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Abstract

Purpose of review—With the advent of the genome-wide association study (GWAS), our 

understanding of the genetics of addiction has made significant strides forward. Here, we 

summarize genetic loci containing variants identified at genome-wide statistical significance 

(P<5×10−8) and independently replicated, review evidence of functional or regulatory effects for 

GWAS-identified variants, and outline multi-omics approaches to enhance discovery and 

characterize addiction loci.

Recent findings—Replicable GWAS findings span 11 genetic loci for smoking, eight loci for 

alcohol, and two loci for illicit drugs combined and include missense functional variants and 

noncoding variants with regulatory effects in human brain tissues traditionally viewed as 

addiction-relevant (e.g., prefrontal cortex [PFC]) and, more recently, tissues often overlooked (e.g., 

cerebellum).

Summary—GWAS have discovered several novel, replicable variants contributing to addiction. 

Using larger samples sizes from harmonized datasets and new approaches to integrate GWAS with 

multiple ‘omics data across human brain tissues holds great promise to significantly advance our 

understanding of the biology underlying addiction.

Corresponding author: Dana B. Hancock, Ph.D., RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle 
Park, NC 27709, dhancock@rti.org. 

Compliance with Ethics Guidelines
Conflict of Interest
Dana B. Hancock reports grants from National Institutes of Health.
Christina A. Markunas reports grants from National Institutes of Health.
Laura J. Bierut reports grants from National Institutes of Health. In addition, Dr. Bierut is listed as an inventor on U.S. Patent 
8,080,371,”Markers for Addiction” covering the use of certain
SNPs in determining the diagnosis, prognosis, and treatment of addiction.
Eric O. Johnson reports grants from National Institutes of Health.

Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.

HHS Public Access
Author manuscript
Curr Psychiatry Rep. Author manuscript; available in PMC 2019 March 05.

Published in final edited form as:
Curr Psychiatry Rep. ; 20(2): 8. doi:10.1007/s11920-018-0873-3.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

GWAS; omics; brain; nicotine/smoking; alcohol; drugs

Introduction

Addiction is a chronic, relapsing disease that alters the brain’s reward circuitry and 

consequently leads to compulsive drug seeking and other behavioral changes. The long-

lasting biological effects of drug exposure cause a multitude of adverse effects throughout 

the body. Despite these well-known health consequences and widespread public health 

campaigns to curb use of addictive drugs, prevalence remains high. Among individuals aged 

12 and older in the U.S. in 2015, an estimated 30.2 million (11.3%) smoked cigarettes daily 

in the past month; 15.7 million (5.9%) had an alcohol use disorder and 7.7 million (2.9%) 

had an illicit drug use disorder in the past year [1]. Individuals with addiction often have 

strong desires to quit, but rates of successful treatment and recovery are low. For example, 

among adult U.S. smokers during 2015, an estimated 68% wanted to quit, 55% had made a 

quit attempt in the past year, but only 7% had recently quit [2].

Addiction to drugs of abuse follows a recurring cycle, with each of the three stages being 

driven by a major neurobiological circuit: basal ganglia (including ventral tegmental area 

and nucleus accumbens) for the binge/intoxication stage; extended amygdala and habenula 

for the withdrawal/negative affect stage; and prefrontal cortex (PFC), insula, and allocortex 

for the preoccupation/anticipation (craving) stage [3]. This framework has expanded as 

knowledge of the complex neurocircuitry of addiction has evolved [3, 4].

Inter-individual differences in neurobiological circuits, due to genetic variation and their 

downstream effects, alter susceptibility to developing addiction. Although addiction is 

multifactorial, heritability estimates have indicated that around 40%–60% of the population 

variability in becoming addicted to nicotine, alcohol, or illicit drugs is attributable to genetic 

factors [3, 5]. Some genetic factors may influence an overarching susceptibility to 

developing addiction; thus, their effects are shared across different drugs of abuse. In 

contrast, other genetic factors may underlie susceptibility to developing specific drug 

addictions. To pinpoint the genetic factors underlying addiction, variants selected from 

biologically plausible candidate genes were long-studied in hypothesis-driven studies, but 

genetic variant associations were not firmly established until the advent of the agnostic, 

hypothesis-generating genome-wide association study (GWAS) approach. As seen across the 

field of complex human disease genetics, the potential of GWAS to make novel discoveries 

continues today with ever increasing sample sizes and statistical power, denser genomic 

coverage, and phenotype harmonization. This review outlines GWAS reports to date for 

nicotine, alcohol, or other drug addictions and focuses on common variants (mostly, single 

nucleotide polymorphisms [SNPs]) with robust evidence for association (i.e., identified at 

the standard genome-wide significance threshold [P<5×10−8] and replicated in an 

independent dataset).
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GWAS for cigarette smoking

