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Abstract

Qualitative risk assessment frameworks, such as the Productivity Susceptibility Analysis

(PSA), have been developed to rapidly evaluate the risks of fishing to marine populations

and prioritize management and research among species. Despite being applied to over

1,000 fish populations, and an ongoing debate about the most appropriate method to con-

vert biological and fishery characteristics into an overall measure of risk, the assumptions

and predictive capacity of these approaches have not been evaluated. Several interpreta-

tions of the PSA were mapped to a conventional age-structured fisheries dynamics model to

evaluate the performance of the approach under a range of assumptions regarding exploita-

tion rates and measures of biological risk. The results demonstrate that the underlying

assumptions of these qualitative risk-based approaches are inappropriate, and the expected

performance is poor for a wide range of conditions. The information required to score a fish-

ery using a PSA-type approach is comparable to that required to populate an operating

model and evaluating the population dynamics within a simulation framework. In addition to

providing a more credible characterization of complex system dynamics, the operating

model approach is transparent, reproducible and can evaluate alternative management

strategies over a range of plausible hypotheses for the system.

Introduction

Fishery management agencies are typically responsible for numerous stocks of diverse life his-

tory often distributed over a wide geographical area and exploited by various modes of fishing.

Given limited resources, data-intensive quantitative stock assessments are not available for

most fish stocks [1]. Additionally, fishing gears are often poorly selective and many non-target

species are caught and discarded or incidentally killed by fishing gear. The impacts of fishing

on non-target species has become increasingly recognized, and has supported the move away

from traditional single-species assessments in favour of broader ecosystem-based fisheries
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management (EBFM) [2,3]. For example, the Magnuson-Stevens Fisheries Act [4] requires

that US fisheries management plans aim to minimize bycatch (including non-target fish spe-

cies, sea turtles, sea birds, and marine mammals), or where unavoidable, minimize bycatch

mortality. Similarly, the Australian Environment Protection and Biodiversity Conservation

Act 1999 (EPBCA) [5] requires managers to demonstrate that fisheries are ecologically sustain-

able. In response to these demands, numerous risk assessment methods, both qualitative, for

example the risk assessment frameworks developed in Australia for determining ecological

sustainable development (ESD) [6–9], and quantitative, such as Sustainability Assessment for

Fishing Effects (SAFE) [10,11], have been developed with the aim of evaluating the risk of

over-exploitation, declines in stock biomass to low levels, or other undesirable consequences

of fishing on target and non-target species.

Stobutzki et al. [12] developed a risk assessment framework to determine the sustainability

of trawling with respect to bycatch species in the Australian Northern Prawn Fishery (NPF).

This was one of the first fisheries attempting to meet the EPBCA requirements and demon-

strate its ecological sustainability. The method recognized two primary properties of a bycatch

population that determine the sustainability of fishing: the ability to recover after being

depleted (recovery), and the vulnerability to mortality caused by the fishery (susceptibility).

Various attributes relating to susceptibility (e.g., position in the water column, post-capture

survival, and range), and recovery (e.g., probability of breeding, maximum size, and reproduc-

tive strategy) were identified. Each species was scored into one of three risk categories for each

attribute. The criteria were weighted by relative importance, determined by consensus through

expert judgment, and a weighted average score calculated for both the susceptibility and recov-

ery attributes [12]. The susceptibility and recovery scores for each species were plotted on a

scatterplot, risk was calculated as a combination of equally weighted susceptibility and recov-

ery scores, and the species were ranked on their overall risk to fishing [12,13].

A key advantage and driver behind the approach developed by Stobutzki et al. [12] was the

ability to rapidly assign relative risk for a large number of by-catch species, and to provide

management and research advice for a complex fishery. For example, Stobutzki et al. [12] used

the method to rank 411 bycatch species in the NPF. Likewise, Milton [13] used the method to

evaluate the relative risk of 13 species of sea snake, Stobutzki et al. [14] evaluated 56 species of

elasmobranch in the same fishery, and Feitosa et al. [15] used a method based on Stobutzki

et al. [12] to rank the relative risk of 19 species of ornamental reef fish caught in a trap fishery

in Brazil.

