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Abstract

4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-

to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel 

time-activity-curves (TACs) during the reconstruction, though the optimal choice of function 

remains an open question. We propose a spline-residue model, which describes TACs as weighted 

sums of convolutions of the arterial input function with cubic B-spline basis functions. 

Convolution with the input function constrains the spline-residue model at early time-points, 

potentially enhancing noise suppression in early time-frames, while still allowing a wide range of 

TAC descriptions over the entire imaged time-course, thus limiting bias.

Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum 

a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, 

the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D 

reconstructions were carried out using a nested-MAP algorithm including spatial and temporal 

roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, 

generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-
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Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric 

maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images 

with the 2C3K model.

Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved 

>50% improvements for five of the eight combinations of the four kinetics parameters for which 

parametric maps were created with the bias and noise measures used to analyse them, and 

produced better results for 5/8 combinations than any of the other reconstruction algorithms 

studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K 

model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a 

temporal roughness penalty function improved the performance of 4D reconstruction based on the 

cubic B-spline, spectral and spline-residue models.
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1 Introduction

The uptake of an intravenously injected radiotracer within a patient can be imaged over an 

extended time-course using dynamic positron emission tomography (dPET). Quantitative 

data concerning tracer uptake kinetics can be obtained by fitting kinetic models to time-

activity curves (TACs) describing the temporal variation of activity within regions of interest 

(ROIs) drawn on dPET image sequences. These sequences are typically generated by 

splitting the projection data collected by the scanner into time-frames and reconstructing 

each frame as an individual image, using either analytical or iterative 2D- or 3D-PET 

reconstruction algorithms. Image sequences acquired in this way suffer from high levels of 

noise, due to the limited number of photon counts present in each time-frame and to noise 

amplification during image reconstruction. This in turn introduces noise and bias into 

parameter values obtained by fitting kinetic models to the resulting TAC data.

Iterative 4D-PET reconstruction is an alternative methodology, in which images are 

reconstructed simultaneously for all time-frames, and at each iteration the TAC of every 

voxel is replaced by the fit to it of a temporally smooth function. While many studies have 

demonstrated that 4D-PET reconstruction improves the signal-to-noise ratio (SNR) both of 

reconstructed image sequences and of fitted kinetic parameters, the optimal choice of 

temporal function remains an open question (Reader and Verhaeghe 2014). A common 

approach is to use the kinetic model of interest as the temporal function, allowing its kinetic 

parameter values to be obtained directly from the 4D-PET reconstruction rather than from an 

additional model fitting step post-reconstruction. This is known as ‘direct’ 4D-PET 

reconstruction and has been carried out using the spectral model (Matthews et al 1997, 

Meikle et al 1998, Reader et al 2007) and graphical analysis methods such as the Patlak and 

Logan plots (Tsoumpas et al 2008, Wang et al 2008, Cheng et al 2014, Karakatsanis et al 
2016), as well as non-linear compartment models (Kamasak et al 2005, Wang and Qi 2012a, 

Cheng et al 2015).
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In cancer imaging studies, diverse tissues are often present within the scanner field of view 

(FOV) and so a wide range of TAC shapes may need to be fitted. Kotasidis et al (2014) 

showed that bias from poorly-fitted regions spatially propagates to well-modelled regions 

during 4D-PET reconstruction, making it advantageous to use highly flexible functions 

which can adequately fit TACs in all regions. Non-linear compartment models make specific 

assumptions about the behaviour of the radiotracer in the tissue being modelled and 

therefore can only describe a limited range of TAC shapes. Thus a non-linear model 

designed to accurately describe the uptake kinetics within a tumour may perform poorly in 

other imaged regions, introducing bias into kinetic parameter estimates even in the well 

described regions.

Linear kinetic models, which represent each TAC as a weighted sum of pre-defined temporal 

basis functions, offer considerably more flexibility if the basis functions are well chosen. In 

situations with diverse kinetics, the spectral model of Cunningham and Jones (1993) and 

spline functions are often used. Due to their flexibility, spline functions can describe a wide 

range of TAC shapes well, potentially reducing image noise and bias (Nichols et al 2002, 

Verhaeghe et al 2006, Li et al 2007, Ralli et al 2017), but the fitted parameters of the spline 

functions themselves do not directly represent physiological information. Furthermore, 

while fits of the spectral model provide direct estimates of macro-parameters such as the 

volume of distribution, the micro-parameter values obtained from non-linear compartment 

model fits are conceptually more directly linked to specific biological processes. Therefore, 

it may be advantageous to use spline or spectral model-based 4D-PET reconstruction to limit 

the noise in dPET image sequences, and subsequently analyse the resulting images using the 

more physiologically-motivated non-linear compartment models.

The temporal basis functions of the spectral model are exponential decays convolved with 

the arterial input function (AIF), which describes the time-course of radiotracer activity 

concentration in the arterial blood flowing into a region. TACs vary most rapidly early on 

during imaging, and so short time-frames are used for the early time-points, making them 

particularly noisy. Due to their convolution with the AIF, the shapes of spectral basis 

functions are much more constrained at these early time-points than those of B-splines; but 

for the same reason they can still describe the early parts of TACs well. Consequently the 

spectral model may have an advantage at early time-points. On the other hand, B-spline 

basis functions can describe a wider range of TAC shapes than spectral basis functions, and 

thus may introduce less bias than the spectral model into the reconstruction process. 

However, the more flexible splines can also over-fit the data, potentially limiting the degree 

of noise suppression achievable compared to the spectral model (Ralli et al 2017). A 

temporal model that combines the noise suppressing capabilities of the spectral model, 

particularly in early time-frames, with the greater flexibility of spline functions might 

therefore be advantageous.

In this work we propose an alternative linear model, termed the spline-residue model, whose 

basis functions are B-spline basis functions convolved with the AIF. Like the spectral model, 

convolution with the input function constrains the spline-residue basis function shapes in 

early time-frames, potentially enhancing the noise suppression achieved in the early frames 

by 4D reconstruction. But by using B-splines instead of exponential functions, the spline-
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residue model can describe a wider range of TAC shapes across the whole imaged time-

course than can the spectral model, potentially reducing bias. O’Sullivan et al (2009) 

developed a similar spline-residue model for post-reconstruction non-parametric analysis of 

radiotracer uptake kinetics in dPET images. To our knowledge, however, use of the model 

for 4D image reconstruction has not previously been proposed or evaluated.

The spline-residue 4D-PET reconstruction algorithm developed here includes both spatial 

and temporal roughness penalties. Algorithm performance is evaluated using Monte-Carlo 

simulated PET detector data collected for a digital phantom, built using TACs obtained from 

images of a stage IV non-small cell lung cancer (NSCLC) patient injected with the [18F]-

Fluromisonidazole (FMISO) hypoxia tracer.