The earliest GWAS in the addiction field was conducted for nicotine dependence [6, 7], 

implicating nicotinic acetylcholine receptor genes on chromosomes 15q25 (CHRNA5-
CHRNA3-CHRNB4) and 8p11 (CHRNB3-CHRNA6), which have since been firmly 

established in other studies of nicotine dependence and related smoking phenotypes (Table 

1). To date, at least 26 GWAS analyses (largest N=74,035 [8]) have been conducted for self-

reported phenotypes [6, 9–11, 8, 12–27], including ever vs. never smoking, former vs. 

current smoking, cigarettes per day (CPD), nicotine dependence defined by Fagerström Test 

for Nicotine Dependence (FTND) or Diagnostic and Statistical Manual of Mental Disorders, 

4th edition (DSM-IV) [6, 9–11, 8, 12–27], nicotine withdrawal defined by DSM-IV, as well 

as smoking biomarkers [28–32]. The FTND, a validated, expert-recommended, low-burden 

questionnaire of six items used to assess severity of physiological nicotine dependence 

symptoms among cigarette smokers [33], is the most widely used measure of nicotine 

dependence.

Most GWAS analyses have been conducted in European ancestry populations [6, 9–11, 8, 

12–14, 18, 19, 21, 22, 29, 32], although one focused on Hispanics [25], one focused on 

Japanese [17], eight included or focused exclusively on African Americans [15, 16, 20, 23, 

24, 26, 28, 27], and two others included multiple ancestries [30, 31]. Two GWAS analyses 

examined copy number variants [17, 23], while all others focused on SNP and insertion/

deletion (indel) variants.

Table 1 presents the 11 genetic loci with common SNPs/indels implicated at genome-wide 

significance (P<5×10−8) and replicated in one or more independent datasets for the same 

phenotype/biomarker or extended to a related smoking phenotype/biomarker. The 

UGT2B10-UGT2A3 locus was identified in cotinine biomarker GWAS, but this finding has 

not been extended to smoking phenotypes [32]; the 10 other GWAS-identified loci influence 

susceptibility of smoking phenotypes. Lead SNPs with the smallest P value from each 

distinct genetic locus are presented, although several loci include many significantly 

associated SNPs, often strongly correlated with the lead SNPs. For example, 360 SNPs in 

the CHRNA5-CHRNA3-CHRNB4 locus were significantly associated in GWAS meta-

analysis of FTND-defined nicotine dependence [21], and 719 SNPs in the CYP2A6-
CYP2B6 locus were significantly associated in GWAS meta-analysis of the nicotine 

metabolite ratio [29]. SNPs in some GWAS-identified loci also influence susceptibility of 

developing smoking-related health outcomes, including: CHRNA5 with lung cancer (most 

recently [34]), lung function [35], airflow obstruction [36], COPD (most recently [37]), and 

peripheral arterial disease [9]; the nicotine metabolizing gene CYP2A6 with lung cancer 

[11], lung function [35], and emphysema [38]; and CHRNB3-CHRNA6, CHRNA4, and the 

DNA methyltransferase gene DNMT3B with lung cancer [11, 21, 26]. Beyond common 

SNPs, the CHRNA5-CHRNA3-CHRNB4 [39–42] and CHRNA4 [40, 43, 44] loci also 

harbor smoking-associated rare variants, albeit some do not have replication evidence or 

occur in an isolated population. Genome-wide significant SNP associations in other loci 

have been reported but not yet independently replicated [8, 13, 20, 22, 24].
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The GWAS-identified SNPs each explain a small percent of the variance in nicotine 

dependence or related smoking phenotypes, but their discoveries have revealed important 

neurobiology that impacts susceptibility to developing addiction and exerts clinically 

important effects downstream, as best illustrated by CHRNA5. Following the discovery of 

its association with nicotine dependence (Table 1), the CHRNA5 missense SNP rs16969968 

was found to alter α5 receptor function [45] and later its high-risk rs16969968-AA genotype 

was associated with a 4-year median delay in quitting smoking and a 4-year earlier median 

age of lung cancer diagnosis, even when adjusted for CPD [46]. Moreover, the haplotype 

carrying the rs16969968-A risk allele interacts with cessation treatment, with smokers at 

highest nicotine dependence risk being less likely to quit smoking overall but responding 

most effectively to pharmacologic treatment [47], demonstrating the potential for 

personalized cessation treatment based on genetic risk variants for nicotine dependence. 

