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Abstract Congenital diaphragmatic hernia (CDH) results from incomplete formation of the
diaphragm leading to hemiation of abdominal organs into the thoracic cavity. CDH is asso-
ciated with pulmonary hypoplasia, congenital heart disease, and pulmonary hypertension.
Genetically, it is associated with aneuploidies, chromosomal copy-number variants, and
single gene mutations. CDH is the most expensive noncardiac congenital defect.
Management frequently requires implementation of extracorporeal membrane oxygena-
tion (ECMO), which increases management expenditures 2.4-3.5-fold. The cost of manage-
ment of CDH has been estimated to exceed $250 million per year. Despite in-hospital
survival of 80%-90%, current management is imperfect, as a great proportion of surviving
children have long-term functional deficits. We report the case of a premature infant prena-
tally diagnosed with CDH and congenital heart disease, who had a protracted and compli-
cated course in the intensive care unit with multiple surgical interventions, including
postcardiac surgery ECMO, gastrostomy tube placement with Nissen fundoplication, tra-
cheostomy for respiratory failure, recurrent infections, and developmental delay. Rapid
whole-genome sequencing ('WGS) identified a de novo, likely pathogenic, ¢.3096_
3100delCAAAG (p.Lys1033Argfs*32) variant in ARID1B, providing a diagnosis of Coffin—
Siris syndrome. Her parents elected palliative care and she died later that day.

[Supplemental material is available for this article.]

CASE PRESENTATION

The patient was a 7-mo-old girl, product of a diamniotic—dichorionic twin pregnancy, and
born at 34 wk gestation. She was small for gestational age, with a birth weight of 1.49 kg
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(<3rd percentile). She was prenatally diagnosed with left congenital diaphragmatic hernia
(CDH), aortic arch hypoplasia, small left-sided cardiac structures, and ventricular septal
defect. Genetic amniocentesis documented a normal, 46, XX karyotype and normal chromo-
somal microarray. The family was counseled as to a poor likelihood for survival based on a
heart-lung ratio of 0.86, but elected to carry the twin pregnancy. She required significant res-
piratory and inotropic support postbirth but was able to undergo CDH repair on day of life
(DOL) 5. At 3 mo of age she underwent aortic arch hypoplasia repair with ventricular septal
defect closure. Her postoperative course was complicated by arrhythmias and acute hypo-
tension leading to venoarterial (VA)-ECMO cannulation on postoperative day 1 (POD1).
She was decannulated on POD4 and underwent delayed sternal closure on POD6. Her hos-
pitalization was further complicated by eight culture-positive respiratory infections with
Gram-positive and Gram-negative bacteria between her second week of life and death at
8 mo of age. She received multiple courses of antibiotics for suspected infection. She had
feeding intolerance and underwent a Nissen Gastrostomy tube placement at 4 mo of age.
Genetics consultation at 5 mo of age documented a delayed, dysmorphic, and hirsute infant
with unusual penciled eyebrows, a medial eyebrow flare, anteverted nares, and posteriorly
rotated ears, but well developed nails with no distal phalangeal hypoplasia (Table 1). A spe-
cific pattern of malformation was not recognized. A postnatal microarray was normal. Exome
sequencing was suggested, but the funding was not approved. At 6 mo of age she under-
went exploratory laparotomy for lysis of adhesions in the setting of a small bowel obstruction.
There was no bowel loss. She was reintubated at 7 mo of age for respiratory failure. At that
time she also developed atrial flutter requiring medical cardioversion with sotalol. She failed
a trial of extubation and underwent a tracheostomy for procurement of a more stable airway.
Sotalol was discontinued after 9 d of treatment in the setting of high-grade atrioventricular
block. She had chronic lung disease (CLD), iatrogenic neonatal abstinence syndrome (NAS),
persistent electrolyte derangements, and refractory metabolic alkalosis on diuretic therapy.
The option for palliative care was presented on multiple occasions during the patient’s hos-
pitalization. Parental consensus on a decision could never be reached as one of the parents
held out hope that advancements in technology would address most of the patient’s health
concerns in the absence of a confirmed diagnosis. Soon after referral for rapid whole-
genome sequencing (r'WGS), she developed another episode of respiratory failure requiring
oscillatory ventilation. At the time of rWGS diagnosis she was found to be in septic shock
requiring inotropic support with multiple agents. After meeting with genetic specialists to
discuss the diagnosis and prognosis, the family opted for withdrawal of life support given
the patient’s critical condition and the fact that the underlying genetic condition could not
be cured.

