhibitors. These include
vertical inhibition of several signaling nodes
and combination approaches.

RAS–PI3K INTERACTION: STRUCTURE
AND BINDING INTERFACES

RAS-GTP binds to class I PI3K through its RBD,
present in the amino terminal; p110a, p110d,
and p110g are each stimulus-dependent RAS
effectors (Vanhaesebroeck et al. 2010a). In
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contrast, the p110b RBD interacts with Rab5
GTPase (Christoforidis et al. 1999) and Rho
GTPase family members (Fritsch et al. 2013)
and, specifically, Rac potentiates p110b GPCR
responses (Guillermet-Guibert et al. 2008;
Dbouk et al. 2012; Fritsch et al. 2013). Class II
PI3Ks also harbor an RBD, although these sig-
naling inputs are not well characterized; the RBD
domain is not present in class III PI3K (Van-
haesebroeck et al. 2010a; Thorpe et al. 2015).

RAS isoforms HRAS, NRAS, and KRAS
share 100% sequence identity in the effector
lobe and interact with effectors and regulators
via conserved switch I and switch II regions. The
switch I and II regions change conformation on
GTP binding and serve as binding sites for a
diverse array of downstream effectors.

PI3K’s RBD is a small globular domain of
�100 residues in length that consists of a five-
stranded mixed b sheet (Rb1-Rb5) flanked by
two a helices (Ra1 and Ra2) (Walker et al.
1999; Pacold et al. 2000). RAS complexes with
RBDs that come from different effectors form
a similar model in which b sheets from RAS
and the RBD align to form a single b-sheet
connecting both proteins. Contacts between
the switch I region of RAS and the RBD stabilize
the interaction and ensure its dependence on
RAS-GTP. Despite the commonalities of differ-
ent RAS–RBD interactions, RAS discriminates
among its effectors by rotating with respect to
the RBD of a given effector. In the case of
PI3Kg, the length of the Ra1 helix and the
size of the subsequent loop cause a significant
rotation of RAS relative to the PI3Kg RBD and
results in switch II interactions for which there
are no equivalents in the other RAS effector
RBDs (Pacold et al. 2000; Djordjevic and Dris-
coll 2002). In addition to the allosteric effect,
RAS orients the PI3K molecule in a way that
allows it to more efficiently access its lipid
substrate inserted in the membrane (Herrmann
2003).

Until recently, little was known about
the considerably weaker interactions between
RAS-GDP and RAS effectors. A double mutant
of c-Raf N71R/A85K designed to bind RAS-
GDP with a 100-fold increased affinity made
it possible to solve for the first time the structure

of a RAS-GDP/effector complex (Filchtinski
et al. 2010). Surprisingly, this revealed that
when bound to the N71R/A85K Raf mutant
the switch I region of RAS-GDP is found in a
conformation similar to that of RAS-GTP, and
not RAS-GDP. Moreover, the structure indicates
an increased mobility of the switch I region as
shown by increased B factors. This increased
flexibility compared with that of the same
loop in RAS-GTP likely explains the low affinity
of RAS effectors toward RAS-GDP.

RAS/PI3K SIGNALING IN HEALTH

After nearly 20 years of research, we are now
getting a clearer picture of how and when RAS
proteins mediate PI3K activation in normal and
cancer cells. The use of RAS mutants that are
defective in PI3K binding, but retain other
effector functions, has significantly added to
our knowledge of the specific functional role
of RAS/PI3K signaling. Suire et al. (2006) gen-
erated a mouse model with a mutated p110g
RBD in which neutrophils presented decreased
production of PI(3,4)P2 and PIP3, decreased
activation of Akt, and diminished chemotaxis
compared with wild-type cells. Additionally,
the production of reactive oxygen species in
response to agonist stimulation was decreased
in p110g RBD mutant mice. This revealed a
significant role for the interaction in the normal
function of neutrophils (Suire et al. 2006).

