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Abstract

Microarray-based markers such as Diversity Arrays Technology (DArT) have become the

genetic markers of choice for construction of high-density maps, quantitative trait loci (QTL)

mapping and genetic diversity analysis based on their efficiency and low cost. More recently,

the DArT technology was further developed in combination with high-throughput next-gener-

ation sequencing (NGS) technologies to generate the DArTseq platform representing a new

sequencing tool of complexity-reduced representations. In this study, we used DArTseq

markers to investigate genetic diversity and genome-wide association studies (GWAS) of

grain quality traits in rice (Oryza sativa L.). The study was performed using 59 rice genotypes

with 525 SNPs derived from DArTseq platform. Population structure analysis revealed only

two distinct genetic clusters where genotypes were grouped based on environmental adap-

tation and pedigree information. Analysis of molecular variance indicated a low degree of dif-

ferentiation among populations suggesting the need for broadening the genetic base of the

current germplasm collection. GWAS revealed 22 significant associations between DArT-

seq-derived SNP markers and rice grain quality traits in the test genotypes. In general, 2 of

the 22 significant associations were in chromosomal regions where the QTLs associated

with the given traits had previously been reported, the other 20 significant SNP marker loci

were indicative of the likelihood discovery of novel alleles associated with rice grain quality

traits. DArTseq-derived SNP markers that include SNP12_100006178, SNP13_3052560

and SNP14_3057360 individually co-localised with two functional gene groups that were

associated with QTLs for grain width and grain length to width ratio on chromosome 3, indi-

cating trait dependency or pleiotropic-effect loci. This study demonstrated that DArTseq

markers were useful genomic resources for genome-wide association studies of rice grain

quality traits to accelerate varietal development and release.
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Introduction

Rice (Oryza sativa L.) is increasingly becoming a major food crop in sub-Saharan Africa

(SSA). Globally, rice is one of the most widely cultivated cereal crops distributed across diverse

geographical, ecological and climatic conditions [1,2]. Given the varied adaptations of rice

genotypes, several accessions are available with wide phenotypic and genotypic diversity [3]. A

great number of these rice accessions, belonging to different sub-species including indica,

japonica and javanica, have been conserved in global gene banks [4]. This is important as a

potential source of reservoir genes that could be exploited in crop improvement programs [5,

6]. However, only a slight amount of the available rice genetic resources have been utilized in

most rice breeding programs [1], hence a great genetic similarity exists in most commercial

rice cultivars given the narrow genetic base [3].

Most rice breeding programs in SSA face the challenge of improving not only the yield

potential but also other important grain quality traits such as cooking and processing qualities

[1,7,8]. Furthermore, grain quality and in particular cooking and eating quality always repre-

sents a major criterion in evaluating rice grain quality [9]. Rice cooking and eating quality is

strongly determined by the level of amylose content (AC) [10,11], where high AC in the endo-

sperm is usually associated with dry, fluffy, and separated cooked rice grains, and represents

the key determinant of poor cooking and eating quality [12]. In addition, rice grain shape is an

important character which subsequently affects cooking quality [13, 14]. Rice grain shape is

determined by its three dimensions including, grain length (GL), grain width (GW) and grain

length to width ratio (L/W).

The genetic basis of rice grain shape has been well studied [15, 16] and several quantitative

trait loci (QTLs) underlying grain shape have been detected and fine mapped [17, 18] using

different populations He et al. [19] identified twelve QTLs associated with rice grain size on

chromosomes 2, 3, 4, 5, 6, 7 and 11 using recombinant inbred lines (RILs) derived from the

cross of Zhenshan 97 x Minghui 63, Zhang et al. [18] detected three QTLs for rice elongation

using a doubled haploid (DH) population derived from ZYQ8 x JX17. Furthermore, Shen et al.

[20] used the same DH population and identified fourteen QTLs related to cooking traits.

Based on a high-density SNP map, Li et al. [21] identified 17 QTLs that were associated with

12 cooking traits using a population of 132 RILs derived from PA64s x 93–1. However, the

identified QTLs may not be sufficient to elucidate the genetic basis of rice grain shape. Further-

more, the varied nature of rice grain shape underscores the need for identifying novel QTLs in

order to design a breeding strategy for grain shape improvement, and generating rice cultivars

with desirable cooking and eating quality traits [9].

In addition, it is essential to broaden the genetic base of rice genotypes by introducing

genes from distant or wild relatives with potential for delivering novel genes or quantitative

trait loci (QTLs) for important agronomic traits. Furthermore, the magnitude of genetic vari-

ability and the extent to which the desirable characters are heritable largely determines the suc-

cess of any plant breeding program [22]. Consequently, association mapping (AM) based on

phenotypic and genotypic data has been critical in identifying molecular markers or QTLs

linked to traits of interest and with potential for use in marker-assisted selection (MAS). This

has allowed the use of diverse set of germplasm that provides a broader allelic coverage without

necessarily developing bi-parental mapping populations [23].

More recently with the advances in next generation sequencing (NGS) technologies, geno-

typing by sequencing (GBS) has emerged as a promising genomic approach for simultaneous

exploration of plant genetic diversity and molecular marker discovery [24,25,26]. Thus, GBS

has effectively been used for single-nucleotide polymorphisms (SNP) marker discovery and

QTL identification of tightly linked marker-trait associations [27, 28] and in the application of
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genomic selection of complex traits for crop improvement [29, 30]. The GBS approach is

therefore considered an important cost-effective tool for population genetics, QTL discovery,

high-resolution mapping and for genomic selection in plant breeding programs [25, 29].