The patient had an unaffected 7-yr-old brother and an unaffected twin brother. Her par-
ents were both healthy. Her mother, age 37, identified as Hispanic and her father, age 42, as
Caucasian ltalian. Her mother had a history of a miscarriage at 3 mo gestation prior to this
twin pregnancy. There was a maternal female cousin born with tricuspid atresia, who had re-
quired at least four surgeries.

TECHNICAL ANALYSIS AND METHODS

The patient had a normal newborn screen, normal female karyotype (prenatal testing), and a
normal female chromosomal microarray both prenatally (ARUP) and postnatally (Quest
Diagnostics). 'WGS became available during her seventh month of life.

One day after consent for trio rWGS, DNA was extracted and sequenced using an
lllumina HiSeq X (Hudson Alpha) with paired 151-nt reads. The average library insert size
was 369 nt for proband. Sequencing was completed 7 d after consent. Rapid alignment
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Table 1. Phenotypic features of Coffin-Siris syndrome

Proband
Feature (1-1)2 Relevance/alternate explanation
Short stature Yes Length < 3% on WHO Girls (0-2 yr) gestation
adjusted chart
Coarse facies Yes
Facial hypertrichosis Yes Chronic steroid administration
Low-set ears/posteriorly rotated ears No
Visual impairment/strabismus/downslanting palpebral fissures No
Bushy eyebrows No® Patient with unusual eyebrow pattern but not bushy
Long eyelashes Yes
Broad nasal tip No®
Large mouth/thin upper lip vermilion/thick lower lip vermilion No®
Delayed dentition No
Frequent upper and lower respiratory tract infections (early life) Yes
Feeding problems Yes
Skeletal anomalies including hypoplastic to absent terminal No®
phalanges hands and feet
Lumbosacral hirsutism/sparse scalp hair/hypertrichosis Yes
Delayed psychomotor development Yes
Moderate to severe hypotonia Yes
Seizures (in some patients) No
Intellectual disability ND Unable to assess because of age
Moderate to severe hypotonia Yes
Hypoplastic corpus callosum (in some patients) Yes
Partial agenesis of corpus callosum (in some patients) No

The list of clinical features is modified from the OMIM clinical synopsis (#135900; CSS).
ND, not determined.

“None of these features were seen in the parents.

bUnusual feature.

and nucleotide-variant calling was performed using the Dragen (Edico Genome) hardware
and software (Miller et al. 2005). Yield was 195.5 Gb for the proband with a median coverage
of 52x (51x coverage for genes annotated in Online Mendelian Inheritance in Man, OMIM)
resulting in 4,945,287 distinct variant calls (4,059,083 single-nucleotide variants [SNVs],
886,204 small insertion deletion variants [indels], 27,343 coding domain [CD] variants,
with a Ti/Tv ratio of 2.04) (Supplemental Table S1). Variants were automatically annotated
and analyzed in Opal Clinical (Omicia) (Coonrod et al. 2013). Initially, variants were filtered
to retain those with allele frequencies of <1% in the Exome Variant Server, 1000 Genomes
Samples, and Exome Aggregation Consortium database (http:/evs.gs.washington.edu/
EVS/2016; Karczewski et al. 2016). A differential diagnostic gene list was built in Phenolyzer
(Yang et al. 2015) using the Human Phenotype Ontology (HPO) (Kohler et al. 2017)
and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT [SNOMED
2016]) codes: Small for Gestational Age (HP:0001511), Congenital Diaphragmatic
Hernia (HP:0000776), Congenital Heart Disease (HP:0030680), Coarctation of the Aorta
(HP:0001680), Perimembranous Ventricular Septal Defect (HP:0011682), Mitral Stenosis
(HP:0011570), Malrotation (HP:0002566), Failure to Thrive (HP:0001531), Hypoplasia of Cor-
pus Callosum (HP:0002079), Asymmetric Hippocampal Bodies (L smaller than R), Dysmorphic
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Facial Features (HP:0001999), Long Eyelashes (HP:0000527), Flared Eyebrows (HP:0011229),
Frontal Hirsutism (Hairy Forehead, HP:0011335), Anteverted Nose (HP:0000463), Low Nasal
Bridge (HP:0005280), Hypotonia (HP:0008947), Thin Sparse Hair (HP:0008070), Developmen-
tal Delay (HP:0002194), and Frequent Respiratory Infections (HP:0002205), yielding 1678
genes. Variants were further filtered to retain those mapping to these 1678 genes using the
differential diagnostic gene list built in Phenolyzer, yielding three variants of interest. Variants
were assessed in accordance with ACMG variant classification criteria (Richards et al. 2015).
Two variants were classified as variants of uncertain significance: ¢.422A>C (p.Glu141Ala)
in NDUFAF4, and ¢.685_686insCGC (p.GIn228_GIn229insPro) in SMARCAZ2. The ARID1B
p.Lys1033Argfs*32 was classified as likely pathogenic (Supplemental Table S2) and was con-
firmed by Sanger Sequencing.