Further evidence of the importance of the
RAS–PI3K interaction in vivo has been provid-
ed by genetic mouse models in which the RBD
of p110a has two point mutations (T208D and
K227A) that prevent its interaction with RAS
without affecting its enzymatic activity (re-
ferred to herein as RBD-mutant model) (Gupta
et al. 2007). Homozygous RBD-mutant animals
often died shortly after birth owing to defects in
the branching and development of the lymphat-
ic vasculature system; however, surviving pups
reached adulthood with no further obvious de-
fects (Gupta et al. 2007). Similar observations
were seen in mice expressing a kinase-dead ver-
sion of p110a, a modification that is embryonic
lethal because of impaired angiogenic remodel-
ing defects (Graupera et al. 2008). Furthermore,
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deletion of Pik3ca alleles exclusively in endothe-
lial cells resulted in a similar outcome. Intact
RAS/PI3K signaling was also found to be essen-
tial for proper angiogenesis in zebrafish (Liu
et al. 2008).

The role of RAS/PI3K/Akt signaling in cell
survival and prevention of apoptosis is well
known and was long established (Cox and Der
2003; Downward 2004; Zhang et al. 2011).
Activation of Akt leads to both inhibition of
proapoptotic proteins and activation or anti-
apoptotic proteins. Thus, by increasing the
ability for growth and decreasing the capacity
for apoptosis, RAS/PI3K signaling supports
tumorigenesis.

Autophagy is a process by which cytoplas-
mic components (macromolecules and organ-
elles) are degraded by the lysosome. Autophagy
is essential in physiological processes that
range from adaptation to starvation, cell differ-
entiation and development, tumor suppression,
innate and adaptive immunity, life span exten-
sion, and cell death (Mizushima 2007; Mizu-
shima and Levine 2010; Wang et al. 2011;
Boya et al. 2013; Nezis et al. 2014). The cross
talk between RAS and autophagy is highly com-
plex. RAS has been shown to be both a positive
and negative regulator of autophagy, depending
on the cell type, cellular context, and effector
activation (Schmukler et al. 2014). However, it
is clear that RAS inhibition of autophagy is con-
trolled through PI3K activation and subsequent
inhibition of the ULK1/Atg13/FIP200 complex
(Furuta et al. 2004; Berry and Baehrecke 2007;
Shao et al. 2016).

RAS signaling through PI3K is essential for
hematopoiesis. The first evidence that RAS reg-
ulates eritropoiesis came from studies using pri-
mary fetal liver erythroid progenitors, in which
knockout of KRAS impaired Akt activation
and delayed erythroid differentiation (Zhang
and Lodish 2005). Similar observations in
zebrafish confirmed that KRAS knockout re-
sulted in hematopoietic and angiogenic defects,
including impaired expression of the erythroid-
specific genes gata1 and be3-hemoglobin, re-
duced blood circulation and disorganized
blood vessels (Liu et al. 2008). Recently, the
role of RAS–PI3K interaction in hematopoiesis

has been shown in a mouse model of myeloid
leukemia in which RAS/PI3K signaling is nec-
essary for maturation and maintenance of
erythroblasts (Gritsman et al. 2014).

RAS/PI3K SIGNALING IN CANCER

Activating point mutations in the genes encod-
ing RAS proteins contribute to the formation of
a large proportion of human tumors. The rep-
ertoire of their downstream effectors, upstream
activators, and molecular players regulating
their signaling pathway are genetically modified
in an even larger proportion of human tumors.