With advances in microarray-based marker technology, Diversity Arrays Technology

(DArT) markers have become the genetic markers of choice for construction of high-density

maps, mapping quantitative trait loci (QTL) and genetic diversity analysis based on their effi-

ciency and low cost [31]. Additionally, by combining the complexity reduction of the DArT

method with high-throughput next-generation sequencing (NGS) technologies, the DArTseq

platform was developed signifying a new implementation of sequencing of complexity-

reduced representations [14]. Consequently, DArTseq markers based on GBS technology have

been successfully applied for linkage mapping, QTL identification in bi-parental mapping pop-

ulation, genome wide association studies (GWAS), genetic diversity, as well as in marker-assis-

ted and genomic selection [32]. Hence, DArTseq has been widely applied [33, 34, 35] and is

rapidly gaining popularity as a preferred method of genotyping by sequencing [32]. The objec-

tive of this study was to investigate genetic diversity and genome-wide association studies

(GWAS) of grain quality traits in a diverse collection of 59 upland and lowland rice (Oryza
sativa L.) genotypes.

Materials and methods

Germplasm and phenotyping

The present study used a collection of 59 rice genotypes, which included 2 popular landraces,

36 upland and 21 lowland rice collections (Table 1). The above introductions were acquired

from the National Crops Resources Research Institute (NaCRRI-Uganda), where they are per-

manently held, while the landraces (LDR) are collections from South Sudan. Therefore, sam-

ples were identified as introductions from the International Rice Research Institute (IRRI),

Africa Rice Centre (ARC), National Crops Resources Research Institute (NaCRRI-Uganda),

International Center for Tropical Agriculture (CIAT), Madagascar (MDG), Tanzania (TZ)

and Institut d’Economie Rurale(IER-Mali). This research study was approved and conducted

at the Biosciences eastern and central Africa-International Livestock Research Institute

(BecA-ILRI) Hub, Nairobi, Kenya. Test materials were assessed for determinants of grain qual-

ity (grain shape, amylose content, and alkali spreading value) using dehusked grains. Grain

shape was classified on the basis of grain length (GL), grain width (GW) and length to width

ratio (L/W), where measurements were read using a vernier calliper as described by Cruz and

Khush [36].

Quantification of amylose and amylopectin

Amylose and amylopectin content of the starch was determined by the method of Gibson et al.

[37] using a Megazyme amylose/amylopectin assay kit (K-AMYL 04/06, Megazyme Interna-

tional Ireland Ltd., Co. Wicklow, Ireland), which is a modification of a Con A method devel-

oped by Yun and Matheson [18]. The method is also modified from Morrison and Laignelet

[38] and uses an ethanol pre-treatment step to remove lipids prior to analysis. Initially, rice

samples were dehusked and polished prior to milling. Twenty whole-milled rice kernels from

each of the 36 rice genotypes were ground separately and accurately weighed (20–25 mg to the

nearest 0.1 mg) into a 10 ml screw capped Kimax sample tube. One millilitre of dimethyl sulf-

oxide (DMSO) was added while gently stirring at low speed on a vortex mixer. Samples were

heated in a boiling water bath for 15 minutes with intermittent high-speed stirring on a vortex

mixer and allowed to cool for 5 minutes at room temperature. Two millilitres of 95% ethanol

were added with continuous stirring on a vortex mixer. A further 4 millilitres of ethanol were
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added and allowed to mix and kept overnight or allowed to stand for 15 minutes. After precipi-

tate formation, the tubes were centrifuged for 5 minutes at 2000 revolutions per minute (rpm),

and supernatant discarded. Two millilitres DMSO was then added to the pellet with vortexing

and heating in boiling water bath for another 15 minutes. Four millilitres of Con A solvent was

immediately added and solution adjusted to 25 ml in volumetric flask by repeated washing

with Con A solvent (this was labelled solution A). One millilitre of solution A was then

pipetted into a 2 ml eppendorf microfuge tube with the addition of 0.5 ml Con A solution and

allowed to stand at room temperature for one hour. The Eppendorf tubes were then centri-

fuged for 10 minutes at 14000 rpm at room temperature. One millilitre of supernatant was

transferred to a 15 ml centrifuge tube and 3 ml of sodium acetate buffer of pH 4.5 added. The

tubes were heated in a boiling water bath for 5 minutes and allowed to equilibrate in a 40˚C

water bath for 5 minutes. About 0.1 ml of amyloglucosidase/α-amylase enzyme mixture was

Table 1. List of rice genotypes used in the study.