Hobday et al. [8,16] developed the risk assessment methodology of Stobutzki et al. [12,14]

into a method known as Productivity Susceptibility Analysis (PSA), and positioned this

method as the second tier in a hierarchical ecological risk assessment framework (Ecological

Risk Assessment for the Effects of Fishing; ERAEF). The three-tier approach begins with a

qualitative consequence analysis that uses expert judgment to determine the likely impact a

fishery has on bycatch species. Species that are determined to be at some risk to fishing are

then evaluated in the second tier of the framework, the PSA. Species ranked as medium or

high risk in the PSA are then assessed at the third level of the ERAEF hierarchy, a conventional

stock assessment that aims to quantitatively evaluate risk. A principal aim of the ERAEF is to

use the PSA to identify species at highest risk and prioritize assessment and management at

Level 3 on these stocks [8].

Following Stobutzki et al. [12], Hobday et al. [8] assume that the vulnerability of a species to

over-exploitation by a fishery is determined by two properties: productivity—the life history

characteristics which determine the intrinsic rate of population increase, and susceptibility—

interactions between population and fishing dynamics that affect the impact of the fishery on

the stock. They define 7 productivity attributes and 4 susceptibility attributes. Three risk
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categories are defined for each attribute, with a corresponding numerical score of 1 (high pro-

ductivity or low susceptibility; low risk), 2 (medium productivity or susceptibility; medium

risk), and 3 (low productivity or high susceptibility; high risk). For example, species with an

age at maturity greater than 15 years are considered to have low productivity and high risk and

are scored 3, species with an age of maturity less than 5 years are scored as highly productive

and low risk (1), and those that fall between these values are rated as medium productivity and

risk (2) [8]. Likewise, species that have low fecundity (< 100 eggs per year) are defined as high

risk (3), those with 100–20,000 eggs per year are medium risk (2), and species that produce

more than 20,000 eggs per year are scored as low risk (1). Hobday et al. [8] note that their cut-

off values for the risk categories were developed for an Australian fishery and suggest that the

cut-off scores should be modified or tuned for species in other regions.

A numerical score of 1, 2 or 3 is assigned to each of the 7 productivity attributes, and the

arithmetic mean of the productivity attributes is used to determine an overall productivity

score (P). Scores are assigned to each susceptibility attribute in the same way as the productiv-

ity criteria, with a value of 3 representing high risk and 1 representing the lowest risk. The

overall susceptibility score (S) is assumed to be a multiplicative function of the individual sus-

ceptibility attributes, and is therefore calculated as the geometric mean of the susceptibility

attributes. The total vulnerability (V) or risk score is then determined by calculating the

Euclidean distance from the origin:

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ S2
p

ð1Þ

This results in a vulnerability score ranging from 1.41 (all attributes scored 1) to 4.24 (all

attributes scored 3) [17]. Assuming that all productivity and susceptibility scores are equally

likely, a third of the V values will be lower than 2.64 and a third above 3.18 (Fig 1a), and these

thresholds are used to define risk categories: ‘Low’, ‘Medium’ and ‘High’ (Fig 1b) [16].

Although the PSA of Hobday et al. [8,16] was designed as a tool to evaluate bycatch species,

in recent years it has been increasingly applied to determine risk for targeted fish stocks. For

example, Rosenberg et al. [18] made some alterations to the PSA and used it to discriminate

risk for setting buffers in the annual catch limits for 169 federally managed stocks in the U.S.

In 2008 a working group from the U.S. National Marine Fisheries Service (NMFS) developed

an extended version of the PSA and applied it to 162 federally managed fisheries in the U.S

[19,20]. For simplicity, we refer to the Hobday et al. [8,16] PSA as ‘standard PSA’ (sPSA) and

that of Patrick et al. [19,20] as ‘extended PSA’ (ePSA).