Many 4D-PET reconstruction algorithms based on specific linear models have been 

proposed, but few published studies have inter-compared the performance of different linear 

models. Furthermore, to our knowledge the performance of direct 4D-PET reconstruction 

based on a non-linear model has not been compared to that of linear model-based 4D-PET 

reconstruction followed by kinetics analysis using the same non-linear model. In this study 

the performance of spline-residue-based 4D-PET reconstruction is compared to that of a 

conventional (non-4D) MAP reconstruction algorithm, and to 4D-PET reconstruction based 

on the spectral model, adaptive-knot cubic B-splines and an irreversible two-tissue 

compartment model commonly used to analyse FMISO dPET data (Wang et al 2009, 

McGowan et al 2017). Performance is measured using bias and noise metrics of the 

reconstructed images, and parametric maps describing voxel-by-voxel compartment model 

fits to the image data.

2 Methods

2.1 Nonparametric spline-residue description of dPET TACs

A TAC can quite generally be modelled as the convolution of the AIF with a residue 

function,

f (t) = K∫
0

t
CI(s)R(t − s)ds, (1)

where CI (t) is the AIF, K is a proportionality constant interpreted as overall flow and R(t) is 

the residue function, which describes the fraction of tracer remaining in the region at time t 
after entering it, and so provides information about the kinetics of radiotracer transport and 

metabolism processes (Gunn et al 2001).

The spline-residue model represents the residue function as a weighted sum of NS cubic B-

spline functions, ζk (t), with a Dirac delta function added to account for the finite blood 

volume in the region:
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R(t) = μ0δ(t) + ∑
k = 1

NS
μkζk(t), (2)

where µk is the coefficient of the kth B-spline function ζk (t), the coefficient µ0 equals Vb/K, 

and Vb is the fractional blood volume. Thus from (1) the TAC is given by a weighted sum of 

spline-residue basis functions ηl (t):

f (θ, t) = ∑
l = 0

NS
θlηl(t), (3)

where

ηl(t) =
CI(t), l = 0
CI(t) ⊗ ζl(t), l > 0, (4)

⊗ denotes a convolution, and the coefficients θl are given by

θl =
Vb, l = 0
Kμl − 1, l > 1 . (5)

Spline-residue, cubic B-spline and spectral model basis functions are compared in figure 1. 

The early spectral and spline-residue model basis function are very similar, while the later 

basis functions are rather different.

2.2 Temporally regularized nested-MAP 4D reconstruction algorithm for linear kinetic 
models

Linear kinetic models represent the number of positron annihilation events in a given voxel j 
at time-frame m, xjm, as a linear combination of pre-defined basis functions:

x jm(θ j) = ∑
k = 1

NB
Bkmθ jk, (6)

where NB is the total number of basis functions, θjk is the weighting factor of the kth basis 

function Bk (t) in voxel j, and Bkm is given by
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Bkm = ∫
tms

tm f
Bk(t) exp ( − λt) dt, (7)

where tms and tmf are respectively the start and end times of time-frame m, and λ is the 

radiotracer decay constant. The basis functions are pre-defined and therefore only the 

weighting factors θj need to be calculated when fitting the models.

The expected number of photon counts on detector pair i in time-frame m, 〈yim〉, can be 

estimated as a function of the model parameters using

yim(θ) = ∑
j = 1

NV
Pi j x jm(θ j) + εim, (8)

where NV is the total number of voxels, εim represents the erroneous counts measured by 

detector pair i in time-frame m (random coincidences and scattered photons), Pij are the 

elements of the ND × NV system matrix P, and ND is the number of detector pairs. The 

element Pij represents the probability of a pair of photons originating in voxel j being 

detected by detector pair i. The system matrix used here is independent of time, though time-

dependent effects such as detector dead-time can be and sometimes are included in the 

system matrix calculation (Qi et al 1998).

Modelling the measured counts yim as independent Poisson-distributed variables, the log-

likelihood function of the measured scanner data L (y|θ) (with a constant term omitted) is

L(y |θ) = ∑
m = 1

NT
∑
i = 1

ND
(yim ln ( yim(θ) ) − yim(θ) ), (9)

where NT is the number of time-frames. The most likely parameter values are obtained by 

iteratively maximizing L (y|θ) with respect to θ. Many basis functions can be included in 

linear kinetic models, potentially leading to overfitting of the data, and so we modify the 

objective function to include a temporal regularization term:

Φ (θ) = L(θ |y) − γ Γ (θ), (10)

where γ is a parameter controlling the trade-off between temporal smoothness and accurate 

TAC description, and Γ(θ) is a temporal roughness penalty defined as
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Γ (θ) = ∑
j = 1

NV
Λ (θ j), (11)

with Λ (θj) being the penalty function for voxel j.

To efficiently maximize Φ (θ) we propose a methodology based on optimization transfer 

(Lange et al 2000), in which determination of θ at iteration n is transferred to a surrogate 

function Q (θ|θn) which minorizes the original log-likelihood function:

Q(θ θn) ⩽ Φ (θ), (12)

with equality if and only if θ = θn. By choosing θn+1 as the θ value maximizing Q (θ|θn), 

Lange et al (2000) showed that Φ (y|θn+1) ≥ Φ (y|θn).

We obtain the surrogate objective function by subtracting γΓ (θj) from the surrogate 

function proposed by Wang and Qi (2010) for the minorization of L (y|θn) (with a constant 

term omitted). Doing so gives:

Q θ θn = ∑
j

∑
i

Pi j ∑
m

x jm
n + 1ln x jm θ j − x jm θ j − γ′Λ θ j , (13)

where γ′ = γ

∑iPi j
, n is the current iteration number and x jm

n + 1 is the image obtained when 

updating the current image estimates using the MLEM algorithm (Shepp and Vardi 1982):

x jm
n + 1 =

x jm θ j
n

∑iPi j
∑iPi j

yim

yim θn . (14)

Because Q (θ|θn) is separable in voxels the parameter values θ j
n + 1 can be obtained using

θ j
n + 1 = max

θ j
∑
m

x jm
n + 1ln x jm θ j − x jm θ j − γ′Λ θ j . (15)

Instead of maximizing (15), we adapt a method proposed by Matthews et al (2010) for the 

un-regularized case, which uses a weighted least squares approach to calculate θ j
n + 1 . For 

the temporally regularized case, θ j
n + 1 is obtained by minimizing the penalized weighted 

least square error
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θ j
n + 1 = min

θ j
∑
m

w jm x jm
n + 1 − x jm θ j

2 + γ′Λ θ j , (16)

with weighting factors

w jm = 1
x jm θ j

n . (17)

Wang and Qi (2012a) have noted that monotonic convergence to the maximum-likelihood 

solution is not guaranteed when the model fitting step is modified to a weighted least 

squares problem, however convergence has been observed in practice (Matthews et al 2010).