Entry No. Name/pedigree Ecology Origin PID Ɨ Entry No. Name/pedigree Ecology Origin PID Ɨ
1 GSR-I-0057 Lowland ARC ARC 31 P5 H12 Upland NaCRRI UG

2 K 5 Lowland NaCRRI UG 32 P24 H10 Upland NaCRRI UG

3 WAC116X NERICA 4 Lowland Mali IER 33 CT11891-3-3-3-M-1-2-2-M Upland CIAT CIAT

4 NERICA L 19 Lowland ARC ARC 34 P5 H6 Upland NaCRRI UG

5 K-85 Lowland NaCRRI UG 35 ART12-L4P7-21-4-B-3 Upland ARC ARC

6 JARIBU Lowland Tanzania TZ 36 ART10-1L15P1-4-3-1 Upland ARC ARC

7 TAI Lowland IRRI IRRI 37 ART2-4L3P1-2-1 Upland ARC ARC

8 K85-10 Lowland NaCRRI UG 38 SCRIDO 06-2-4-3-4-5 Upland Madagascar MDG

9 KOMBOKA Lowland IRRI ARC 39 ART3 -8L6P3-2-3-B Upland ARC ARC

10 1052 SUPA LINE Lowland IRRI IRRI 40 P27 H4 Upland NaCRRI UG

11 K 38 Lowland NaCRRI UG 41 P26 H1 Upland NaCRRI UG

12 TXD 306 Lowland ARC ARC 42 ART3-7L9P8-3-5-B-B-2 Upland ARC ARC

13 WITA 9 Lowland ARC ARC 43 P5 H14 Upland NaCRRI UG

14 NERICA 6 Lowland ARC ARC 44 P27 H3 Upland NaCRRI UG

15 1189 LINE Lowland ARC ARC 45 ART3 -7L3P3-B-B-2 Upland ARC ARC

16 1191 LINE Lowland ARC ARC 46 P23 H1 Upland NaCRRI UG

17 326104 LINE Lowland ARC KR 47 ART3-8L6P3-2-3-B Upland ARC ARC

18 Supa TZ Lowland Tanzania TZ 48 Mbume Upland Landrace LDR

19 Basmati 370 Lowland IRRI IRRI 49 ART25-3-29-2-B Upland ARC ARC

20 SK-95-4 Lowland Mali IER 50 ART3-8L6P3-2-2-B Upland NaCRRI UG

21 SK-7-8 Lowland Mali IER 51 ART12-L2P2-20-3-1-1 Upland ARC ARC

22 BR4 Lowland Landrace LDR 52 P24 H1 Upland ARC ARC

23 BG 400–1 Lowland Landrace LDR 53 P62 H17 Upland NaCRRI UG

24 NAMCHE 6 Upland NaCRRI UG 54 ART16-4-11-13-4 Upland NaCRRI UG

25 NAMCHE 1 Upland NaCRRI UG 55 PCT-4\0\0\0>19-M-1-1-5-1-M Upland ARC ARC

26 NAMCHE 3 Upland NaCRRI UG 56 NERICA 4 Upland ARC ARC

27 NAMCHE 2 Upland NaCRRI UG 57 DKAP-27 Upland Mali IER

28 Namche 4 Upland NaCRRI UG 58 NERICA 1 Upland ARC ARC

29 Namche 5 Upland NaCRRI UG 59 NERICA 10 Upland ARC ARC

30 SCRIDO 37-4-2-2-5 Upland Madagascar MDG

Ɨ PID = Population Identity; IRRI, International Rice Research Institute; ARC, Africa Rice Centre; UG, National Crops Resources Research Institute(NaCRRI)-Uganda;

IER, Institut d’Economie Rurale –Mali, CIAT, International Center for Tropical Agriculture; MDG, Madagascar;TZ, Tanzania;LDR, Landrace-South Sudan;

https://doi.org/10.1371/journal.pone.0198012.t001
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added and incubated at 40˚C for 30 minutes. The tubes were then centrifuged at 2000 rpm for

5 minutes. To 1.0 ml aliquots of the supernatant, 4 ml of GOPOD reagent was added and incu-

bated at 40˚C for 20 minutes. The absorbance of each sample and the D-glucose controls were

read at 510 nm against the reagent blank. Total starch absorbance was determined by mixing

0.5 ml aliquots of solution A with 4 ml of sodium acetate buffer. A 0.1 ml of amyloglucosidase/

α -amylose solution was added and incubated for 10 minutes at 40˚C. One millilitre aliquots of

this solution was transferred to glass test tubes, to which 4 ml GOPOD reagent was added and

incubated for 20 minutes at 40˚C. The incubation was performed concurrently with the sam-

ples and standards. Absorbance of samples was read at 510 nm. Amylose content was then

determined as follows;

Amylose; %ðw=wÞ ¼
AbsorbanceðConASupernatantÞx6:15x100

AbsorbanceðTotalStarchAliquotÞ9:2x1

¼
AbsorbanceðConASupernatantÞx66:8

AbsorbanceðTotalStarchAliquotÞ

where, 6.15 and 9.2 are dilution factors for the Con A and Total Starch extracts, respectively.

The samples were then classified following standard procedures by Juliano [39] with slight

modifications, where; 3–9% amylose content indicates waxy to very low AC, 10–19% amylose

content indicates low AC; 20–25% amylose content indicates intermediate AC, 26–30% amy-

lose content indicates high-AC, while >31% amylose content indicates very high-AC.