VARIANT INTERPRETATION

Interpretation of the r'WGS results for this patient determined a de novo alteration in the AT-
rich DNA interacting domain-containing protein 1B (ARID1B) gene, ¢.3096_3100delCAAAG
(p-Lys1033ArgfsTer32), following genetic analysis of proband and both parents (Table 2).
ARID1B is a component of a chromatin remodeling complex involved in cell cycle activation
and is one of the genes that cause Coffin-Siris syndrome (CSS). CSS is a multisystem disease
associated with congenital anomalies (congenital diaphragmatic hernia, spinal anomalies,
and congenital heart defects), dysmorphic features, recurrent infections, and developmental
delay. The prevalence of CSS has been estimated at <1:100,000. Multiple genes have been
implicated in this syndrome including ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1,
and SMARCET1 (Tsurusaki et al. 2012). Inheritance is autosomal dominant. The major features
of CSS are intellectual disability, speech delay, coarse facies, and hypertrichosis. Prevalent
features are hypoplasia of the fifth digits/nails of hand/feet, feeding difficulties, and agenesis
of the corpus callosum. Other more variable features include poor overall growth, craniofa-
cial abnormalities, congenital diaphragmatic hernia, spinal anomalies, and congenital heart
defects (Santen et al. 2014). The classic phenotype of CSS with hypoplastic distal phalanges
and nails of the fifth fingers, the most distinct and objective of the classic features of CSS, is
not always seen. As with many other conditions, the identification of the molecular basis of a
specific condition has led to the expansion of the clinical phenotype, and features such as
hypertrichosis, hypoplastic nails, or obvious coarse facial features have been found to be
more subtle or absent in many cases. Others, such as hyperkeratosis, have only been recently
recognized (Zweier et al. 2017). More importantly, ARID1B is now recognized as one of the
most frequent genes causing nonsyndromic intellectual disability (Santen et al. 2014).

The ¢.3096_3100delCAAAG (p.Lys1033ArgfsTer32) in ARID1Bis a novel frameshift alter-
ation leading to a premature termination codon. This deletion was not found in the 1000
Genomes, Exome Variant Server (EVS), or EXAC databases. Thus, it is presumed to be
rare. Although this particular variant has not been reported in the literature, pathogenic al-
terations similar to this one have been reported (Hoyer et al. 2012). Based on the combined
evidence, this variant is classified as likely pathogenic for CSS.

Table 2. Genomic findings

Parent of Variant
Gene Genomic location HGVS cDNA HGVS protein Zygosity origin interpretation
ARID1B  NM_020732.3: Chr c.3096_3100delCAAAG  p.Lys1033Argfs*32  Heterozygous  De novo Likely
6:157495211GCAAAG>G pathogenic

HGVS, Human Genome Variation Society.
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The incidence of CDH is 1 in 2000-5000 births (Chen et al. 2007a), and it comprises 8% of
all birth defects (Yu etal. 2015). Itisthe cause of 1%-2% of infant mortalities. CDH is caused by
the incomplete formation of the diaphragm around the fourth to eighth week of gestation.
Greater than 95% form posterior lateral (Bochdaleck) and ~2% are anterior retrosternal or para-
sternal. Eighty-five percent of CDHs are on the left side of the body. Forty percent of CDH
cases are associated with at least one additional anomaly like pulmonary hypoplasia, congen-
ital heart disease, pulmonary hypertension, or other genetic anomalies (Yu et al. 2015).