The most frequently mutated kinase in
human cancer is P110a with particularly high
incidences in cancers of the breast, the colon, or
the endometrium; alterations are also found in
tumors of the brain, liver, stomach, lung, and
ovary (Ligresti et al. 2009). There are three hot-
spot mutations (E542K, E545K, and H1047R)
that comprise 80% of all defects found in the
PIk3ca gene. The E542 and E545K mutations
map to the helical domain of p110a, whereas
H1047R is located in the kinase domain. These
mutations have been shown to increase prolif-
eration and invasion of cells in vitro and in vivo
by hyperactivating the downstream target Akt
(Kang et al. 2005; Samuels et al. 2005; Zhao and
Vogt 2010). Helical and kinase domain muta-
tions induce gains-of-function by different mo-
lecular mechanisms. Activity of kinase domain
mutants is RAS-independent, but requires p85
binding, whereas the helical domain mutants
are p85-independent but their full activation
requires RAS (Zhao and Vogt 2010). Pang
et al. (2009) showed that expression of p110a
E545K in a breast cancer cell line leads to a more
severe metastatic phenotype than that induced
by expressing p110a H1047R. On the other
hand, H1047R, but not E545K, enhances
HER2-mediated transformation of immortal-
ized mammary epithelial cells (Chakrabarty
et al. 2010). Recently, it was shown that p110a
helical domain mutants bind to insulin receptor
substrate 1 (IRS1) in the membrane, but the
mutant proteins also require RAS-binding to
fully exert their oncogenic function (Hao et al.
2013).

PI3K and RAS Signaling

Cite this article as Cold Spring Harb Perspect Med 2018;8:a031450 7

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



RTKs and RAS have been shown to cooper-
ate in activating PI3K in KRAS mutant human
colorectal (Ebi et al. 2011) and lung cancer cell
lines (Molina-Arcas et al. 2013). Insulin-like
growth factor 1 receptor (IGF-1R) was predom-
inantly responsible for PI3K activation through
binding to IRS adaptor proteins, with KRAS
making a relatively minor contribution. It is
likely that both RAS and receptor-mediated
p110 activation is required to achieve PI3K
activation levels high enough for tumor growth,
which can be further amplified by loss of
PTEN. The fact that alternative means of PI3K
activation persist in the context of oncogenic
KRAS may be caused by cancer cells losing their
addiction to KRAS.

A useful insight about the importance mu-
tant RAS interacting with endogenous p110a
during tumor development has come from the
use of KRAS mutants that do not bind PI3K but
retain other effector functions. Shannon and
colleagues showed that these mutants can still
drive T-lineage acute lymphoblastic leukemias,
with loss of PTEN compensating for the lack of
RAS-p110a binding (Shieh et al. 2013).

Functional studies show that PI3K activa-
tion is vital for tumor initiation. Expression
of a dominant-negative p85a lacking the
p110-binding domain inhibited RAS-mediated
transformation (Rodriguez-Viciana et al. 1997;
Katso et al. 2001). Additionally, RBD-mutant
mice are highly resistant to formation of
lung and skin tumors induced by mutant
KRAS (Gupta et al. 2007). Similarly, deletion
of Pik3r1 and Pik3r2 abrogated KRASG12D-in-
duced lung tumorigenesis (Engelman et al.
2008). Although PI3K activation may be neces-
sary for KRAS-induced tumorigenesis, different
studies have shown that inhibition of PI3K by
itself is not sufficient to shrink established tu-
mors in vivo or effectively treat KRAS mutated
cancer cells in vitro (Engelman et al. 2008; Ihle
et al. 2009). Experiments that use an inducible
version of the RBD-mutant mice showed that
disruption of RAS/PI3K in established lung
tumors causes partial regression of tumors, fol-
lowed by long-term stasis, but it is insufficient
to cause complete regression of established tu-
mors in the autochthonous setting, underscor-

ing the differences between blocking tumori-
genesis and eliminating established tumors.