The ePSA differs from the sPSA in several ways. Firstly, Patrick et al. [19,20] revised the

productivity and susceptibility criteria, which resulted in 10 productivity attributes, including

many of those used by Hobday et al. [8,16] and some additional attributes: population growth

rate (r), von Bertalanffy growth parameter (K), and the natural mortality rate (M). They also

modified the reproductive strategy criterion used by Hobday et al. [16] to include two attri-

butes: breeding strategy, based on Winemiller’s [21] index of parental investment, and recruit-

ment pattern, based on the expectation of successful recruitment events. The ePSA includes 12

susceptibility attributes, separated into two sub-categories: catchability and management. The

7 catchability attributes were based on Hobday et al. [16] but with the addition of criteria on

the value of the fishery and fish behaviour including seasonal migration. The 5 management

criteria included estimates of current fishing mortality relative to natural mortality (F/M),

management strategy, estimate of spawning biomass relative to reference points (e.g., deple-

tion), survival of released fish, and the impact of the fishery on the habitat.

Patrick et al. [19,20] noted that not all productivity and susceptibility attributes are equally

valuable in determining the vulnerability of a stock and chose to use a weighting scheme
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where all attributes were assigned a default weight of 2 and weights for particular attributes

could be adjusted with each application to reflect their perceived importance within a fishery.

For example, in an application of the ePSA to highly migratory sharks in the Atlantic they

chose to assign the highest weight of 4 to the intrinsic rate of increase (r) attribute, 3 to fecun-

dity and natural mortality criteria, and 0 to the recruitment attribute [19]. Where there is

insufficient information to assign a risk value to an attribute, the sPSA uses a precautionary

approach and the attribute is scored as high risk [16]. Patrick et al. [19] followed a different

approach and chose instead to leave missing attributes out of the analysis and developed a data

quality scoring system to aid in the interpretation of the ePSA result.

While the sPSA calculated the total susceptibility score as the geometric mean of the suscep-

tibility attributes [16], the ePSA used a weighted arithmetic average [19]. The scoring for the

productivity attributes in ePSA was the reverse of sPSA, such that high values of productivity

(i.e., 3) correspond with low risk and low productive attributes were scored 1, and the total vul-

nerability score (V) calculated as:

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP � 3Þ
2
þ ðS � 1Þ

2

q

ð2Þ

Hobday et el. [8] broadly define risk as ‘the probability that a (specified) fishery manage-

ment objective is not achieved’ and note that the intention of their PSA is to evaluate the rela-

tive risk of different species within a fishery. Others have used a more explicit definition of

risk. For example, Patrick et al. [19] report stocks that receive a high vulnerability score from

the ePSA are the most vulnerable to overfishing. Similarly, the NOAA toolbox claims that the

ePSA has been designed to ‘specifically assess the vulnerability of U.S. fish stocks from becom-

ing overfished (BCURRENT <½BMSY) or undergoing overfishing (FCURRENT > FMSY)’ [22].

Other applications of the ePSA also make similar claims. Osio et al. [23] state that ‘the vulnera-

bility of a stock is directly related to overfishing and is defined as a function of its productivity

and susceptibility’. In contrast, other researchers believe that the PSA should only be used to

provide relative vulnerability scores and should not be used to argue for or against the sustain-

ability of a fishery [24].

Fig 1. Distribution of PSA vulnerability scores and relationship between productivity, susceptibility, and vulnerability. The overall vulnerabilty score and risk

categories used in the standard PSA (16), a) the three risk categories based on the assumption of equal density of the vulnerability scores and b) how the

vulnerability score is determined from the total productivity and susceptibility scores.

https://doi.org/10.1371/journal.pone.0198298.g001
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Despite the application of the PSA to inform the management and research priorities of

over 1000 targeted and by-catch fish stocks and other stocks including elasmobranches, sea

turtles, and marine mammals (Table 1), it appears that there have been few attempts to quanti-

tatively evaluate and validate the methodology. A recent study compared the performance of

sPSA with the SAFE method, and the two risk assessment methods against the results of quan-

titative stock assessments [25]. The SAFE method is similar to the PSA but uses attributes at

continuous measurement scales and calculates risk in terms of fishing mortality (F) relative to

FMSY. This study found that the sPSA was precautionary compared to both SAFE and the

assessment results, with a high proportion of false positives [25]. This study made the compari-

son of PSA by assuming that the results of the quantitative stock assessments were ‘true’.