Independent of rs16969968, noncoding CHRNA5 SNPs have been found to tag cis-

expression quantitative trait loci (cis-eQTL) and cis-methylation QTL (cis-meQTL) variants 

that regulate CHRNA5 RNA expression (rs588765 [48] and rs880395 [49]) and DNA 

methylation (rs11636753 [50]), respectively, in postmortem human PFC. Consistent with 

these findings, mouse models have indicated that genetically altered CHRNA5 RNA 

expression profoundly influences behavioral traits characteristic of nicotine dependence 

[51–53].

While the regulatory effects of CHRNA5 SNPs have mainly centered on PFC, widely 

recognized for its involvement in addiction [3, 54], noncoding SNPs nearby genes identified 

in more recent GWAS analyses have highlighted gene regulatory effects in unexpected brain 

tissues. The CHRNA4 splice site acceptor SNP rs2273500 (Table 1) was indicated as a cis-

eQTL SNP for CHRNA4 in intralobular white matter [21]. The DNMT3B intronic SNP 

rs910083 (Table 1) [26] and CHRNA2 upstream SNP rs117804171, discovered for its 

association with lung cancer but then extended to smoking [34], were each indicated as cis-

eQTL SNPs for their proximal gene in cerebellum, which has been often overlooked despite 

evidence for its involvement in the neurobiology of addiction [55–57]. Follow-up of these 

and other GWAS discoveries for functional or regulatory effects, in normal physiological vs. 

smoking-exposed states, is needed across the wide array of human brain tissues to expand 

our neurobiological understanding of initiating smoking, becoming a regular smoker, 

developing nicotine dependence, and ultimately improving cessation treatment strategies.

GWAS for alcohol

At least 34 GWAS analyses (largest N=112,117 [58]) have been reported for alcohol use 

disorder, related alcohol phenotypes, or alcohol biomarkers from studies focused on 

European [13, 18, 59–74, 58, 75, 76], European and African [77–83], or Asian [84–88] 

ancestries, or multiple ancestries combined [89]. Table 2 presents the genome-wide 

significant and replicable SNP associations for self-reported phenotypes in or near seven loci

—serpin family C member 1 (SERPINC1), glucokinase regulator (GCKR,) shugoshin 1 

(SGOL1), β-klotho (KLB), alcohol dehydrogenase (ADH) cluster, autism susceptibility 

candidate 2 (AUTS2), and aldehyde dehydrogenase 2 (ALDH2); an eighth locus—

transferrin (TF)—was implicated for biomarkers of excessive alcohol intake but has not been 

associated with alcohol use disorder or related phenotypes. Emerging evidence suggests that 
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the ADH gene cluster contains more than one independent association signal [58]. Other 

genome-wide significant loci have been reported, but independent replication has not been 

attained [13, 59, 60, 64, 68, 70, 73, 74, 58].

The GWAS-identified variants include missense functional SNPs that alter the alcohol 

metabolism pathway converting alcohol to acetaldehyde via ADH enzymes and then to 

acetate via ALDH enzymes. For example, the ADH1B SNP allele rs1229984-T is a 

missense variant that alters enzymatic activity resulting in up to 100-fold higher rate of 

alcohol to toxic acetaldehyde metabolism, causing the alcohol flush reaction, and reducing 

susceptibility to developing alcohol drinking problems [90]. Moreover, the rs671-A allele in 

ALDH2, another missense variant, alters the latter step of the alcohol metabolism pathway 

by greatly reducing ALDH2 activity and rendering high acetaldehyde concentrations upon 

alcohol exposure [85]. Both the ADH1B rs1229984-T and ALDH2 rs671-A alleles occur 

frequently in East Asian populations but infrequently in other world populations, and their 

highly significant associations with reduced susceptibility to drinking alcohol and 

developing an addiction were studied as candidate SNPs based on their functional 

consequences on enzymatic activity before they were highlighted via agnostic GWAS [85, 

91]. Associations of these SNPs or their proxies on alcohol-related disease outcomes include 

coronary heart disease [85], various cancers [92, 93], renal function [94], blood pressure 

[95], and cirrhosis [96]. Beyond these functional missense SNPs, the intronic AUTS2 SNP 

rs6943555 was implicated as a cis-eQTL for AUTS2 in PFC [60], and the intronic KLB SNP 

rs11940694 was implicated as a cis-eQTL for the replication factor RCF1 gene in 

cerebellum [58]. Little else is known about the biological relevance of other noncoding 

SNPs that may exert independent effects on regulation of genes that underlie alcohol 

metabolism in liver or the neurobiology of developing an alcohol use disorder.