Temporal roughness penalties have been used in previous 4D-PET reconstruction studies, 

but there is no consensus on what form Λ (θj) should take. Two penalty functions are 

explored in this work, the first being

Λ θ j = θ j
2, (18)

which corresponds to L2 regularization, and the second

Λ θ j = ∫
0

Tscan ∂2 f θ j, t

∂t2

2

dt, (19)

where Tscan is the dPET scan duration. The second penalty function is often used to fit 

splines to noisy data and has been applied to spline-based 4D-PET reconstruction (Nichols 

et al 2002, Li et al 2007), though not in an optimization transfer framework.

Both penalty functions can be expressed as

Λ θ j = θ j
T Ω θ j, (20)

where the superscript T indicates a matrix transpose. For penalty function (18) Ω is the 

identity matrix I, while for (19) the elements of Ω, Ωab, are

Ωab = ∫
0

Tscan
B̈a t B̈b t dt, (21)
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where B̈
k(t) is the second-order time-derivative of basis function k. Using this notation the 

cost function in equation (16) can be re-expressed as a Tikhonov regularization problem

θ j
n + 1 = min

θ j
∑
m

w jm x jm
n + 1 − x jm θ j

2 + γ′θ j
T Ω θ j , (22)

and solved using the equation (Tikhonov et al 1995)

θ j
n + 1 = BTWB + γ′ Ω −1BTWx j

n + 1, (23)

where B has the Bkm elements defined in equation (7), W is the diagonal matrix diag (wj1, 

wj2, … , wjNT) and x j
n + 1 is an NT × 1 vector with mth element x jm

n + 1 .

To determine the best γ′ to use in (22) for voxel j, γ j′, a range of γ′ values can be defined in 

advance, and the one producing the fit with the lowest generalized cross validation (GCV) 

score (Wahba 1990) taken as optimal for this voxel:

γ j′ = min
γ′

GCV γ′ = min
γ′

∑mwm j x jm
n + 1 − x jm θ j

n + 1 2

Tr I − B BTWB + γ′ Ω −1BTW
2 , (24)

where Tr(…) denotes the matrix trace, and the denominator of (24) corresponds to the 

effective degrees of freedom. The model fitting step is much faster than the image update 

step, and so selection of the γ′ value for each voxel TAC in this semi-automatic manner 

does not greatly slow down the reconstruction.

Spatial regularization can be built into the reconstruction by replacing the image update step 

in equation (14) with a corresponding step from an iterative 2D- or 3D-maximum a 
posteriori (MAP) algorithm. These image updates are designed to maximize objective 

functions of the form L (x|y) – βU(x) with respect to the image x, where β is a tunable 

parameter controlling the trade-off between resolution and noise, and U (x) is a concave 

function designed to penalize rough images,

U x = 1
4 ∑

j
∑

k ∈ 𝒩 j

z jkψ x j − xk , (25)

where 𝒩 j is the set of nearest neighbours of voxel j and zjk is a weighting factor equal to the 

normalized inverse distance between voxels j and k (Wang and Qi 2012b). Here we use the 

Lange function (Lange 1990)
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ψ ξ = ξ
δ − ln 1 + ξ

δ δ, (26)

which contains a further smoothing parameter δ, and achieves good noise suppression in 

fairly uniform regions, while preserving edges better than the more widely used quadratic 

function, ψ (ξ) = ξ2 (Lange 1990).

The proposed temporally regularized 4D-PET reconstruction algorithm for linear kinetic 

models, subsequently referred to as nested-MAP reconstruction, can be summarized as 

follows.

1. Start with an initial dPET image sequence estimate, in this work a sequence of 

uniform images with the radioactivity concentration in each voxel set to 100 

Bq/cc.

2. Update each image with one iteration of the MAP algorithm. Here MAP updates 

were performed via algorithm 1 of Wang and Qi (2012b) using their pixel-based 

rather than patch-based approach. Values of β and δ are pre-selected.

3. Fit a temporal model to each voxel TAC via (23), using either a fixed value of γ 
or a range of γ values and subsequently selecting the best value via GCV.

4. Return to step 2 using the image voxel values predicted by the fitted model, 

x jm θ j
n + 1 , as the seed for next MAP update, and continue for either a fixed 

number of iterations or until the images have converged.

2.3 Digital phantom simulations

The 4D-XCAT2 digital phantom package (Segars et al 2010) was used to simulate a single 

slice of an NSCLC patient injected with the FMISO hypoxia tracer. Tracer activity 

concentrations in different regions and time-frames were chosen to match smoothed TACs 

taken from a clinical FMISO-dPET image of a patient with stage IV NSCLC. Specifically, 

lung and bone TACs were obtained from spherical ROIs of 3 cm diameter placed in healthy 

lung and spine regions in the real patient image, and an AIF TAC was taken from a 

cylindrical ROI of diameter 10 mm located in the centre of the descending aorta on five 

consecutive PET axial slices. Tumour TACs were obtained from irregularly-shaped ROIs 

considered to contain hypoxic and normoxic tumour tissue. The ROIs were drawn by an 

experienced radiologist and checked by a second radiologist.

For smoothing, each TAC except the AIF was fitted with cubic splines, adaptively placing 

the knots according to the algorithm proposed by Ralli et al (2017), and with irreversible 

two- and three-tissue compartment models having 3 and 5 rate-constants respectively. These 

compartment models are schematically drawn in figure 2 and subsequently referred to as 

2C3K and 3C5K. The AIF TAC was fitted with the phenomenological three-exponential 

model of Feng et al (1993) alone. Weighted least squares was used for all fitting, with the 

weighting factors
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wm =
Δ Tme

−λTm

am
, (27)

where am is the decay-corrected average activity concentration within the region during 

frame m, ΔTm is the frame duration, and Tm is the mid-point of the mth frame (Chen et al 
1991). Compartment model fitting was carried out using the Levenberg–Marquart algorithm, 

available in the MATLAB optimization toolbox (Mathworks).

Model fit quality was assessed for each TAC using leave-one-out cross-validation, 

calculating the weighted residual sum of squares (RSS) error of the fit ith the weighting 

factors defined in (27). The Wald-Wolfowitz runs test was used to check whether any 

significant structure remained in the residuals of each model fit at the 5% significance level. 

Of the models that passed the runs test for a given patient TAC, the best model fit was taken 

to be the one with the lowest weighted RSS value.