Therefore, while the results may suggest that the PSA is precautionary compared to typical

stock assessments (at least for data-rich stocks) it was not able to quantitatively evaluate the

accuracy of the PSA or the correlation between the PSA vulnerability score and the risk of

over-exploitation or stock collapse.

It is unusual that in a quantitative scientific field, a qualitative method has been so widely

used to inform management without being extensively tested to evaluate the theoretical consis-

tency of its assumptions and its predictive capacity. The lack of objective testing is particularly

important given that it could resolve a large number of diverging views on the appropriate way

to calculate the productivity, susceptibility, and overall vulnerability scores. For example, some

Table 1. A summary of the species included in 23 applications of the productivity-susceptiblity analysis. The number of stocks/populations evaluated using a version

of the productivity-susceptiblity analysis in 23 applications of the methodology. This summary is not intended to be exhaustive but demonstrates that the PSA has been

used for a large number of species and taxa, including marine mammals, sea birds, sea turtles, sharks, skates and rays, and teleosts.

Primary PSA Reference Number of Stocks/Populations Application Reference

Marine Mammals Sea Birds Sea Turtles Sharks Skates and Rays Teleosts

[61] 20 21 7 50+ 14 150+ [61]

[61] 4 26 2 34 [62]

[61] 3 8 1 17 [63]

[64] 1 [65]

[66] 70 [66]

[16,64] 11 [67]

[16] 11 18 49 [68]

[16] 11 1 [69]

[16] 14 [70]

[16] 14 [71]

[16] 41 [72]

[16] 102 [73]

[16] 3 1 5 11 46 [74]

[16,19] 7 [75]

[16,19] 7 [76]

[19] 6 15 [77]

[19] 60 [78]

[19] 21 [79]

[19] 151 [23]

[19] 5 17 63 [80]

[19] 90 [26]

[19] 2 21 [81]

[19] 54 13 98 [20]

Total 37 147 21 190+ 92 909+

https://doi.org/10.1371/journal.pone.0198298.t001
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applications of the PSA have used weighting schemes [19,20,26] to adjust the contribution of

individual attributes to the overall vulnerability score. Others considered using weights but

decided against it as they believed all attributes were equally important [24,27], make little dif-

ference to the overall vulnerability score [28], or because ‘there would need to be a consistent

means of assigning weights (i.e. as determined through simulation modeling)’ [18]. Likewise,

some believe that the practice of scoring missing attributes in the highest risk category will bias

the results towards false positives [19,24], while advocates of this approach point out that this

method means that additional information can only ever decrease the vulnerability score and

never increase it [18]. Another example of inconsistency in applications of the PSA is the cal-

culation of the overall susceptibility score, using either the geometric mean [8] or the arithme-

tic mean [19]. Proponents of the former approach note that a low score in one susceptibility

attribute (e.g., spatial overlap of fishery and stock) can effectively make a stock invulnerable to

fishing, while advocates of the latter believe this approach is likely to underestimate susceptibil-

ity [24]. Maintaining consistency in scoring of the attributes across a wide range of species has

also been recognized as an important challenge [24,26].

Acknowledging the varying subjective interpretations of PSA, there are reasons to ques-

tion its assumptions and structure. For example, while it is generally accepted that species

with low fecundity are not highly productive, there is strong evidence against the idea that

highly fecund species are less vulnerable to over-exploitation [29–31]. Furthermore, although

the PSA calculates the overall productivity score additively as the mean of individual attri-

butes, is it widely recognized that life history parameters of fish stocks are often highly corre-

lated and non-linearly related to productivity [31,32]. Likewise, there appears to be little

evidence in fisheries dynamics literature to suggest that it is generally appropriate to calculate

overall vulnerability of a population to fishing as a linear function of productivity and suscep-

tibility attributes. Consequently, it appears that several assumptions of the PSA methodology

may be at odds with important fundamentals of non-linear dynamical systems such as

fisheries.