Tumors harboring mutations in p110a also
garner mutations in components of the PI3K
pathway, like RAS or loss of PTEN (Cescon
et al. 2015). Mutations of p110a and RAS are
mutually exclusive in breast cancer, but often
coexist in colorectal, endometrial, and lung can-
cers (Parsons et al. 2005; Oda et al. 2008; Janku
et al. 2011; Chaft et al. 2012; Wang et al. 2014;
Zhang et al. 2015). It is plausible that additional
mutations enhance oncogenic transformation
by increasing PI3K pathway activity levels be-
yond those caused by oncogenic RAS, thus
activating additional downstream pathways.
Recently, it was described that inhibition of
p110a in colorectal cancer cell (CRC) lines
harboring KRAS mutations or concomitant
KRAS/PIK3CA mutations does not have the
same effect. Functional responses to PI3K
p110a silencing were distinct depending on
the genetic background for KRAS and PIK3CA.
PIK3CA silencing in CRC cells harboring
KRAS/PIK3CA mutations induced apoptosis;
in contrast, cell-cycle arrest at G2/M and a con-
comitant reduction in the number of cells at G1

phase was observed in CRC cells harboring
KRAS mutations (Fernandes et al. 2016).

RAS/PI3K Signaling in the Tumor Stroma

RAS has been the prime example of a potent
cell-autonomous oncogene for decades, but it
is now evident that its effects stretch further to
include non-cell-autonomous changes in the
cellular microenvironment that have essential
roles in both tumor initiation and progression.

The mechanisms by which RAS activation
initiates and sustains proangiogenic processes
are complex and rely on the modulation of en-
dothelial growth factors and also on the increase
of local inflammation and stromal remodeling
(Pylayeva-Gupta et al. 2011). Blocking RAS
signaling through PI3K in the tumor stroma
impairs growth of tumors in which RAS/PI3K
signaling is intact, as a consequence of ineffi-
cient angiogenesis (Murillo et al. 2014). Similar
tumor growth impairment was observed in a
p110a kinase-dead mouse model (Soler et al.
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2013). Accordingly, PI3K inhibitors block tu-
mor growth not only by targeting tumor cells
but also by impairing tumor vasculature forma-
tion (Garlich et al. 2008; Schnell et al. 2008;
Yuan et al. 2008; Lane et al. 2009; Soler et al.
2015).

Data obtained both in human cancer and
transgenic mouse models indicate that RAS-
driven tumors are able to overcome host-pro-
tecting adaptive immune responses (Clark et al.
2009). One mechanism by which oncogenic
RAS may impair antitumor immune response
is through recruitment of immunosuppressive
regulatory T cells (Tregs) and myeloid-derived
suppressor cells (MDSCs) (Clark et al. 2007;
Tran Thang et al. 2010). Recent evidence
suggests that PI3Ks play an important role in
regulating the immune-suppressive, tumor-
associated myeloid cell and Tregs, respectively
(Gyori et al. 2017). Interestingly, RAS/PI3K sig-
naling, either in the tumor (Castellano et al.
2013) or stromal compartment (Murillo et al.
2014), is required for macrophage recruitment,
which may explain at least in part the decrease in
tumor growth and angiogenesis observed on
blocking the interaction between RAS and PI3K.

Remodeling of the extracellular matrix
(ECM) is a key feature of cancer regulated by
cancer-associated fibroblasts (CAFs), which se-
crete ECM components and ECM-modifying
enzymes such as matrix metalloproteinases
(MMPs). The different RAS isoforms control
ECM synthesis through activation of Akt and
transforming growth factor b (TGF-b) expres-
sion in a model of renal fibrosis (Fuentes-Calvo
et al. 2012, 2013). PI3Ks also control the inter-
action between cancer cells and the tumor
microenvironment (TME), namely, the pro-
duction of MMP in normal and cancer cells
(Chen et al. 2009; Awad et al. 2010; Kim et al.
2010; Hutti et al. 2012). In particular, MMP-14/
CD44 binding results in activation of epider-
mal growth factor receptor (EGFR) and down-
stream engagement of PI3K signaling pathway
in cancer cells, thus promoting tumor cell
migration (Zarrabi et al. 2011).