GWAS for other specific drugs

Relatively few GWAS have been reported for cannabis, stimulants, or opioids. Unlike 

GWAS of cigarette smoking and alcohol phenotypes, GWAS of these specific drugs have 

had limited success at identifying and replicating variant associations.

For cannabis, four of the five reported GWAS had no genome-wide significant SNP 

associations [97–100], most notably including a large GWAS meta-analysis (total N=32,330 

of European ancestry) [99]. The most recent GWAS meta-analysis (total N=14,754 

European Americans and African Americans) identified three loci that attained genome-

wide significance, but these findings await independent replication [101].

For stimulants, four GWAS have been reported. Two focused on methamphetamine and 

found no genome-wide significant associations [102, 103]. The other two GWAS focused on 

amphetamine [104] and cocaine [105], and each reported a single genome-wide significant 

SNP association, but these findings also await replication.

For opioids, six GWAS have been reported. Three SNP-based GWAS were small (N<1,000), 

and no SNPs attained genome-wide significance [106–108]. The three larger GWAS, 

including two SNP-based [109, 110] and one copy number variant-based [111], each found 
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genome-wide significant associations in different genetic loci, but these association signals 

all await independent replication. GWAS analyses have not yielded genome-wide significant 

evidence for any of the biologically plausible opioid receptor genes. However, such evidence 

emerged from a targeted study of cis-eQTL SNPs of the μ-opioid receptor gene (OPRM1); 

smallest P=4.3×10−8 for intronic SNP rs3778150 with total N=16,729 of European or 

African American ancestry [112]. Much attention has focused on OPRM1 SNP associations 

but with inconclusive findings from mostly studies of single cohorts. The OPRM1 SNP 

rs1799971, which results in an amino acid change in the μ-opioid receptor, has been the 

most extensively studied. In an accumulation of evidence for rs1799971, meta-analysis of 

>28,000 European ancestry participants from 25 studies supported a modest association with 

general substance dependence, rather than opioids or any substance specifically [113]. As 

we previously reported, the cis-eQTL SNP rs3778150 may explain the prior inconsistent 

associations, as the rs1799971-A allele conferred increased heroin addiction risk only in the 

presence of the rs3778150-C allele that lowers OPRM1 expression levels and plausibly 

disrupts the opioid system of a key compensatory response to exogenous opioid exposure 

[112]. The association pattern observed between heroin addiction and the haplotype carrying 

rs3778150-C and rs1799971-A has been extended to subjective alcohol response [114].

Relatedly for opioid use disorder phenotypes, two GWAS of clinical opioid dosing have 

been reported [115, 116]. Most recently, a genome-wide significant association of 

methadone dosing among 383 opioid-dependent African Americans was observed for the 

SNP rs73568641 (P=2.8×10−8), located upstream of OPRM1 [116]. The rs73568641 

association was extended to morphine dosing for post-operative pain in an independent 

dataset of 241 African Americans (P=0.039) [116]. Rs73568641 is in weak linkage 

disequilibrium (r2<0.01 and D′=0.54 across 1000 Genomes African ancestry reference 

panels [117]) with the cis-eQTL SNP rs3778150, suggesting that variants marking more 

than one signal across the OPRM1 gene region may be driving different opioid phenotypes. 

However, association analyses of these SNPs conditioned on one another are needed to 

formally assess independence of the signals.

GWAS for illicit drugs combined

Given the high levels of co-morbidity across drugs of abuse and the plausible shared 

heritability underlying susceptibility to developing addiction in general, three GWAS have 

combined cases addicted to any illicit drug [18, 118, 119]. Two of these GWAS reported 

genome-wide significant and replicable associations. First, a GWAS of general substance 

dependence liability, based on factor analysis of DSM-IV symptoms, identified the 

intergenic SNP rs2952621 (P=1.8×10−8, N=2,322 European Americans) and replicated the 

finding in an independent dataset (P=0.02, N=2,647 European Americans) [118]. 