Measurement of gelatinization temperature

Gelatinization temperature (GT) was assessed indirectly as the alkali spreading value of

hulled kernels as per modified procedure of Little et al. [40]. Twelve whole grains, were

immersed in petri-plates containing 1.7% KOH in such a way that no two grains were in con-

tact with each other. The plates were then incubated for 24 h at room temperature. The ASV

were determined by visual scoring of the appearance of the grains and disintegration on a

1–7 linear scale as described by Govindaraj et al. [41], where; 1 = grains not affected,

2 = grains swollen, 3 = grains swollen, collar incomplete and narrow, 4 = grain swollen, collar

complete and wide, 5 = grains split or segmented, collar complete and wide, 6 = grain dis-

persed, merging with collar and 7 = grain completely dispersed and intermingled. Grains

swollen to the extent of a cottony centre and a cloudy collar were given an ASV score 4 and

used as a check for scoring the rest of the samples. Since ASV is inversely related to GT the

higher value of ASV was taken for low GT and vice versa. A rating of 1.00–2.99 was taken as

high GT (>74˚C), 3.00–4.99 as intermediate (69–74˚C) and 5.00–7.00 as low GT (55–68˚C)

as referred in Govindaraj et al. [41].

DNA isolation and genotyping

Total genomic DNA was isolated from leaves of three-week old plants using the ZYMO

research Quick-DNA™ Plant/Seed 96 Kit, where a single individual plant was considered for

each genotype. Subsequently, 40 μl of a 50 ng/μl DNA of each sample were sent to Diversity

Arrays Technology (DArT) Pty Ltd, Australia (http://www.diversityarrays.com/dart-map-

sequences) for whole genome scan using Diversity Arrays Technology (DArT) markers.

Whole-genome genotyping for the 59 rice genotypes was carried out using Genotyping-By-

Sequencing (GBS) technology as described by Elshire et al. [24] using 18,927 DArT markers.

The markers were integrated into a linkage map by inferring marker order and position from

the consensus DArT map.

Diversity analysis and GWAS of grain shape and eating quality traits in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0198012 June 1, 2018 5 / 19

http://www.diversityarrays.com/dart-map-sequences
http://www.diversityarrays.com/dart-map-sequences
https://doi.org/10.1371/journal.pone.0198012


Data filtering process and DArTseq SNP calling

DArTseq SNP derived markers were filtered to remove bad SNPs and genotypes using PLINK

1.9 software in MS window and R statistical software, where genotypes with > 30% missing

data, SNP loci with>20% missing data (Fig 1) and rare SNPs with<5% minor allele frequen-

cies (MAF) were pruned. Only 525 DArTseq informative SNPs and 59 genotypes were consid-

ered after filtering and data quality control process.

Statistical analyses

Population structure analysis

We investigated the genetic structure and relationship among 59 rice genotypes using 525

DArTseq-derived SNP markers distributed across the rice genome as described by Pritchard

et al. [42]. Bayesian clustering method was applied to identify clusters of genetically similar

individuals using the software STRUCTURE version 2.3 [43]. Cluster values (K) ranging from

1 to 10, and ten independent runs were used for each value in order to obtain consistent

results. The best K-value for estimating a suitable population size for the dataset was deter-

mined as K = 2 based on the Evanno et al. [44] method from STRUCTURE run. In addition,

population differentiation due to genetic structure was assessed using a Neighbour Joining

(NJ) tree method [45] and Principal Component Analysis (PCA) generated by R statistical

software. Analysis of molecular variance (AMOVA) and genetic diversity was performed using

GenAlEx V6.5 software [46]. DArTseq SNP data were numerically coded as follows: A = 1,

C = 2, T = 3, G = 4 and missing data was coded as 0 (S1 File) as suggested in GenAlEx V6.5

user manual.

Linkage disequilibrium

Linkage disequilibrium analysis was performed using TASSEL V5.3.1 software [47] with

selected 525 DArTseq-derived SNP markers of known position [48] out of the complete set of

18,927 polymorphic markers. Linkage disequilibrium was estimated as squared allele fre-

quency correlations (R2), and only P-values�0.01 for each pair of loci were considered

significant.

Association mapping

Determinants of grain quality including grain length (GL), grain width (GW), grain length/

width ratio (L/W), amylose content (AC) and gelatinization temperature (GT) were

Fig 1. Frequency of genotypes with missing data (left), and frequency of DArTseq SNPs (loci) with missing data (right).

https://doi.org/10.1371/journal.pone.0198012.g001
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considered for association mapping. Association mapping analysis was performed with TAS-

SEL V5.3.1 software [47] using both the General Linear Model (GLM) and Mixed Linear

Model (MLM) methods. Two different methods were considered for both GLM and MLM;

where, for GLM, the model with no control for population structure and relatedness (naive

model), and the model with population structure (the Q model) were performed, whereas for

MLM; the model that considers the familial relatedness between accessions (the K model), and

the model that takes into account both the population structure and the familial relatedness

were used, that is, Q + K model as described by Yu et al. [49]. Where, the general equations for

GLM and MLM are: y = Xa + e; and y = Xa+ Qb+ Zu + e, respectively; where, y is vector for

phenotypes; a is the vector of marker fixed effects, b is a vector of fixed effects, u is the vector

of random effects, and e is the vector of residuals. X denotes the genotypes at the marker; Q is

the Q-matrix obtained from the STRUCTURE software and Z is an identity matrix. Both mod-

els were applied with and without considering the fixed effect of the population structure.

Marker alleles with P-values�0.001 in both MLM and MLM-Q models were declared signifi-

cantly associated with grain quality parameters.