Two patient phantoms were created with identical spatial geometries and voxel dimensions 

of 3.1 × 3.1 × 2.0 mm3. Lung, bone, blood, normoxic and hypoxic tumour regions were 

filled with noise-free ground-truth activity concentrations that varied with time according to 

model fits to the TACs obtained from the corresponding regions in the patient image. For the 

first ‘realistic’ phantom the best model fits to the different TACs were used, while for the 

second ‘simplified’ phantom, 2C3K model fits were used instead. The fitted curves were 

binned into a (1 × 30 s, 6 × 5 s, 6 × 20 s, 7 × 60 s, 10 × 120 s, 3 × 300 s) time-frame 

sequence followed by two additional 600 s frames at 2 and 4 h post-injection. This frame 

sequence matches the dynamic imaging protocol of the clinical dPET scan from which the 

phantom TACs were derived: following this protocol, the patients were injected with the 

FMISO tracer 30 s into scanning.

To illustrate the phantom geometry, an image of the final time-frame of the realistic phantom 

is shown in figure 3(a). We have used the phantoms to study the performance of linear 

model-based versus 2C3K-based 4D-PET reconstruction when all the underlying TACs take 

realistic shapes (realistic phantom), and when they are all described by fits of the 2C3K 

model (simplified phantom).

dPET sinograms representative of those produced by an mMR PET-MR scanner (Siemens 

Healthcare, Erlangen, Germany) were generated for both phantoms using the PET-SORTEO 

Monte-Carlo simulation package (Reilhac et al 2004), which has been validated for the 

Siemens mMR scanner (Reilhac et al 2016). Fifty noise realizations of dynamic-PET 

sinogram data were generated for each phantom, including effects of scattered photons, 

random co-incidences and attenuation. No patient motion was simulated, the focus of the 

current study being to evaluate the effectiveness of noise suppression using 4D-PET 

reconstruction. On average, the total number of counts in each noise realization was 

approximately 3.5 million for both single-slice phantoms studied.
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2.4 Image reconstruction

Attenuation and normalization correction sinograms were obtained respectively from an 

attenuation map of the patient phantom, and from simulated detector counts generated using 

PET-SORTEO for a 20 min scan of a cylindrical phantom containing a uniform activity 

concentration. The attenuation and normalization corrections were then modelled as part of 

the system matrix. Numbers of scattered photons and random coincidences were estimated 

using the single-scatter simulation algorithm (Watson 2000) and a delayed co-incidence 

window respectively.

From each simulated realization of FMISO patient phantom PET scanner data, dPET image 

sequences were reconstructed in 3.1 × 3.1 × 2.0 mm3 voxels using both conventional MAP 

and 4D nested-MAP algorithms, running each algorithm for 30 iterations. Nested-MAP 4D 

reconstructions were performed using the non-linear 2C3K model, and the linear adaptive-

knot cubic B-spline, spectral and spline-residue models. For each linear model, 

reconstructions were carried out using the temporal regularisation penalties of equations (18) 

and (19), and with no temporal regularisation. For 2C3K model-based reconstructions no 

temporal regularization was used because this model is much more constrained than the 

linear ones. For nested-MAP reconstruction based on the 2C3K model, the non-linear model 

fitting step was performed using the Levenberg-Marquardt algorithm instead of (23). 

Spectral, spline-residue and 2C3K model-based 4D reconstructions require image-derived or 

blood-sampled AIFs, which were obtained here by fitting the three-exponential model of 

Feng et al (1993) to TACs obtained from conventionally (not 4D) reconstructed MAP 

images, for ROIs placed in the left ventricle.

Spectral model-based reconstructions were carried out using 100 basis functions with 

exponential decay constants spaced logarithmically between 1.1 × 10−4 s−1 (the decay 

constant of 18F) and 0.01 s−1. For spline-based reconstructions, voxel-specific knot locations 

were selected using the adaptive-knot placement algorithm proposed by Ralli et al (2017), 

which for cubic splines places knots along equal segments of the integral of the 4th root of 

the 4th derivative of a TAC according to theorem XII.5 of De Boor (1978). For each voxel 

11 free knots were positioned by applying the algorithm to the TAC obtained for that voxel 

from conventional MAP-reconstructed images.

Basis functions for the spline-residue model were obtained by placing 4 knots at the 

beginning and end of each TAC, as well as the point where the TAC starts to rise, to handle 

discontinuities, and positioning an additional 6 uniformly spaced knots between the initial 

rise and end points of the TAC. The B-splines associated with these knots were convolved 

with the AIF to calculate the spline-residue basis functions. Preliminary work fitting the 

spline-residue model to synthetic noisy FMISO TACs led to the choice of 6 additional knots, 

this number generating fits that best matched the ground-truth. Uniformly spaced knots 

performed well, perhaps because the residue function for a given TAC varies considerably 

less than the TAC itself.

The spatial regularization parameters β and δ, defined in (26), were both set to 0.1, a choice 

that produced the best contrast-to-noise ratio in images of digital phantom similar to the 

NEMA image quality phantom (National Electrical Manufacturers Association 2013) 
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reconstructed using the MAP algorithm from simulated PET detector data generated with 

PET-SORTEO.

For each linear model and temporal roughness penalty used in the 4D reconstruction 

algorithms, the range of γ′ values {γ′ = 0.001, 0.002, …, 0.01} all produced good fits to 

TACs from conventional MAP-reconstructed patient phantom images. At each iteration of 

the temporally regularized nested-MAP reconstructions, therefore, the γ′ value used for 

each voxel was individually selected from those ten as the one that minimized the GCV 

score of the model fit to that voxel’s TAC, as described in section 2.2.

2.5 Image analysis

2.5.1 Image quality metrics—To characterize the accuracy of the reconstructed 

images, the average absolute bias of imaged activity concentrations over the scan time-

course was calculated for every voxel j:

Image Bias j = 1
Tscan

∑
m

Δ Tm a jm − a jm
true , (28)

where ājm is the mean activity concentration in voxel j at time-frame m in all 50 repeat 

image sequences, and a jm
true is the true activity concentration.