Rs2952561 is a SNP of unknown biological consequence that is located upstream of the 

uncharacterized gene LOC151121.

Next, GWAS of people who inject drugs vs. controls, revealed an African American-specific 

association for the intronic SNP rs9829896 in the lysine acetyltransferase gene (KAT2B; 

P=4.6×10−8, N=3,742), which replicated in an independent dataset (P=0.0016, N=755) 

[119]. Follow-up analyses in postmortem human PFC implicated rs9829896 as a cis-eQTL 
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SNP, specifically in African Americans, for KAT2B and other genes in KAT2B-containing 

pathways, including OPRM1 and the CREB binding protein (CREBBP) genes [119] that 

have been highlighted in prior SNP- or pathway-based analyses of opioid phenotypes [109, 

112, 116].

Potential for future GWAS to broaden the known genetic etiology unique to 

and shared among addiction phenotypes

Prior GWAS have utilized varied addiction phenotypes and biomarkers as well as study 

designs. A major distinction among the case-control studies involves the assessment of 

substance use and misuse for controls. Some studies have used population-based, unassessed 

controls when study controls were not available, for example [119], or when intending to 

increase sample size and statistical power with minimal offset from misclassification due to 

the relatively low prevalence of addiction, particularly for illicit drugs in healthy cohorts 

[112]. Other studies have focused on assessed controls with prior exposure or history of 

misuse but without symptoms of addiction, for example [110], aimed at detecting genetic 

variants associated with progression from misuse to later stages of addiction. Relatedly, 

studies with assessed controls have either adjusted for co-morbid exposure and/or addiction 

to other substances as covariates, under the premise of identifying genetic variants 

associated with specific substances, for example [105, 109]. Other studies have not adjusted 

for other substance co-morbidities [110], which may enhance detection of generalizable 

genetic variant associations. To our knowledge, there has been no formal testing to outline 

the best scenarios for future addiction studies to balance statistical power with the use of 

unassessed vs. assessed controls. Ultimately, study design decisions will depend on the 

primary research question and expected misclassification rate. For strategizing adjustment 

for co-morbid addictions, simulation testing of genetically correlated outcomes and 

covariates suggests that the impact of covariate adjustment depends on the direction and 

magnitude of correlation with the outcome [120].

We fully expect that future GWAS using larger sample sizes from expanded meta-analyses 

and large-scale biobanks with data on cigarette smoking, alcohol, and other drugs will 

identify and replicate additional loci with robust statistical evidence. These loci will likely 

include some variants that underlie specific addictions, while others are shared across 

different drugs of abuse and across psychiatric diseases that are highly co-morbid with 

addiction. This notion of shared genetic susceptibility is supported by schizophrenia-

associated common genetic variation having significant correlations with smoking-

associated genetic variation: for example, rg=0.14 for nicotine dependence, rg=0.12–0.14 for 

CPD, and rg=0.10 for ever/never smoking [121, 122]. Polygenic risk scores (weighted 

summations of top ranking subsets of genetic variant associations) have provided additional 

evidence for shared genetic etiologies. Polygenic risk scores based on GWAS-identified 

variants for schizophrenia or bipolar disorder have shown significant associations with 

smoking, alcohol, and substance use disorder phenotypes [123–125]. Early examples of 

genetic variants that demonstrate such pleiotropy, i.e., exert effects on more than one 

outcome, across addiction and other psychiatric diseases include: ZNF804A SNP 

rs1344706, the first genome-wide significant finding for schizophrenia [126] and later 
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extended to heroin addiction [127, 128]; and the BDNF SNP rs6265 and CHRNA5 SNPs 

rs16969968 and rs1051730 implicated at genome-wide significance for smoking (Table 1) 

and extended to schizophrenia/bipolar disorder outcomes [129, 130]. As the sample sizes for 

addiction GWAS expand to sizes comparable with other psychiatric disease GWAS, 

polygenic risk scores and top loci that comprise these scores are likely to reveal even more 

extensive sharing. Once established, polygenic risk scores may have clinical utility for 

predicting individuals at highest risk for developing addiction or guiding treatment 

strategies.

Ongoing sequential integration of multiple ‘omics data

Establishing robust statistical evidence for a GWAS-identified variant marks the starting 

point in the path to elucidating its biological consequences as related to disease outcomes. 