Many of these limitations of the PSA have been recognized previously, and there have been

various attempts to address these shortcomings by adding or removing attributes, using alter-

native methods to calculate overall the vulnerability score, exploring different weighting

schemes, or comparing the PSA to other risk assessment methods [19,24,25,26,28]. However,

these are fundamentally quantitative issues and as such it is not clear how they can be resolved

by further discussion and expert opinion. An appropriate and relatively simple solution is to

use quantitative simulation modelling with reproducible fisheries population dynamics models

based on accepted fisheries science principles, to evaluate the assumptions and efficacy of

methods that are intended to provide advice for fisheries managers [18,33].

The aim of this paper is to quantitatively evaluate the PSA as a tool for determining the

risk of over-exploitation of fish stocks. Several interpretations of the PSA are mapped to a

conventional age-structured fisheries dynamics model and alternative scenarios of stock

status and future exploitation rates are explored to identify the conditions where the PSA is

an effective tool for predicting risk of failing to meet fishery management objectives. The

four main assumptions of the PSA are examined: 1) risk is an additive function of equally

weighted total productivity and susceptibility scores, 2) the individual productivity and sus-

ceptibility attributes are equally weighted, 3) the individual attributes are linearly related,

and 4) the PSA vulnerability score is a reliable predictor of the risk of failing to meet man-

agement objectives. Finally, we comment on the appropriateness of qualitative risk assess-

ment tools to inform fisheries management and provide recommendations for alternative

approaches.

A quantitative evaluation of the Productivity Susceptibility Analysis (PSA)
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Methods

Each attribute and risk category of the sPSA [8] and the ePSA [20] was mapped to ranges of

values for parameters in a conventional age-structured fisheries dynamics model. For many of

the attributes this was straightforward. For example, the first productivity attribute, the average

age at maturity, corresponds directly to the age at maturity in the population dynamics model.

However, other attributes were more difficult to interpret and assign quantitative values. Con-

sequently, it was not possible to include all attributes, and others were modified to directly cor-

respond to population dynamics parameters. Operating models were specified that described

the fishery and population dynamics based on the productivity and susceptibility attributes

from the PSA. These operating models were used to calculate the probability of the fishery fail-

ing to meet various management objectives. The quantitative estimates of risk were then com-

pared against the vulnerability scores from the PSA, and the influence of the individual PSA

attributes on the risk to the fishery was examined.

Modified PSA

Two quantitative interpretations of PSA were developed corresponding to the sPSA [8] and

the ePSA [20]. Following Hobday et al. [8], consistent scoring for both productivity and sus-

ceptibility attributes was assumed such that a score of 1 represents lowest risk and 3 the highest

risk. In some PSA applications a weighting scheme has been adopted to control the importance

of different attributes on the overall vulnerability score [20]. These weightings have been

decided by expert opinion and group consensus and there was no way to reproduce this sub-

jective process objectively. Consequently, all productivity and susceptibility attributes were

weighted equally in this analysis.

Standard PSA. In general, the same attributes and risk categories as Hobday et al. [8]

were used with some important differences that are described below.

Productivity attributes. The first productivity attribute, the average age of maturity,

could be directly mapped to the population dynamics model (Table 2). The same risk catego-

ries as Hobday et al. [8] were used and the range for age of maturity was set to 1 and 30 years

(Table 2). For example, when modelling a low productivity species (high risk) with respect to

this attribute, ages of maturity were uniformly sampled between 15 and 30 years. Conversely,

when generating an operating model for highly productive species from the PSA, age of matu-

rity was sampled from a uniform distribution between 1 and 5 years.