Thus, RAS and PI3K are important players
in the formation of a functional stroma that
supports tumor growth and dissemination

through a complex signaling network. A better
understanding of the many ways by which PI3K
contributes to the stromal remodeling activity
of oncogenic RAS may uncover new avenues
for therapeutic interventions targeting tumor
stromal components.

RAS/PI3K Signaling in Migration and
Metastasis Promotion

The most life-threatening consequence of an
evolving tumor is the acquisition of metastatic
properties. Many metastatic tumors (lung, pan-
creas, and colon) contain RAS mutations,
which also confer metastatic properties to
mouse cells in culture. The PI3K pathway has
also been shown to exert a fundamental role
regulating some of the steps of this process.

One of the first requirements for metastasis
formation is the acquisition of a migratory phe-
notype accompanied by extensive remodeling
of the actin cytoskeleton. The involvement of
oncogenic RAS and PI3K in migration and re-
modeling of actin cytoskeleton has been well
established through their interaction with Rac
and Rho proteins both in mammalian cells and
in the slime mold Dictyostelium discoideum
(Campbell and Der 2004; Giehl 2005; Pollock
et al. 2005; Sasaki and Firtel 2006; Castellano
and Downward 2011; Devreotes and Horwitz
2015; Di Blasio et al. 2017). However, whether
all these mechanisms are directly related to RAS
signaling through PI3K is not clear.

RAS activation of Rac requires PI3K, and
actin rearrangement correlates with the ability
of RAS mutants to activate PI3K. Inhibition
of PI3K activity blocks RAS induction of
membrane ruffling, whereas activated PI3K is
sufficient to induce membrane ruffling, acting
through Rac (Han et al. 1998; Nimnual et al.
1998). Migration of endothelial cells is neces-
sary for the creation of new vessels and repair of
lesions, a process that is dependent on nitric
oxide (NO). Signal transduction mediated by
NO can trigger the process of cell adhesion
and migration, releasing traction forces exerted
by the endothelial cells on a surface and result-
ing in their spreading (Chatterjee et al. 2008). A
recent report suggests that NO activates RAS,
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localizing PI3K to the plasma membrane and
facilitating the interaction between PI3K and
Rac, which is essential for the migration of
endothelial cells (Eller-Borges et al. 2015).

RAS, through its interaction with PI3K, reg-
ulates migration of fibroblasts in response to
several growth factors by regulating Rac activa-
tion and inhibiting Reelin expression (Castel-
lano et al. 2016). When Reelin is expressed it
prevents cells from migrating and up-regulates
of E-cadherin, thereby impacting on cell–cell
interaction and migration. Loss of E-cadherin
is associated with increased cell migration
and invasion (Kardash et al. 2010; Canel et al.
2013), a key event in the acquisition of invasive
capacity, because reexpression of E-cadherin
suppresses the invasion of tumor cells in vitro
(Kardash et al. 2010; Canel et al. 2013). Mouse
lung tumors in which the RAS–PI3K interac-
tion is blocked display an increase in Reelin and
E-cadherin expression and expression analysis
in human samples showed that both lung
adenocarcinoma and breast carcinoma patients
whose tumors express high levels of Reelin have
a better prognosis. These results suggest that
inhibition of Reelin expression by RAS/PI3K
signaling may be part of a mechanism by which
cancer cells acquire the enhanced motility nec-
essary to metastasize.

Another component of these mechanisms
may be Sur8, a RAS-Raf scaffolding protein
that also binds to p110a; this interaction is im-
portant for Sur8-mediated cell migration and
invasion, along with tumor metastasis. Sur8
regulates migration and invasion of cells in
response to RAS/PI3K signaling through acti-
vation of Rac and MMPs (Kaduwal et al. 2015;
Lee et al. 2016).