Results

Genetic diversity analysis based on geographic origin

The number of accessions, number of alleles, genetic diversity, heterozygosity, polymorphism

information content (PIC) and major allele frequency of the eight populations is shown in

Table 2. The mean PIC values for each SNP locus in rice collections from ARC, CIAT, IER,

IRRI, LDR, MDG, TZ and UG were 0.34, 0.02, 0.27, 0.29, 0.23, 0.10, 0.06 and 0.34, respectively.

The mean number of alleles for each population was 2.0, 1.05, 1.94, 1.90, 1.77, 1.28, 1.19

and 2.0 respectively. The tendencies of PIC and mean number of alleles were in the order

ARC = UG > IRRI > IER > LDR > MDG> TZ> CIAT, respectively. Rice population from

ARC had the highest level of PIC, gene diversity and mean number of allele, but lowest level of

major allele frequency (0.64). Rice population from CIAT had the lowest level of PIC, gene

diversity and mean number of allele, but the highest level of major allele frequency (0.98).

Population structure and genetic relationships

Results of population structure analysis of 59 rice genotypes using a model-based program,

STRUCTURE, for K ranging from 1 to 10, and by inferring on Delta K of Evanno et al. [44]

Table 2. Estimation of gene diversity, heterozygosity, PIC and major allele frequency in 59 rice accessions.

Group No. of accessions Allele.No Gene Diversity Heterozygosity ƗPIC Major Allele Frequency

ARC 22.00 2.00 0.45 0.09 0.34 0.64

CIAT 1.00 1.05 0.02 0.05 0.02 0.98

IER 4.00 1.94 0.34 0.08 0.27 0.76

IRRI 4.00 1.90 0.37 0.07 0.29 0.71

LDR 3.00 1.77 0.29 0.20 0.23 0.78

MDG 2.00 1.28 0.14 0.06 0.10 0.87

TZ 2.00 1.19 0.08 0.09 0.06 0.94

UG 21.00 2.00 0.44 0.14 0.34 0.66

ARC, Africa Rice Centre; CIAT, International Center for Tropical Agriculture; IER, Institut d’Economie Rurale –Mali; IRRI, International Rice Research Institute; LDR,

Landrace-South Sudan; MDG, Madagascar; TZ, Tanzania; UG, National Crops Resources Research Institute-Uganda (NaCRRI);
Ɨ Polymorphism information content

https://doi.org/10.1371/journal.pone.0198012.t002
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identified the most suitable K value for determining the genetic cluster as K = 2 (Fig 2). The

number of populations were visualized using Structure Plot V2.0 [50], where genotypes that

scored >0.80 were considered as pure and<0.80 as admixture (Fig 3). Only genotypes with

origin from the National Crops Resources Research Institute-Uganda (UG) suggested consid-

erable degree of admixtures (<80%). Two major clusters were formed where genotypes from

UG, Africa Rice Centre (ARC), Madagascar (MDG) and International Centre for Tropical

Agriculture (CIAT) formed the first cluster, while genotypes from International Rice Research

Institute (IRRI), Tanzania (TZ), Institut d’Economie Rurale-Mali (IER) and landraces from

South Sudan (LDR) comprised the second cluster. Similarly, using Neighbour Joining (NJ)

method and based on a mean fixation index (Fst) estimate value of 0.134 generated by PLINK

1.9 software, genotypes were grouped into two major clusters (Fig 4), confirming the results of

population structure analysis. Cluster 1 assembled genotypes from UG, ARC, MDG and

CIAT, while cluster 2 grouped together genotypes from IRRI, TZ, IER and LDR.

Fig 2. Magnitude of Δ K as a function of Delta K for 59 rice genotypes based on 525 polymorphic DArTseq-derived SNP markers.

https://doi.org/10.1371/journal.pone.0198012.g002

Fig 3. Distribution pattern of 59 rice genotypes based on Bayesian clustering method of DArTseq derived-SNP markers.

https://doi.org/10.1371/journal.pone.0198012.g003
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Principal component analysis

Using a 3D scatter plot of principal component analysis (PCA) and based on 525 DArTseq

SNPs, two major clusters were clearly distinguished among all rice populations (Fig 5) consis-

tent with results from population structure analysis. Rice genotypes from cluster 1 were

Fig 4. Dendrogram of a Neighbor-Joining (NJ) tree of rice populations constructed for 59 rice genotypes using DArTseq markers based

on a mean fixation index (Fst) estimate value of 0.134.

https://doi.org/10.1371/journal.pone.0198012.g004

Fig 5. 3D scatter plot of principal component analysis for 59 rice genotypes based on DArTseq-derived SNP markers.

https://doi.org/10.1371/journal.pone.0198012.g005
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depicted by red colour, while cluster 2 genotypes were represented by black colour. Principal

component analysis yielded three principal components accounting for 70.7% of total variance

observed. Breakdown of this cumulative variance value revealed contributions of 49.5%, 15.8%

and 5.4% for PCA1, PCA2 and PCA3, respectively.

Genetic distance among populations

The genetic distance among the different populations was estimated with 525 DArTseq-

derived SNP markers (Table 3). The greatest genetic distance was observed between genotypes

from TZ and CIAT populations (0.865) and between genotypes from TZ and MDG popula-

tions (0.808). In addition, the least genetic distance was observed between genotypes from

LDR and IER populations (0.004) and between genotypes from LDR and IRRI populations

(0.017).