Its annotation in the context of DNA, RNA, and protein sequences often provides the first 

clue. Coding SNPs that alter the protein’s amino acid sequence can be undoubtedly 

important for risk of developing complex human diseases, including addiction (e.g., 

CHRNA5 SNP rs16969968 for smoking [Table 1] and ADH1B SNP rs1229984 and ALDH2 
SNP rs671 for alcohol [Table 2]). However, >95% of GWAS discoveries come from 

noncoding SNPs [131]. Noncoding SNPs can alter gene activity by influencing DNA 

methylation, RNA expression, protein expression, or metabolite levels and are thus well-

recognized for their disease risk potential. Indeed, the GWAS catalog is heavily enriched for 

regulatory variants, such as eQTLs [131–133], and variants residing in sequences that are 

highly conserved, sensitive to cleavage by DNase I, or mark enhancer, promoter, or protein 

binding sites [133].

Integration of GWAS with other ‘omics data types (such as, DNA methylation or RNA 

expression) commonly happens in a sequential fashion to infer functional or regulatory 

effects of top GWAS findings. Each ‘omics type is analyzed separately, and comparisons are 

made across results. For example, rs910083 was identified in the largest GWAS meta-

analysis of nicotine dependence, and its association was extended to heavy vs. never 

smoking in the UK Biobank (Table 1); rs910083 was then followed-up via a cis-eQTL 

analysis using RNA expression data measured across multiple postmortem human brain 

tissues in the Genotype-Tissue Expression (GTEx) and Brain eQTL Almanac projects, 

leading to the implication of rs910083 as a DNMT3B cis-eQTL in cerebellum [26]. This 

type of sequential integration in moving from GWAS to functional or regulatory 

characterization has also yielded other important discoveries in addiction [21, 48, 119].

A reversal in the direction of sequential integration is an alternative, but not as widely 

utilized, approach that first identifies functional or regulatory variants to narrow the search 

space, thereby reducing the multiple testing burden of GWAS to uncover disease associated 

variants that may have otherwise been missed. The OPRM1 cis-eQTL SNP rs3778150 

finding for heroin addiction serves as an example of moving from gene regulation into 

GWAS [112].

In taking integration to the next level, PrediXcan [134] is a promising new gene-based 

method that utilizes genome-wide SNP genotypes and RNA-sequencing data in GTEx to 
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build genetically regulated gene expression models in a diverse set of tissues and applying 

those models in GWAS with disease phenotypes of interest. The PrediXcan framework is 

applicable to other sources of ‘omics data (e.g., DNA methylation) in GTEx or elsewhere.

Importance of brain tissue specificity for multi ‘omics analyses

These sequential integration examples highlight a challenge for the field of addiction, and 

psychiatric disease more broadly, because functional and regulatory effects can be highly 

tissue-specific [135] and brain is the most relevant tissue for studying the neurobiology of 

addiction. GWAS genotypes, other ‘omics data in brain, and addiction phenotypes are 

seldom available in the same dataset. Other ‘omics data derived in blood or other peripheral 

tissues that are easily accessible in living participants may offer informative biomarkers of 

addiction but overall provide poor indicators of neurobiology. Poor correlations in RNA 

expression levels between blood and brain has been repeatedly shown [136, 137, 135]. Most 

recently, pilot GTEx analyses with RNA expression measured in 43 tissues showed that 

blood vs. brain had the most distinct expression profiles among the tissue comparisons 

[135]. There is also limited overlap of meQTL and eQTL [136, 137, 135] variants mapped in 

blood vs. brain. Thus, when analyzing gene regulatory potential to study the neurobiology of 

addiction, it is critical to use disease-relevant brain tissue. Reliance on blood-specific 

regulatory effects could even lead to erroneous conclusions, as illustrated by the cis-eQTL 

SNP rs880395 having opposing directions of association with CHRNA5 expression in 

lymphoblastoid cell lines, as compared to frontal cortex [49]. Moreover, gene regulatory 

effects can differ across the different brain tissues, so comprehensive functional and 

regulatory assessment will require the availability of ‘omics data across multiple brain 

tissues, including ones traditionally viewed as being addiction-relevant (e.g., PFC, nucleus 

accumbens) and others often overlooked (e.g., cerebellum). GTEx, Brain eQTL Almanac, 

and others provide an unprecedented opportunity to carry out comprehensive analyses in 

normal brains. Future studies are needed for more thorough and well-powered assessment of 

brain tissues in participants with addiction phenotype data.