Formation of metastasis also requires tumor
cells to avoid anoikis or apoptosis caused by
matrix deprivation (Paoli et al. 2013). Onco-
genic RAS and PI3K can promote the loss of
anchorage-dependent growth. For example, in
Madin–Darby canine kidney (MDCK) epithe-
lial cells, PI3K, but not RAF, is both necessary
and sufficient for the protection provided by
RAS from anoikis (Frisch et al. 1996; Khwaja
et al. 1997). In tumors, PI3K signaling down-
stream from EGFR assists cancer cells in over-

coming detachment-induced metabolic stress
and, in turn, prevents programmed cell death
(Schafer et al. 2009) and tumor cells growing in
anchorage-independent conditions are addict-
ed to PI3K signaling, and thus more sensitive to
PI3K/mTOR inhibitors than matrix adherent
cells (Muranen et al. 2012).

TARGETING THE RAS/PI3K PATHWAY
IN CANCER THERAPY

For many years, oncogenic RAS proteins have
been considered a key but “undruggable” cancer
target because of the abundance of its substrate
GTP, the high-affinity with which RAS binds it
(Takashima and Faller 2013), and the apparent
lack of suitable surfaces in critical regions nec-
essary for small-molecule binding.

However, recently several groups have pub-
lished on small molecule inhibitors of KRAS,
which has restored hope that direct targeting
of this protein can be achieved. Genentech iden-
tified a compound called DCAI that binds to
a pocket located between the a2 helix and the
b-sheet of KRAS4B, which is the binding site
for the RAS guanidine exchange factor SOS1. In
live-cell experiments, DCAI prevents mem-
brane recruitment of the RBD of c-Raf kinase
(Maurer et al. 2012). Independently, a group
from Vanderbilt University discovered several
molecules that weakly bind to GDP-loaded
KRAS (Sun et al. 2012) into the same pocket
as DCAI. Shokat and colleagues (Ostrem et al.
2013) screened a library of small molecules
with GDP-bound KRASG12C, followed by the
design and synthesis of analogs. The com-
pounds discovered were found to bind to a
pocket between the a2 and a3 helices, on the
other side of the SII region from the Genentech
and Vanderbilt compounds. As predicted, the
compounds blocked the SOS1-mediated nucle-
otide exchange and decreased the binding of
RAS to both BRAF and CRAF. It also seemed
to selectively kill cancer cells harboring the
G12C mutation (Ostrem et al. 2013). However,
none of these compounds are very potent.

An effective RAS inhibitor must prevent the
activation by RAS of its downstream binding
partners, which could be achieved through di-
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rect inhibition of RAS GTPase activity, impair-
ment of RAS localization or trafficking (Gysin
et al. 2011; Wang et al. 2012; Bhattacharya et al.
2015; Singh et al. 2015; Ostrem and Shokat
2016; Asati et al. 2017). Recently, immunologi-
cal approaches to target mutant RAS have also
been investigated (Meyer et al. 2007; Rahma
et al. 2014; Singh et al. 2015; Gil-Bazo et al.
2016).

An alternate approach to inhibit oncogenic
RAS is to directly inhibit effector pathways
downstream from RAS (Athuluri-Divakar et
al. 2016; Keeton et al. 2017). However, the crit-
ical downstream effector for a given tumor may
vary with the tissue type and even the specific
mutational variant of RAS (Ihle et al. 2012; Ala-
gesan et al. 2015).