The second productivity attribute was the expected maximum age (Amax). The natural mor-

tality rate (M) was assumed to be related to Amax by [34]:

M ¼ �
logð0:01Þ

Amax
ð3Þ

Sixty years was chosen as the upper bound for the maximum age (i.e., 25< Amax < 60

years = low productivity) and a lower bound of 5 years (i.e., 5< Amax < 60 years = high pro-

ductivity; low risk), as this includes the lifespan of most marine fishes [35] (Table 2).

The average maximum size was modelled as the asymptotic length parameter in the von

Bertalanffy growth model (L1).The risk categories of Hobday et al. [8] were used with an

upper bound of maximum length of 500 cm (i.e., 300–500 cm = low productivity) and a lower

bound of 20 cm (i.e., 20–100 cm = high productivity) (Table 2). Similarly, the average size of

maturity followed the risk categories of Hobday et al. [8] and could be directly mapped as a

biological parameter in the fisheries dynamics model.

The sPSA literature defines the three risk categories of the reproductive strategy attribute

as: live bearers (and birds) (low productivity; high risk), demersal egg layer (medium
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productivity and risk), and broadcast spawners (high productivity; low risk), but provide no

additional rationale for this categorization [8,16,17]. Stobutzki et al. [12] use reproductive

strategy as a proxy for relative fecundity between species and note that broadcast spawners

generally produce more young than live bearers and animals that brood their young. They

conclude that broadcast spawners have the capacity to recover faster from low population

sizes, and are therefore considered lower risk, but provide no evidence to support these claims.

Empirical evidence supports a relationship between reproductive strategy and total fecundity,

with broadcast spawners typically producing many small sized eggs, while demersal eggs layers

and live bearers produce fewer and larger eggs and young respectively [36,37]. Hobday et al.

[8] include fecundity as a separate productivity attribute, with more fecund species considered

more productive and at lower risk. Some researchers have suggested that a relationship may

exist between fecundity and the inter-annual variation in recruitment that might influence risk

of stock declines. However, Mertz and Myers [38] examined this relationship and found little

evidence to support it. Rickman et al. [39] on the other hand, examined additional data with a

greater contrast in fecundity and found evidence that stocks with higher fecundity have more

variable recruitment. However, while the general relationship was shown to exist, the high var-

iability in the relationship prevents accurate prediction of the magnitude of recruitment varia-

tion from information on fecundity. Consequently, while it may be tempting to relate the

productivity attribute of ‘fecundity’ to recruitment variability in a population dynamics model,

there is little guidance how to do this appropriately.

Without a coherent rationale for the inclusion of these attributes and risk categories in the

PSA, it is not clear how to relate the three risk categories of reproductive strategy and fecundity

to population dynamics parameters. Instead these attributes were related to the steepness (h)

of the stock-recruitment relationship as a replacement attribute (Table 2). While this does not

Table 2. The productivity and susceptibility attributes and the risk categories used for the standard PSA (sPSA) and the extended PSA (ePSA).

Productivity Attribute Risk Category

Low (1) Medium (2) High (3)

sPSA Age at maturity 1–5 5–15 15–30

Maximum age 5–10 10–25 25–60

Maximum size 20–100 100–300 300–500

Size at maturity < 40 40–200 > 200

Steepness (h) 0.6–0.95 0.4–0.6 0.21–0.4

ePSA Maximum rate of increase (r) > 0.5 0.16–0.5 < 0.16

von Bertalanffy K > 0.25 0.15–0.25 < 0.15

Susceptibility Attribute

sPSA Availability1 < 0.25 0.25–0.50 > 0.50

Encounterability2 < 0.2 0.2–0.8 > 0.8

Selectivity Lc
3 > Lm

4 0.5Lm < Lc < Lm Lc < 0.5 Lm

Discarding and discard mortality5 High discarding

Low discard mortality

Moderate discarding

Moderate discard mortality

Low discard

High discard mortality

ePSA Depletion (SB6/SB0) > 0.4 < 0.8 0.25–0.4 < 0.25

1 Fraction of stock available to fishing
2 Vulnerability of the largest sized individuals in the population (degree of dome-shaped selectivity)
3 Length at 50% selectivity
4 Length at 50% maturity
5 See text for details
6 Spawning biomass

https://doi.org/10.1371/journal.pone.0198298.t002
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exactly replicate the attributes of fecundity and reproductive strategy in the PSA, steepness

describes the rate of population increase at low stock sizes [40], and therefore may represent

the intent of these two attributes [41]. The three steepness categories were low productivity