The noise in each voxel j at every time-frame m was calculated using the weighted standard 

deviation σw,jm

σw, jm =
σ jm, measured

2 Δ Tm

a jm
true

1
2
, (29)

where σ jm, measured
2  is the variance amongst the 50 repeat ajm values, and the weighting 

factors a jm
true/ Δ Tm are based on the dynamic-PET noise model of Chen et al (1991) and 

nominally account for intrinsic variations in noise between frames. Then the average noise 

for a given voxel j was calculated across all NT time-frames

Image Noise j = σw j = 1
NT

∑
m = 1

NT
σw, jm . (30)

Overall bias and noise were characterised as mean absolute bias and mean image noise 

(〈σw〉) averaged over all voxels within the patient (the whole patient region). The same 

measures were also averaged over the tumour region alone, usually the primary focus of 

oncological dPET studies. Normalised mean absolute bias and 〈σw〉 values were expressed 

as percentages of the mean ground-truth activity averaged over all time-frames and all 
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voxels in the whole patient or tumour regions. To facilitate algorithm inter-comparison, 

normalised mean image noise and absolute bias values were computed at every iteration of 

all 4D reconstructions. Corresponding values were also calculated for just the first 120 s of 

the scans, to assess algorithm performance at early time-points.

To assess the convergence of the reconstruction process, the mean square error (MSE) was 

calculated for each image voxel j at time-frame m and iteration n of the nested-MAP 

reconstructions

MSE jm
n = 1

Nr
∑

k = 1

Nr
a jm

true − a jm, k
n 2, (31)

where Nr is the number of noise realizations. At each iteration, a weighted sum of MSE jm
n

over all time-frames was calculated for every individual voxel, and these values were 

summed over all image voxels to create a single total MSE measure, TMSE:

TMSEn = ∑
j = 1

NV
∑

m = 1

NT Δ TmMSE jm
n

a jm
true , (32)

where NV is the number of image voxels. To check that the images did not change 

substantially after the first 30 reconstruction iterations explored throughout most of this 

study, each nested-MAP reconstruction was run for a further 10 iterations. Fractional 

changes in TMSE from one iteration n to the next n + 1 were calculated as

fractional TMSE change at iteration n = TMSEn − TMSEn + 1

TMSEn , (33)

and plotted as a function of iteration number for n = 1 to n = 39, positive TMSE changes 

corresponding to reductions in the total error, and negative changes to increases. 

Additionally, the fractional change between iterations 30 and 40 was calculated as

fractional TMSE change at iteration 30/40 = TMSE30 − TMSE40

TMSE30 . (34)

2.5.2 Parametric map quality metrics—FMISO uptake kinetics are often determined 

using the 2C3K model (Wang et al 2009, McGowan et al 2017). Following this approach, we 

have fitted the 2C3K model to voxel TACs obtained from all the image sequences 

reconstructed using the different algorithms. The voxels studied were those lying within the 

phantom sub-volume shown in figure 3(b), which contains the tumour-like region and 

surrounding lung and is therefore of the greatest interest. Then we determined the accuracy 
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and precision of uptake kinetics as characterised by the 2C3K model fits to the reconstructed 

images versus fits of the same model to the ground-truth phantom TACs, studying the 2C3K 

model rate-constants shown in figure 2(a) together with the flux constant

k f lux =
K1k3

k2 + k3
. (35)

The bias and noise in fitted values of each parameter q = K1, k2, k3, kflux were calculated for 

each voxel j lying within the image sub-volume:

Parameter Bias j = q j − q j
true, (36)

Parameter Noise j = σq j, (37)

where q j
true is the ground-truth value of kinetic parameter q in voxel j, q̄j is the mean of the qj 

values obtained for voxel j from each of the 50 reconstructed image sequences, and σqj is the 

standard deviation of these 50 qj values. Then the [Parameter Bias]j and [Parameter noise]j 

measures were averaged over all the voxels within the analysed phantom sub-volume to 

characterize the overall performance of each reconstruction algorithm. These metrics were 

also averaged over a region containing hypoxic tumour alone, to assess the performance of 

the algorithms specifically within the tumour region.

3 Results

3.1 Selection of fitted TACs for the realistic digital phantom

Figure 4 shows fits of the 2C3K, 3C5K and cubic spline models to the real TAC data 

obtained from normoxic and hypoxic tumour and healthy lung and spine regions of the 

imaged NSCLC patient. Runs test results and leave-one-out cross-validation weighted RSS 

scores are listed in table 1.

Fits of the adaptive-knot spline and 3C5K models had the lowest cross-validation scores for 

the healthy tissue and tumour regions respectively, and were therefore used to represent the 

ground-truth TACs for these regions in the realistic phantom. All the model fits used in the 

realistic phantom passed the runs test. The worst leave-one-out cross-validation scores were 

obtained for the 2C3K model fits, which only passed the runs test for the hypoxic tumour 

region.

3.2 Image quality metrics

Iteration-by-iteration plots of image bias versus noise, averaged over all time-frames and 

patient voxels, are shown in figure 5 for realistic and simplified phantom image sequences 

reconstructed using temporally regularized nested-MAP 4D algorithms based on the cubic 
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spline, spectral and spline-residue linear models. Each plot compares results obtained for 

one phantom and one reconstruction algorithm using either no temporal roughness penalty 

or the penalty functions of equations (20) or (21).

For spectral and spline-residue-based 4D reconstructions, the |θ|2 temporal roughness 

penalty of equation (18) produced substantially less noisy images than the other penalty 

options, at similar levels of bias, and was therefore considered the best penalty function for 

these algorithms. For cubic spline-based 4D reconstructions, however, the integrated square 

derivative penalty function of equation (19) was viewed as the best penalty function, since it 

produced the least biased images at noise-levels only slightly higher than obtained using the 

|θ|2 penalty.

In figure 6, noise is plotted against bias for images of the realistic phantom reconstructed 

using each linear model-based 4D algorithm and its associated optimal temporal roughness 

penalty, and using with the 2C3K-based 4D algorithm. Separate plots are shown for noise 

and bias measures averaged over the whole patient or the tumour regions, and averaged over 

the whole scan time or just the first 120 s. Image quality curves for reconstructions based on 

the spline-residue model were substantially better than those obtained for reconstructions 

based on cubic splines or the 2C3K model. And at early time-points and within the tumour 

region, the image quality curves for the spline-residue-based algorithm were also better than 

those for reconstructions based on the spectral model. However, the spectral model had a 

slight edge when the image quality metrics were averaged across the whole phantom and 

scan duration.

Corresponding data are shown in figure 7 for reconstructions of the simplified phantom. For 

this phantom the spline-residue model produced slightly better results than the spectral 

model when considered across the whole phantom and scan duration; but 4D reconstructions 

based on the 2C3K model achieved the lowest bias values, unsurprisingly since the phantom 

kinetics are 2C3K-based.