Analysis of molecular variance

Analysis of molecular variance (AMOVA) among the 59 rice genotypes indicated that 11.24%

of the variance was due to genetic differentiation among the populations, 67.30% of the vari-

ance was accounted by genetic differentiation among individuals within populations, while the

remaining 21.46% of the variance was due to the differences within individuals (Table 4).

Phenotypic distribution of grain quality traits

Grain shape (measured as the grain length-to-width ratio) and starch related qualities such as

amylose content and gelatinization temperature (measured indirectly as alkali spreading value

(ASV)), are the main properties considered for selecting breeding lines with improved quality

[51]. In this study phenotypic distribution for the aforementioned grain quality traits were

determined among 59 rice genotypes. Analysis of the frequency distributions of the phenotypic

classes suggested that all traits were quantitative and continuous (Fig 6). Frequency

Table 3. Genetic distances between different populations.

Populations ARC CIAT IER IRRI LDR MDG TZ

CIAT 0.067 0 - - - - -

IER 0.213 0.481 0 - - - -

IRRI 0.157 0.370 0.028 0 - - -

LDR 0.237 0.526 0.004 0.017 0 - -

MDG 0.157 0.686 0.494 0.463 0.582 0 -

TZ 0.377 0.865 0.082 0.112 0.049 0.808 0

UG 0.023 0.228 0.218 0.194 0.267 0.069 0.399

ARC, Africa Rice Centre; CIAT, International Center for Tropical Agriculture; IER, Institut d’Economie Rurale –Mali; IRRI, International Rice Research Institute; LDR,

Landrace-South Sudan; MDG, Madagascar; TZ, Tanzania; UG, National Crops Resources Research Institute-Uganda (NaCRRI);

https://doi.org/10.1371/journal.pone.0198012.t003

Table 4. AMOVA of a panel of 59 rice genotypes.

Source of variation d.f Sum of squares Variance components Percentage variation

Among populations 7 2690.60 14.80 11.24

Among individuals within populations 51 10485.42 88.66 67.30

Within individuals 59 1668.00 28.27 21.46

Total 117 14844.02 131.74

https://doi.org/10.1371/journal.pone.0198012.t004
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distributions suggested an overall broad variability, which is ideal to be efficiently exploited in

GWAS studies. All phenotypic traits were approximately normally distributed (Fig 6); a few

distributions, though, were found to be slightly skewed (amylose content, grain width and

length to width ratio), but none showed a clear separation in two or more classes. Grain length

varied from 5.0–7.95 mm, where most of the genotypes were characterized as long grains.

Grain shape ranged from 2.0–7.0 and majority of the genotypes were categorized as slender

grains. The ASV varied from 1.0–6.99 which relates to high-low gelatinization temperature

(GT) and most of the genotypes were grouped as intermediate GT. Percent AC ranged from

15 to 40% where majority of the genotypes were classified as intermediate AC.

Genome-wide association scans for grain quality traits

Determinants of grain quality including grain length (GL), grain width (GW), grain length/

width ratio (L/W), amylose content (AC) and gelatinization temperature (GT) were consid-

ered for genome-wide association studies (GWAS) using 525 DArTseq SNP derived markers.

Association mapping analysis was performed with TASSEL V5.3.1 software [47] using both

the General Linear Model (GLM) and Mixed Linear Model (MLM) methods. Both known

associations (for GW, L/W, AC and ASV) as well as candidate loci were identified, where P-

values were used to determine the association of QTLs with markers while percent variance

explained (PVE) predicted the magnitude of QTL effects. Manhattan plots for grain quality

traits were generated in GWAS indicating the most significant associations ((−log (p-value)>

3)) (Fig 7). A quantile-quantile (Q-Q) plot confirmed a normal distribution of phenotypic

Fig 6. Phenotypic distribution of GWAS results for grain quality traits (AC, amylose content; ASV, alkali spreading value; GW, grain width; L/W,

grain length to width ratio); grain shape (length/width ratio): slender�3.0; Medium = 2.1–3.0; Bold = 1.1–2.0; Round<1.1; Grain length: Extra-

long(�7.5 mm); Long (6.6–7.5 mm); Medium (5.51–6.6 mm); Short (<5.51mm).

https://doi.org/10.1371/journal.pone.0198012.g006
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traits while the pattern of linkage disequilibrium (LD) blocks suggested the extent of associa-

tion mapping, where the red sites represented SNPs that are in high linkage disequilibrium

with each other and thus inherited together (Fig 8). A total of 22 significant (P< 0.001) associ-

ation signals were detected for grain quality traits (Table 5). For AC, one QTL was identified

on chromosome 2 that explained 48% of phenotypic variation. Our study did not detect any

significant AC QTLs at the interval corresponding to the Wx gene on chromosome 6. Ten

QTLs were identified for ASV on chromosomes 1, 3, 4, 6, 7, 8, 9 and 10, contributing 19–31%

of phenotypic variance. Six QTLs were also detected for GW on chromosomes 3, 5 and 12,

which individually explained 23–43% of phenotypic variance. Furthermore, five QTLs were

identified for L/W on chromosomes 3, 7 and 11 contributing 20–35% of phenotypic variance.