Although several studies showed a role for
PI3K signaling in RAS-mediated tumorigenesis
(Rodriguez-Viciana et al. 1996b, 1997; Sheng
et al. 2001; Li et al. 2004; Gupta et al. 2007;
Castellano et al. 2013), PI3K pathway inhibitors
used as single agents are not effective against
RAS-driven cell lines and xenotransplantation
models. Resistance to these inhibitors has been
ascribed to negative feedback mechanisms and
reflexive activation of other downstream signal-
ing partners of RAS (Engelman et al. 2008; Ihle
et al. 2009; Sos et al. 2009; Dan et al. 2010).
Conversely, treating RAS mutant cancer cells
with MEK inhibitors results in increased phos-
phorylation of the PI3K pathway effector Akt
(Hoeflich et al. 2009; Mirzoeva et al. 2009; Sos
et al. 2009). Thus, dual inhibition of both path-
ways may be required to block the growth of
RAS-driven tumors. In support of this hypoth-
esis, several studies showed that combined
inhibition of MEK and PI3K pathway in RAS
mutant background is superior to single-agent
inhibition several in vitro and in vivo models,
resulting in a synergistic inhibition of tumor
growth, cell viability, and increased apoptosis
(Engelman et al. 2008; Hoeflich et al. 2009;
Mirzoeva et al. 2009; Sos et al. 2009; Castellano
et al. 2013; Qu et al. 2014; Jifu et al. 2015;
Schrauwen et al. 2015; Talbert et al. 2017). How-
ever, in a KRAS-driven pancreatic model com-
bined therapy showed only modest activity
(Alagesan et al. 2015), suggesting that there

may be tissue and/or tumor specificity of the
various downstream effector pathways of RAS
and stressing the obvious need to better under-
stand signaling downstream from oncogenic
RAS in different tumor types.

Data from human cancers and transgenic
mouse models indicate that RAS-driven cancers
have the ability to overcome host-protecting
adaptive immune responses (Clark et al. 2009).
There is increasing appreciation for how small
molecules targeting the cancer cell affect the
immune context of the tumor (Vanneman and
Dranoff 2012; Zitvogel et al. 2013). Extensive
studies of the PI3K/Akt network in immune
cells have shown that PI3K activation is not a
simple on/off switch (Fruman and Bismuth
2009; Okkenhaug 2013; Okkenhaug et al.
2016). Inhibiting the pathway can either sup-
press immune responses or them through
effects on diverse subsets of innate and adaptive
immune cells and therefore in KRAS mutant
cancers it may be possible to implement treat-
ment regimens that increase immune rejection
of tumors with concomitant direct antitumor
effect. Proper assessment of candidate inhibitor
compounds therefore requires testing in genet-
ically engineered mouse models, with extensive
monitoring of tumor infiltration and activity
of diverse immune subsets including macro-
phages, T cells, and natural killer cells.

Tumor-immune infiltration studies have
shown that macrophage recruitment to tumors
is severely impaired in animals in which RAS
cannot bind and activate PI3K (Castellano
et al. 2013; Murillo et al. 2014). It will be crucial
to determine which agents targeting PI3K/Akt
enhance or suppress the efficacy of emerging
cancer immunotherapies and vaccines. In
mouse models, PI3K inhibitors can enhance
the efficacy of immune-directed therapies
(Marshall et al. 2012b). It is relevant to consider
that isoform-selective agents minimize immune
suppressive effects on lymphocytes compared
with pan-class I inhibitors (So et al. 2013).
Thus, pan-PI3K inhibitors are more likely to
enforce or accelerate the immune exhaustion
state, whereas isoform-selective PI3K are likely
to be better suited for use in combination with
cancer immunotherapy. Matching patients to
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the right combinations will require knowledge
of the genomic driver and the immune finger-
print of the tumor.

Interruption of RAS-effector binding is also
a promising strategy for drug design against
RAS-driven cancers and other diseases associ-
ated with RAS. Strong support for the concept
of disrupting activated RAS/effector protein
complexes as a therapeutic strategy came from
studies using a membrane-directed, single
immunoglobulin antibody domain (iDab#6-
memb). This antibody fragment binds the
switch I and II domains of active HRAS predict-
ed to be mutually exclusive of the amino-termi-
nal RAS-binding domain of RAF1 (RAF-RBD),
RALGDS, and PI3K. In a transgenic mouse
model of KRAS-driven lung cancer, tumor ini-
tiation was dramatically reduced by expressing
the antibody fragment (Tanaka and Rabbitts
2010). Although RAS-effector domain antibod-
ies provide convincing proof-of-concept, isolat-
ed antibody fragments are not currently a viable
clinical approach for disrupting intracellular
signaling.