Figure 8 shows fractional changes in TMSE as a function of iteration number for the 2C3K- 

and linear model-based reconstructions of the realistic phantom, using the optimal temporal 

roughness penalties for the linear models. After 30 iterations the fractional change in TMSE 

per iteration was very small for reconstructions based on the spectral, spline-residue and 

2C3K models. Total fractional changes in TMSE between iterations 30 and 40, calculated 

with (34), were 0.013 for the spectral model, 0.017 for the spline-residue model, 0.007 for 

the 2C3K model and −0.030 for cubic splines. Thus continuing reconstruction beyond 30 

iterations led to small improvements at best, and in the case of the spline-based 

reconstruction a 3% worsening in TMSE, most likely due to noise amplification at the later 

iterations.

3.3 Parametric maps

Figure 9 shows voxel-by-voxel spatial plots of absolute bias and noise in kflux parametric 

maps of the realistic phantom sub-region shown in figure 3(b), obtained from image 

sequences reconstructed using the conventional (non-4D) MAP algorithm and nested-MAP 

4D algorithms based on the 2C3K model and linear models used with their optimal temporal 
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roughness penalties. The voxel-by-voxel noise and bias plots calculated for the simplified 

phantom were similar. The results in figure 9 are summarized in table 2, which lists the 

signed bias and noise in the kflux parametric maps averaged over the entire phantom sub-

region. In both figure 9 and table 2 the bias and noise are expressed as percentages of the 

ground-truth kflux value, averaged over the entire sub-region. Of all the algorithms 

compared, spline-residue model-based reconstruction achieved the lowest average bias and 

second lowest noise levels in the kflux parametric maps, the spectral model-based algorithm 

achieving lower noise but greater bias.

The average normalised bias and noise (standard deviation) in 2C3K model parameters, for 

fits to the TACs of every voxel of the realistic phantom sub-region of figure 3(b) in images 

reconstructed using the different algorithms, is shown in figure 10 for the individual 2C3K 

rate constants and the composite kflux parameter. For each parameter, these values are 

normalised as fractions of the values achieved by conventional (non-4D) MAP 

reconstruction for the same parameter, thus showing the extent to which each nested-MAP 

reconstruction improves on the conventional MAP reconstruction for each kinetic parameter. 

Equivalent plots for the simplified phantom are shown in figure 11. Bias and noise values 

averaged over the smaller hypoxic tumour sub-volume alone are shown in figure 12 for the 

realistic and simplified phantoms.

For the realistic phantom it can be seen from figure 10 that for five of the eight combinations 

of bias/noise and kinetic parameters analysed, bias or noise averaged across the whole 

phantom was reduced more than 50% by using 4D reconstruction based on the spline-

residue model rather than conventional (non-4D) MAP-reconstruction. Furthermore, for 5/8 

combinations spline-residue 4D reconstruction produced better results than any of the other 

reconstruction algorithms studied, while spectral-based 4D reconstruction produced the best 

results for 2/8. Compared to conventional reconstruction, spline-residue-based 4D 

reconstruction did not notably increase bias or noise for any of the eight combinations, 

whereas the bias and noise in fitted K1 parameter values rose substantially above the 

conventional MAP levels when 4D reconstruction was carried out using the other temporal 

models. 4D reconstruction based on the 2C3K model generated the most biased kinetic 

parameters, and higher levels of noise than spline-residue-based reconstruction. From figure 

12 it can be seen that for the hypoxic tumour region alone, the spline-residue- and spectral-

based 4D reconstructions each achieved the best results for 3/8 of the bias/noise and kinetic 

parameter combinations analysed, and cubic spline-based 4D reconstruction the best results 

for 2/8.

For the simplified phantom, whose kinetics entirely follow the 2C3K model, 4D 

reconstruction based on the 2C3K model unsurprisingly achieved the lowest levels of bias 

for fitted 2C3K model kinetics parameters (see figures 11 and 12). This algorithm also 

achieved useful reductions in average noise levels for 2C3K parameter values throughout the 

simplified phantom compared to conventional MAP reconstruction, although not within the 

hypoxic tumour region. 4D reconstruction based on the spline-residue and spectral models 

achieved the greatest reductions in noise, but outside of the hypoxic tumour region the bias 

in fitted K1 and k2 values was larger for these algorithms than for conventional MAP 

reconstruction, particularly so for the spline-residue model.
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4 Discussion

We hypothesized that 4D-PET reconstruction based on the linear spline-residue model might 

offer advantages for dynamic PET scanning of regions in which not all TACs are accurately 

described by the simple ‘2C3K’ irreversible two-tissue compartment model. In this study, 

we have compared results obtained using this proposed algorithm to those achieved using 

conventional (non-4D) MAP reconstruction, and 4D reconstruction based on adaptive-knot 

cubic splines and the spectral and 2C3K models. Working with a geometry based on thoracic 

anatomy, we calculated results for a ‘realistic phantom’ in which noise-free ground-truth 

TACs were represented by statistically acceptable fits of cubic splines and a ‘3C5K’ 

compartment model to TAC data obtained from a patient with stage IV NSCLC. We 

obtained further results for a ‘simplified phantom’ in which ground-truth TACs were 

represented by fits of the simple ‘2C3K’ compartment model, which did not describe the 

real data well.

For the realistic phantom, 4D reconstruction based on spline-residues generated less bias or 

noise in parameter maps of fitted kinetic values than did any of the other algorithms studied, 

in 5/8 of the combinations of bias/noise and kinetic parameters we analysed. Additionally, 

the spline-residue algorithm reduced bias or noise by over 50% compared to conventional 

(non-4D) MAP reconstruction in 5/8 combinations, and notably increased bias or noise in 

none. 4D reconstructions based on the 2C3K model generated the most biased kinetic 

parameters, and also generated higher levels of noise than did spline-residue-based 

reconstruction.

If anything, our analysis should favour 4D reconstruction based on the simple 2C3K 

compartment model. This is the model most commonly used in the literature to characterise 

FMISO kinetics (Wang et al 2009, McGowan et al 2017), and consequently the one we fitted 

voxel-by-voxel to TACs obtained from reconstructed images when characterising the 

accuracy and precision of the tracer kinetics in the images. Despite this, the parametric map 

results obtained from 4D reconstructions based on the 2C3K model were poorer than those 

from spline-residue- and spectral-based 4D reconstructions. Results obtained from cubic 

spline-based 4D reconstructions were also generally worse than those from the spectral and 

spline-residue-based reconstructions.

For the simplified phantom 4D reconstruction based on the 2C3K model performed much 

better, achieving lower levels of bias in fitted kinetic parameter maps than any of the other 

reconstruction algorithms studied, and useful noise reductions compared to the conventional 

MAP algorithm. Thus, the 2C3K-based 4D algorithm might be expected to provide good 

results in situations where the radiotracer kinetics are accurately described by the 2C3K 

model throughout the imaged field-of-view.