SNP12_100006178, SNP13_3052560 and SNP14_3057360 (highlighted in bold) individually

co-localised with two functional gene groups that are associated with QTLs for GW and L/W

on chromosome 3 (Table 5). The AC allele (C/T) was traced back to parent K5; ASV alleles (G/

A, A/G) were located in parents ART2-4L3P1-2-1, BG400-1, JARIBU and SUPA TZ; while the

co-localised QTLs for GW and L/W came from JARIBU, BR4 and ART3-8L6P3-2-2-B. In gen-

eral, 2 of the 22 associations identified were in regions where the QTL associated with the

given traits had been reported in previous studies (http://www.gramene.org/ (Table 6)); the

other 20 significant SNP loci are potential novel QTLs.

Fig 7. Manhattan plots of GWAS results for grain quality traits (AC, amylose content; ASV, alkali spreading value; GW, grain width; L_W, grain

length to width ratio); Threshold = −log10(p−value)> 3.

https://doi.org/10.1371/journal.pone.0198012.g007
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Fig 8. Q-Q plot (left) and patterns of LD blocks (right) of GWAS results indicating the position of candidate genes and/or QTL regions

associated with grain quality traits.

https://doi.org/10.1371/journal.pone.0198012.g008

Table 5. Genome wide significant associations (R2) of single nucleotide polymorphisms (SNPs) with amylose content (AC), alkali spreading value (ASV), grain

width (GW) and grain length to width ratio (L/W).

S/No. Grain quality trait Marker Chromosome Position (cM) Ɨ Allele p-value PVE

1 AC SNP1_3444982 2 16.10 C/T 4.68E-04 0.48

2 ASV SNP2_5143094 1 144.73 G/A 9.77E-05 0.27

3 ASV SNP3_3438578 3 163.67 A/G 6.45E-04 0.24

4 ASV SNP4_5142766 3 106.19 G/A 8.34E-04 0.31

5 ASV SNP5_3453263 3 106.29 A/G 9.77E-04 0.26

6 ASV SNP6_3053581 4 45.43 A/G 4.37E-04 0.27

7 ASV SNP7_3755646 6 55.72 C/T 8.81E-04 0.19

8 ASV SNP8_9752845 7 80.62 G/A 1.03E-04 0.27

9 ASV SNP9_3049990 8 34.13 G/A 7.19E-04 0.21

10 ASV SNP10_13890040 9 25.24 C/G 6.93E-04 0.25

11 ASV SNP11_3053914 10 49.59 G/A 7.33E-04 0.24

12 GW SNP12_100006178 3 179.45 C/T 7.93E-05 0.32

13 GW SNP13_3052560 3 184.08 A/C 1.67E-04 0.28

14 GW SNP14_3057360 3 55.35 C/T 2.90E-04 0.23

15 GW SNP15_3049175 5 52.50 T/A 9.82E-04 0.24

16 GW SNP16_100003971 12 64.57 C/T 1.33E-04 0.43

17 GW SNP17_3448915 12 63.67 A/C 8.55E-04 0.37

18 L/W SNP13_3052560 3 184.08 A/C 1.17E-05 0.32

19 L/W SNP12_100006178 3 179.45 C/T 1.99E-05 0.35

20 L/W SNP14_3057360 3 55.35 C/T 3.33E-04 0.20

21 L/W SNP18_100004705 7 9.27 C/T 1.60E-04 0.23

22 L/W SNP19_9755868 11 80.06 C/A 4.67E-04 0.20

Ɨ Allele corresponding to grain quality trait based on 59 rice genotypes;

PVE, percent variance explained

https://doi.org/10.1371/journal.pone.0198012.t005
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Discussion

Genome level profiling of rice germplasm collections is a critical initial step in identification of

divergent parents for effective utilization in rice breeding programs. The present study is the

first major effort to perform genetic diversity studies and population structure analysis on a

panel of 59 rice germplasm collections in South Sudan for effective breeding.

Our study highlights the potential of highly informative and selective DArTseq-derived

SNP markers for genetic diversity analysis and genome wide association studies in rice.

Results of the diversity analysis based on geographical origin (Table 2) indicated that rice col-

lections of ARC population had the highest polymorphic information content and number of

alleles similar to UG population. The values were intermediate for IRRI, IER, LDR, MDG

and low for TZ and CIAT populations (Table 2). These results suggested that most of the rice

genotypes in South Sudan are largely adopted from West Africa where the Africa Rice Centre

(ARC) gene bank is entrusted with collection, conservation and utilization of most African

rice genetic resources [53]. Hence, a large number of the rice germplasm from ARC have

spread to other countries within Africa such as Uganda (UG), Mali (IER), Madagascar and

South Sudan. A few of the rice genotypes including accessions from IRRI and CIAT origi-

nated mainly from Asia and Latin America respectively as depicted by their geographical

location.

Results of population structure analysis (Figs 2, 3 and 4) revealed only two major clusters

and indicated a clear genetic divergence based on origin and breeding history of the rice geno-

types, confirming results from principal component analysis. Genotypes were grouped into

two distinct clusters based on environmental adaptation, pedigree information and genetic

distances. A low mean fixation index (Fst) estimate value of 0.134 and a small percentage varia-

tion (11.2%) among populations as revealed by analysis of molecular variance (Table 4) sug-

gested a low degree of differentiation among populations and increased levels of admixtures.

Low Fst estimate values ranging between 0.047–0.192 were reported by Oloka et al. [54] for

rice populations sampled from IRRI, AfricaRice and NaCRRI-Uganda, and by Ogunbayo et al.