Upcoming concurrent integration of multi ‘omics data

Where once a single ‘omics type was used, studies that capture multiple ‘omics data types in 

the same dataset are emerging. As these datasets become available, concurrent integration 

that jointly assess all data may unveil relationships not evident when each data type is 

analyzed separately by virtue of increased statistical power and their explicit biological 

relationships (Figure 1). It is expected that genetic variants with large effect sizes are 

identifiable in sequential analyses but that concurrent integration will enable the 

identification of genetic variants with moderate-sized, but multi-faceted, functional or 

regulatory effects. This approach can operate in a bidirectional fashion, with datasets rich in 

‘omics informing follow-up in large-scale GWAS of addiction phenotypes/biomarkers and 

vice versa (Figure 1), and accelerate understanding of the biology underlying statistical 

associations with addiction phenotypes.

New methods are being developed that will allow researchers to analyze data concurrently, 

as applied in plant [138] and mouse model [139] studies. In an early adaptation of this 
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approach in humans [140], the Two-Way Orthogonal Partial Least Squares (O2PLS) method 

to RNA expression and metabolomics data in 466 Finnish participants recapitulated signals 

detected in sequential analyses of the two data types and detected new signals by modeling 

the data types together. Colocalization (COLOC) [141] also enables concurrent integrative 

analyses. Comparisons of these and other methods will be needed to establish standard 

analytic practices.

Conclusions

GWAS analyses have identified several genetic loci with statistically robust and reproducible 

SNP/indel associations, cementing the polygenic nature of addiction. However, with only a 

fraction of the heritability explained (for example, 15% of the variance in nicotine 

dependence [121] and 13% of the variance in alcohol consumption [58] explained by 

common SNPs together) and limited knowledge of the neurobiological pathways leading to 

addiction, much remains to be discovered. We fully expect that GWAS analyses conducted 

with sample sizes into the hundreds of thousands and millions will replicate previously 

suggested, but currently unreplicated, genetic variants and will also unveil novel variants. As 

evidenced by the GWAS-identified variants identified to date (mainly SNPs), novel variants 

will likely exert small effect sizes on developing addiction but potentially uncover 

previously unrecognized neurobiological pathways. Additional heritability may also be 

explained by complex interactions of genetic variants with one another and with prominent 

environmental exposures, which will likely require very large sample sizes with harmonized 

exposures and addiction phenotypes across multiple datasets. In the future expansion of 

GWAS sample sizes, we emphasize the importance of including diverse ancestry groups that 

rival the current representation of European ancestry to address important health disparities, 

identifying variants that manifest under certain genetic, cultural, or environmental 

backgrounds and narrowing the resolution of association signals that arise from the varied 

linkage disequilibrium patterns across diverse populations.

New genetic discoveries are also likely to arise from leveraging novel analytic approaches 

such as integrating GWAS with multiple ‘omics data generated across addiction-relevant 

brain tissues, even at the resolution of individual cell types and single cells. With the ever-

expanding postmortem human brain resources being made available to the scientific 

community, the field has begun to unravel the biology of top GWAS-identified variants, 

including a few functional missense SNPs that alter susceptibility to developing nicotine 

dependence or alcohol use disorder and several noncoding SNPs that perturb gene regulation 

and influence nicotine dependence and substance use disorders. The recent availability of 

‘omics data across multiple brain tissues has offered unparalleled opportunities to study the 

neurobiological underpinnings of addiction and led to somewhat unexpected connections, 

such as smoking- and alcohol-associated cis-eQTL SNPs specific to cerebellum [26, 34, 58]. 

In this era of precision medicine, genetic variant discoveries hold great promise in tailoring 

prevention and treatment strategies for addiction. Discovery of more genetic loci and 

biological characterization of the associated variants is needed to enhance our understanding 

of the neurobiology underlying addiction and lessen its widespread health consequences on 

individuals and the public health burden.
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Figure 1. 
Concurrent integrative analysis approach with multiple types of ‘omics data used to inform 

discovery or characterize top findings from large-scale addiction GWAS. Genomics 

encompasses SNP/indel genotypes, rare variants, and structural variants including copy 

number variants; epigenomics includes DNA methylation and histone modification; and 

transcriptomics refers to expression of all RNA types. ‘Omics data may pertain to 

endogenous factors along the flow of information according to the Central Dogma of 

Biology or exogenous factors such as environmental exposures.
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