The results obtained for parametric maps largely concord with those of our more direct 

analysis of the accuracy and precision of reconstructed images (figures 6 and 7). For the 

realistic phantom, 4D reconstructions based on the spline-residue and spectral models 

produced higher quality images than reconstructions based on the 2C3K model or cubic 

splines. Across all time-frames and phantom regions, the quality of images reconstructed 
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using the spectral model-based 4D algorithm was slightly better than that of images 

reconstructed using the spline-residue-based algorithm. However the spine-residue-based 

algorithm generated much higher quality images at early time-points, perhaps because it 

comprises far fewer basis functions and is therefore less likely to overfit data; and 

presumably this gain at early time-points led to the K1 and k2 parametric maps generated 

from spline-residue-based reconstructions being of a higher quality overall than those 

obtained from spectral-based reconstructions.

Images produced by linear model-based 4D reconstruction algorithms were much noisier 

when temporal roughness was not penalised (see figure 5). For the phantoms we studied, 

linear model-based 4D reconstructions produced less biased results than 2C3K-based 4D 

reconstructions at comparable or lower noise levels. However, it should be noted that this 

advantage only became apparent when temporal roughness penalties were built into the 

linear model-based reconstructions. Most linear model-based 4D-PET algorithms described 

in the literature do not incorporate such penalties, possibly because this makes the 

algorithms more complex. However, this may put them at a disadvantage when compared to 

4D algorithms based on less highly parametrised non-linear kinetic models.

Algorithm convergence is not guaranteed when model fitting step (15) is instead 

accomplished via the penalized weighted least squares approach taken here. However, the 

results in figure 8 show that the nested-MAP reconstructions did approach convergence 

within 30 reconstruction iterations, consistent with observations of convergence reported by 

Matthews et al (2010) for 4D reconstruction algorithms using weighted least squares.

Allowing the γ j′ values, and thereby the objective function, to vary at each iteration could 

also affect convergence. To check this, for each linear model we re-ran each temporally 

regularized reconstruction (using the optimal penalty function for each model) with fixed γ j′

values, taken as those obtained in the final iteration of the corresponding reconstruction 

where γ j′ was free to vary. The results, plotted in supplementary figure S1 

(stacks.iop.org/PMB/63/095013/mmedia), show that beyond 5 iterations the convergence of 

reconstructions obtained with fixed and varying γ j′ was identical.

L1 regularization (Λ (θ) = |θ|) has been proposed for post-reconstruction fitting of the 

spectral model (Gunn et al 2002), with the aim of producing sparse solutions. This is useful 

if one intends to calculate physiologically relevant kinetic parameters directly from the θ 
values. However, we use linear models simply to produce smooth descriptions of the 

reconstructed TACs during 4D reconstruction, the resulting reconstructed images 

subsequently being analysed with a compartment model. Consequently, our priority was to 

use regularization to limit overfitting, and therefore we explored L2 regularization (Λ (θ) = |
θ|2), which is specifically designed for this purpose and is more computationally efficient 

than L1 regularization.

The value of the spatial regularization parameter, β, was fixed at 0.1 in this study. This value 

was optimal for static reconstructions of a NEMA-like digital phantom using the 

conventional MAP algorithm, but might not be best for the nested-MAP reconstructions of 

Ralli et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2018 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://iopscience.iop.org/article/10.1088/1361-6560/aabb62/data


the phantoms studied in this work. We therefore repeated the linear model-based nested-

MAP reconstructions of the realistic patient phantom, using β values of 0.01 and 1. Figure 

S2 in the supplementary material shows the resulting iteration-by-iteration plots of image bias 

versus noise: for all the reconstructions β = 0.01 produced substantially noisier images, 

while β = 1 led to slightly less noisy but slightly more biased images than those produced 

with β = 0.1. Thus there appears to be little to gain, and much to lose, by using β values 

other than 0.1 for the algorithms and phantoms studied here.

We have focused on a phantom with kinetics taken from an FMISO dPET scan of an 

NSCLC patient, FMISO being of interest in oncology as a tracer of tumour hypoxia (Wang 

et al 2009, Cheng et al 2014, McGowan et al 2017). However most dPET studies use other 

tracers, particularly FDG. Examples of patient tissue TACs that were poorly described by 

non-linear kinetic models have been reported in the literature for tracers other than FMISO 

(O’Sullivan et al 2009, Matthews et al 2012), and so 4D-PET reconstruction based on the 

more flexible linear spline-residue and spectral models may be useful for a wider range of 

tracers than FMISO alone.

In another 4D-PET reconstruction algorithm proposed by Kotasidis et al (2014) for fields-of-

view containing tissues with diverse kinetics, a ‘primary’ kinetic model of interest is initially 

fitted to voxel TACs, and then a more flexible ‘secondary’ model is fitted to the residuals in 

regions where the primary model fit is poor, thus limiting bias propagation from these 

regions. An open question, however, is what form the secondary model should take. The 

results of our study suggest that the spline-residue model would make a good secondary 

model in Kotasidis’ algorithm, since it is able to fit a wide range of TAC shapes while still 

suppressing noise.

Finally, O’Sullivan et al (2009) have shown that fits of a residue model based on splines 

provided better descriptions of TACs taken from previously reconstructed FDG-dPET brain 

image sequences than did fits of the 2C3K model, allowing more robust estimation of kinetic 

parameters such as K1, kflux, median radiotracer transit time and fractional blood. Thus 

spline-residue-based 4D-PET reconstruction may prove useful for direct determination of 

some physiologically relevant kinetic parameters, as well as being a means to limit noise 

amplification during reconstruction before kinetic analysis of the resulting smoother images 

using a compartment model.

5 Conclusion

Of all the reconstruction algorithms studied in this work, the proposed spline-residue-based 

4D-PET reconstruction algorithm overall produced the highest quality (least biased or noisy) 

parametric maps of FMISO uptake kinetics for a phantom with a thoracic geometry and 

realistic FMISO uptake kinetics derived from those in a dynamic scan of an NSCLC patient. 

Specifically, reconstruction of images using this algorithm rather than the conventional 

(non-4D) MAP algorithm led to reductions of 50% or more in bias or noise for a majority of 

the combinations of kinetics parameters and bias/noise measures we analysed, and did not 

Supplementary material for this article is available online
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generate notably worse results for any combination. 4D reconstruction based on the simple 

irreversible two-tissue compartment model 2C3K produced the most biased parametric maps 

for this phantom overall, and generated notably higher levels of bias and noise in the K1 

kinetics parameter than those obtained from conventional image reconstruction.

For a simplified phantom in which all ground-truth kinetics followed the poor descriptions 

of real data provided by fits of the 2C3K model, 4D reconstruction based on this model 

achieved the lowest levels of bias in fitted kinetic parameter maps. Thus, the 2C3K-based 

4D algorithm can provide good results when the kinetics of radiotracer uptake throughout 

the field-of-view are described well by the 2C3K model.