[55] for genotypes originating from AfricaRice. Semon et al. [56] and Wang et al. [57] sug-

gested that the domestication of African rice may have been influenced by the introduction of

Asian rice into West Africa and subsequent intercrossing. In particular, the rice population

from Uganda indicated a high level of admixtures due to the on-going breeding activities.

Oloka et al. [54] reported similar findings on rice diversity studies in Uganda. Thus based on

the genetic distances between different populations, genotypes were clustered according to

genetic relatedness where one cluster comprised accessions from CIAT, ARC, MDG and UG,

while the other consisted of genotypes from IRRI, IER, LDR and TZ.

Analysis of frequency distributions of phenotypic classes (Fig 6) indicated that all the grain

quality traits in this study were quantitative and continuous which is in agreement with other

Table 6. Two of the 22 associations previously reported for grain quality traits.

S/

N0.

species Trait name Trait synonyms Linkage

group

Trait symbol Published

symbol

Qtl

accession id

Start

position (cM)

Stop position

(cM)

Reference

1 Oryza
sativa

grain width KW, kernel width, width of

cooked rice, width of milled

rice

5 GRWD - CQAL27 30.2 66 [52]

2 Oryza
sativa

length to

width ratio

LWR, grain shape, length:

width ratio of the rice grain

3 GRLGWDRO lwr3.1 AQFA014 31.2 76.9 [21]

Source: http://www.gramene.org/

https://doi.org/10.1371/journal.pone.0198012.t006
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previous studies [58, 59, 60]. In addition, most of the genotypes were categorized as long and

slender grains, with intermediate gelatinization temperature and amylose content. Conse-

quently, based on the desirable characteristics of the aforementioned genotypes, they may be

considered potential high market value rice grains with improved eating and cooking proper-

ties [61].

We identified twenty-two significant associations with PVE of between 19–48% for rice

grain quality traits in the entire set of genotypes, including 1 association with AC, 10 associa-

tions with ASV, 6 associations with GW and 5 associations with L/W (Table 5). In the present

study, no significant SNP associations were detected in the interval corresponding to the Wx

gene on chromosome 6. This was probably due to low DArT SNP marker density and uneven

distribution of the DArT SNP markers or the difference in AC gene for different genotypes. In

addition, previous reports on QTL analysis for rice grain quality traits [52, 59] suggested the

complex nature of grain quality traits and that several chromosomal regions were involved in

the expression of a phenotype. Several of the significant SNP loci were located on chromosome

3, which had previously been identified as a rice grain shape QTL hotspot region [62]. Two of

the 22 significant associations were in chromosomal regions in which rice grain shape QTLs

had previously been located (http://www.gramene.org/). The other 20 significant SNP loci sug-

gested the likelihood discovery of novel alleles associated with rice grain quality traits. Further-

more, SNP12_100006178, SNP13_3052560 and SNP14_3057360 individually co-localised with

two functional gene groups that were associated with QTLs for grain width and grain length to

width ratio on chromosome 3, indicating trait dependency or pleiotropic-effect loci. Hu et al.

[62] identified six chromosomal regions on chromosomes 1, 2, 3, 5 and 6 that had pleiotropic

effects on two or more determinants of rice grain shape. Biscarini et al. [63] also identified sev-

eral significant associations that co-localised with QTLs and candidate genes influencing the

phenotypic variation of single or multiple rice grain quality traits. These findings provide a

direction to effectively exploit genetic hot-spot regions overlapping for multiple traits to

enhance predictability of superior lines in a rice breeding population. Furthermore, our results

might increase the descriptive power of QTLs associated with grain quality traits in rice and

thus provide useful information for further fine mapping and cloning.

Conclusion

The present study demonstrates the potential of highly informative and selective DArTseq-

derived SNP markers for genetic diversity analysis and genome wide association studies in the

tested rice genotypes. This study also provides a direction for breeding efforts in the selection

of parents from the current collection with potential for novel genes or QTLs for important

agronomic traits. A low degree of differentiation among sampled populations suggested the

need for widening on the genetic base through the introduction of distant or wild relatives.

However, the study also indicated that wide variability exists in the current rice germplasm

collections for grain quality traits probably due to intercrossing between populations.

Genome-wide association studies successfully identified and tagged 22 DArTseq-derived SNP

loci significantly associated with rice grain quality traits. Among these, two SNP loci were

found in regions where the QTL associated with the given traits had previously been reported,

while the other 20 significant associations were indicative of the likelihood discovery of novel

alleles associated with rice grain quality traits. Significant QTL associations for AC allele (C/T)

was traced back to parent K5; ASV alleles (G/A, A/G) were located in parents ART2-4L3P1-2-

1, BG400-1, JARIBU and SUPA TZ; while the co-localised QTLs for GW and L/W came from

JARIBU, BR4 and ART3-8L6P3-2-2-B. These parents are potential sources of major effect

QTLs for grain quality traits that can be exploited for rice crop improvement. In addition, the
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results of this study suggested that genetic progress can be attained by intercrossing genotypes

from TZ with MDG and CIAT which appeared to be distantly related. Furthermore, from this

study, we identified useful targets for QTL validation, fine mapping and cloning that will help

rice breeders in contributing to enhancement of rice grain quality traits through marker assis-

ted breeding.
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