More than 50 different genetic syndromes have been associated with CDH, ranging from
aneuploidies (trisomy 18 is seen in 1%—-2% of CDH), copy-number variations (tetrasomy 12p,
8p23.1 deletion, 15g26.1 deletion, 1g41-42 deletion, 8923.1 deletion, 4p16 deletion,
11923.2 deletion) (Wynn et al. 2014; Stark et al. 2015), autosomal dominant disorders
(WT1-opathies, Cornelia de Lange syndrome, Marfan syndrome, Kabuki syndrome), autoso-
mal recessive disorders (Fryns syndrome), and X-linked disorders (craniofrontonasal syn-
drome, Simpson-Golabi-Behmel, focal dermal hypoplasia). Nonsyndromic single gene
mutations (GATA4, ZFPM2/FOG2, DIPS1) have also been reported. The causes of 80% of
CDH cases are still unknown and are thought to be multifactorial (Wynn et al. 2014), although
some genetic cases may not be detected by current testing strategies.

CDH is associated with a high rate of functional impairment. In a cross-sectional study of
CDH repair survivors at Boston Children’s Hospital, it was found that 66% had major medical
issues at discharge, whereas 48% still had a current clinical problem on follow-up around 8 yr
of age (Chen et al. 2007a). Neonatal predictors of ongoing medical morbidity were prior
ECMO use, presence of cardiac disease, and associated genetic abnormalities. Medical
problems reported were related to vision, hearing, muscle weakness, speech, behavior,
learning, eating, and breathing (Chen et al. 2007b).

CDH is the most expensive noncardiac congenital anomaly. Based on the analysis of data
obtained from approximately 200 hospitals in the United States (KID database; https:/www.
hcup-us.ahrg.gov/kidoverview.jsp) from 1997 to 2006, it is estimated that the national
cost for management of surviving CDH patients is ~$158 million/yr. The national cost
for management of all CDH patients (including the ones who do not survive to discharge)
is >$250 million/yr. ECMO support is associated with a 2.4-3.5-fold increase in expenditure
(Raval et al. 2011). Figure 1 shows the cumulative hospital costs at the time of the patient’s
death, which were >$1.8 million. The cost of rWGS at the time was $8482 for a singleton and
$17,579 for a trio. The average cost of commercial WES including analysis is estimated at
$4000. At our institution WES is usually performed outpatient with a turnaround time of
6-8 wk because this test is not covered while inpatient. Hospital cost for taking care of
this child if she were referred to us on DOLO, assuming a r'WGS diagnosis on DOL14 (the re-
sults for this patient were available by day 7 of enrollment) and time of death of 6 d following
approach of the family for withdrawal of life support (W/LS), would have been a little more
than $115,000. Literature review shows that the time from approach of families for W/LS
to the child’s death can range anywhere from 2-6 d depending on whether the patient is
in the United States or Europe (Keenan et al. 1997; Garros et al. 2003; Devictor et al.
2008). The cost if referred on DOL4 would have been a little more than $130,000. If we
are willing to spend more than $1.8 million attempting to improve the quality of life of these
critically ill children, this case demonstrates that the cost of genomic sequencing should not
be prohibitive to its implementation in their care.

SUMMARY

CDH is the most expensive noncardiac congenital anomaly and is associated with signifi-
cant long-term functional impairment. Genetic testing should be pursued early in the
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2,000,000
1,846,043
1,500,000
Dollars ($)
1,000,000
500,000
4,000 8,482 17,579 115,618 131,633

Avg. Cost of WES (s) Cost of WGS (s)  Cost of WGS (t) | Death post W/LS DOL 20 DOL 24 DOL 250

WGS results DOL 14 DoL 18 DOL 250

Sample Collection DpoLo poL4 DOL 236

Figure 1. Cumulative hospital costs at the time of the patient’s death, which was >1.8 million dollars.
Estimated cost of rapid whole-genome sequencing (r'WGS) at the time patient was sequenced was $8482 in
a singleton and $17,579 for a trio. Estimated cost of whole-exome sequencing (WES) with interpretation on
average $4000. Hospital cost for taking care of this child if she was referred to us on DOLO, assuming a diag-
nosis on DOL14 and time of death of 6 d post approach of families for W/LS, would have been alittle more than
$115,000. The cost if referred on DOL4 would have been a little more than $130,000. This figure illustrates that
the cost of genomic sequencing would not have been prohibitive even if the patient had been referred for se-
quencing early in the course of her treatment.

management of infants with CDH given myriad potential genetic etiologies. In this case
rWGS allowed identification of a single gene disorder with long-term implications for out-
come that assisted in the management of the patient. For this particular patient earlier diag-
nosis may have shortened the clinical course, obviating suffering for the patient and family
and reducing expenditures for the health-care system.
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