When the underlying kinetics of tracer uptake in all imaged tissues are not well described by 

a simple compartment model, as for the FMISO kinetics studied in this work, it is 

advantageous to perform 4D-PET reconstruction using more flexible linear kinetic models, 

the spline-residue model proving the best of the models we studied. Temporal roughness 

penalties improve the performance of 4D-PET reconstruction algorithms based on linear 

kinetic models, the optimal penalty function depending on the linear model being used.
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Figure 1. 
Comparison of typical shapes of normalized (a) cubic B-spline, (b) spectral model and (c) 

spline-residue model basis functions.

Ralli et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2018 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
Schematic diagrams showing irreversible (a) two and (b) three tissue compartment models of 

FMISO uptake. Flows between compartments are defined by rate-constants (k values) and 

compartment tracer concentrations.

Ralli et al. Page 25

Phys Med Biol. Author manuscript; available in PMC 2018 June 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. 
(a) Image of the final time-frame of the realistic phantom, the white box marking the sub-

region (b) of the phantom for which parametric maps were calculated.
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Figure 4. 
2C3K, 3C5K and adaptive-knot cubic B-spline fits to the TACs obtained from (a) hypoxic 

tumour, (b) normoxic tumour, (c) healthy lung and (d) healthy spine ROIs in an FMISO 

dPET image sequence of a stage IV NSCLC patient.
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Figure 5. 
Comparison of image reconstruction results obtained for the realistic (first column) and 

simplified (second column) phantoms using 4D algorithms based on the (a) and (b) cubic 

splines, (c) and (d) spectral and (e) and (f) spline-residue models with different temporal 

roughness penalties. The plots show image noise (weighted standard deviation, σw) versus 

bias at each reconstruction iteration, and have different scales to allow clear visualisation of 

performance differences between the different penalty functions.
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Figure 6. 
Comparison of image quality metrics for 4D reconstructions of the realistic phantom based 

on linear models (with their optimal temporal roughness penalty) and on the 2C3K model. 

The noise and bias metrics are averaged over the whole patient (a) and (b) and tumour (c) 

and (d) phantom regions, and over the entire scan time (a) and (c) and first 120 s (b) and (d).
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Figure 7. 
Comparison of image quality metrics for 4D reconstructions of the simplified phantom 

based on linear models (with their optimal temporal roughness penalty) and on the 2C3K 

model. The noise and bias metrics are averaged over the whole patient (a) and (b) and 

tumour (c) and (d) phantom regions, and over the entire scan time (a) and (c) and first 120 s 

(b) and (d).
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Figure 8. 
(a) Fractional iteration-to-iteration change in total mean square error (TMSE) versus 

iteration number, plotted for 2C3K and linear model-based nested-MAP reconstructions of 

the realistic phantom, the linear model-based reconstructions using the optimal temporal 

roughness. (b) A magnification of the rectangular region outlined in (a).
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Figure 9. 
Voxel-by-voxel plots of (a) the absolute bias and (b) the noise (standard deviation) in the 

kflux parametric maps of the sub-region of the realistic phantom obtained from image 

sequences reconstructed using the conventional (non-4D) MAP algorithm, as well as using 

the 2C3K and linear model-based nested-MAP reconstructions (with their optimal temporal 

roughness penalties). Bias and standard deviation values are expressed as percentages of the 

average ground-truth kflux value across the phantom sub-region.
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Figure 10. 
(a) Bias and (c) noise (standard deviation) of fitted parameter values in parametric maps 

derived from the 4D-PET reconstructed images of the realistic phantom, averaged over the 

entire parametric map of the image sub-region shown in figure 3(b). Values are plotted for 

each of the kinetic parameters as fractions of those obtained for the same parameter from 

analysis of conventional (non-4D) MAP-reconstructed images. Results for the k3 parametric 

maps obtained from the 2C3K, spectral and spline-residue model based 4D reconstructions 

are re-plotted on larger scales in (b) and (d) to make them visible.
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Figure 11. 
(a) Bias and (c) noise (standard deviation) of fitted parameter values in parametric maps 

derived from the 4D-PET reconstructed images of the simplified phantom, averaged over the 

entire parametric map of the image sub-region shown in figure 3(b). Values are plotted for 

each of the kinetic parameters as fractions of those obtained for the same parameter from 

analysis of conventional (non-4D) MAP-reconstructed images. Results for the k3 parametric 

maps obtained from the 2C3K, spectral and spline-residue model based 4D reconstructions 

are re-plotted on larger scales in (b) and (d) to make them visible.
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Figure 12. 
(a) and (b) Bias and (c) and (d) noise (standard deviation) of fitted parameter values in 

parametric maps derived from the 4D-PET reconstructed images of the realistic phantom, 

averaged over the hypoxic tumour region alone. For each of the kinetic parameters, the 

values plotted are fractions of those obtained for the same parameters from analysis of 

conventional (non-4D) MAP-reconstructed images.
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Table 1

Weighted RSS errors for model fits to patient TACs calculated using leave-one-out cross-validation. The 

lowest RSS value for each tissue region is shown in bold. Fits that passed the Wald–Wolfowitz runs test at the 

5% significance level are underlined.

Model Healthy lung Healthy spine Hypoxic tumour Normoxic tumour

2C3K 6.64 × 105 5.65 × 105 4.57 × 105 3.94 × 105

3C5K 4.53 × 105 3.50 × 105 1.84 × 105 1.31 × 105

Adaptive-knot cubic B-splines 3.63 × 105 1.97 × 105 1.87 × 105 1.48 × 105
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Table 2

Mean signed parameter bias and standard deviation (S.D.) in kflux parametric maps of the realistic phantom, 

averaged over the sub-region shown in figure 3(b). The maps were obtained from image sequences 

reconstructed using the conventional (non-4D) MAP algorithm, and the 2C3K and linear model-based nested-

MAP reconstructions (with their optimal temporal roughness penalties). Bias and S.D are expressed as 

percentages of the average ground-truth kflux value across the phantom sub-region. The lowest bias and S.D 

values are highlighted in bold and underlined.

Algorithm Kinetic model fitted during reconstruction Bias (%) S.D. (%)

MAP None    7.9 15.8

Nested-MAP 2C3K  −4.2 8.4

Nested-MAP Adaptive-knot cubic B-splines (∫ [[f(2) (t)]2dt penalty)    2.6 12.1

Nested-MAP Spectral model (|θ|2 penalty) − 3.2 5.7

Nested-MAP Spline-residue model (|θ|2 penalty)  −0.1 7.7
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