However, interfering with protein–protein
interactions is, by its nature, difficult. Specifi-
cally, the binding of small molecules to pro-
tein–protein contact surfaces remains a major
challenge (Scott et al. 2016). In the case of RAS
and other GTPases, allosteric inhibition of
protein–protein interactions may be a more
plausible approach. Multiple lines of evidence
point to this being the case for RAS. First, switch
I acts as the main protein–protein interface,
and it is known to be highly dynamic, undergo-
ing substantial conformational rearrangements
between nucleotide states. Second, mutations at
sites outside the interface have been shown to
affect the conformation in ways that impair
effector binding. Finally, structural and NMR
studies have enabled the identification of
multiple inactive conformations. Compounds
that bind to and stabilize these inactive states
have the potential to potently and effectively
inhibit RAS. One example of this kind of
blockade comes from small molecules that
bind to the pseudokinase “kinase suppressor
of RAS” (KSR) (Brennan et al. 2011). The
kinase inhibitor ASC24 binds to an inactive

conformation of KSR and blocks the allosteric
transition that is induced on heterodimeriza-
tion of KSR with BRAF.

The switch region of RAS interacts with a
great number of effector proteins that contain a
common RBD. Because RBD-mediated interac-
tions are necessary for RAS signaling, blocking
RBD association with small molecules makes an
attractive therapeutic course. Mutational stud-
ies of the RBD in the p110a catalytic subunit
of PI3K have shown the importance of its RAS-
binding domain in the establishment and
maintenance of KRAS-driven lung tumors,
validating this protein–protein interaction as
a therapeutic target for RAS-driven cancers
(Gupta et al. 2007; Castellano et al. 2013). Ad-
ditionally, a recent report described an unex-
pected interaction between the Polo-like kinase
inhibitor, Rigosertib, with several RAS effector
proteins. Rigosertib acts as a RAS mimetic that
binds to the RBDs of the RAS effectors and
interferes with their ability to bind to RAS,
resulting in the inhibition of RAS-RAF/MEK
and PI3K/Akt signaling pathways. The com-
pound is able to inhibit the interactions of
both mutant and wild-type isoforms of K-
or NRAS isoforms (Athuluri-Divakar et al.
2016). The real test for this drug will most
likely be whether or not it has efficacy in patients
with KRAS mutant tumors. This question will
be solved relatively soon because multiple clin-
ical trials (some of them in phase III) for hema-
tologic and solid malignancies are ongoing at
this time.

CONCLUDING REMARKS

RAS proteins activate multiple effector path-
ways. Dissecting the contributions of these
interactions in normal cells and in cancer is an
ongoing challenge. The role of RAS proteins in
regulating PI3K has been particularly compli-
cated, because these kinases can be activated
by multiple upstream signals, some of which
depend on cooperation with RAS proteins,
whereas others do not. However, research over
the last decade has shown, in a variety of sys-
tems, that this signaling pathway plays essential
roles in both normal and oncogenic signaling.
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Recent data has broadened our knowledge on a
RAS/PI3K signaling pathway, suggesting that
this pathway is equally active in cancer cells
and in the major components of the TME, con-
trolling not only tumor growth but also tumor-
associated immune responses, tumor angiogen-
esis, tumor-induced ECM reorganization, and
tumor dissemination. The ability of RAS/PI3K
signaling to promote tumorigenesis by acting
both in “seed” and “soil”-dependent mecha-
nisms indicates that therapeutic PI3K inhibi-
tion can be seen as a plausible opportunity to
attack RAS-driven tumors on multiple fronts.
More research is needed in this front to under-
stand the specific molecular mechanisms by
which RAS/PI3K signaling exerts control over
the host responses. Targeting pathways that
depend on RAS/PI3K signaling, instead of
direct components of the pathway, will avoid
feedback loops and could be a way forward to
treat RAS-driven cancers.
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