(h< 0.4), medium productivity (0.4 > 0.6) and high productivity (h> 0.6) (Table 2).

The last productivity attribute in the sPSA is mean trophic level, divided into three risk

categories: > 3.25 (low productivity; high risk), 2.75–3.25 (medium productivity/risk),

and< 2.75 (high productivity; low risk). Like the previous two attributes, there was no

information in Hobday et al. [8] or the previous literature on the development of PSA [12]

describing the rationale for this attribute or how trophic level is hypothesized to be related to

productivity. Trophic level represents the position of a species within a hierarchical food web,

and, as predators usually consume prey that are smaller than themselves, is often found to be

correlated with size [42,43]. However, maximum size is already included as a productivity

attribute, and in the absence of a defensible means of relating trophic level to the population

dynamics model, it was not included in the analysis.

Susceptibility attributes. Hobday et al. [8] divide their first susceptibility criterion, avail-

ability, into two choices: the overlap of species range with the fishery, and the range of global

distribution of the species and note that the first option is preferable. The first approach was

followed here and simulated as a two-area model, where the fraction of the stock in the first

area experienced no fishing mortality. The same risk categories as Patrick et al. [19] were

adopted. For example, if less than 25% of a stock is in the fished area, the fishery is considered

low risk and given a score of 1, while fisheries that operate on more than 50% of the stock are

scored as 3, high risk (Table 2). The efficacy of spatial closures on fishery dynamics depends

strongly on the rate of movement of the species. In this analysis, the stock was assumed to be

fully mixed between the two areas.

The second susceptibly attribute, termed ‘encounterability’, aims to define the interaction

between the fishing gear and the stock. Hobday et al. [8] define the three risk categories as:

low-, medium- and high-overlap with the fishing gear and suggest two options for this crite-

rion: habitat or depth check. This analysis followed Patrick et al. [19] who interpret this crite-

rion as vertical overlap of the fishery with the stock. In this analysis it was assumed that larger

fish tend to be found in deeper water, and this attribute related to the vulnerability of the larg-

est size individuals in a stock. For example, for stocks considered low susceptibility (1) larger

individuals are not vulnerable to fishing while highly susceptible (3) are fully selected by the

fishery at larger sizes (Table 2).

The size selectivity pattern of the fishery, in particular relative to the size of maturity, is

important in determining the impact a fishery has on the risk of over-exploitation. Hobday

et al. [8] score this attribute based on the mesh or hook size relative to the average size of matu-

rity of the stock. This analysis follows the interpretation of the Marine Stewardship Council

[44] and defines this according to 3 risk categories: low risk (1): length at capture (Lc) is greater

than length of maturity (Lm), medium risk (2) 0.5Lm < Lc < Lm, and high risk (3) Lc < 0.5Lm

(Table 2).

The final susceptibility attribute relates to discarding and post-capture mortality (8). This

criterion relates to two distinct properties of the fishery: the overall fraction of the catch that is

discarded (discard rate), a property of the fishing fleet, and the proportion that are discarded

dead when (or soon after) released (discard mortality), a biological property of the stock. Con-

sistent with the sPSA these are combined into a single criterion in this analysis, with three risk

categories: high discarding and low discard mortality (low risk), moderate discarding and

moderate discard mortality (medium), and low discarding and high discard mortality (high

risk) (Table 2).
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Extended PSA. A quantitative interpretation of ePSA was developed by including two

additional productivity attributes, the intrinsic rate of population growth (r) and the growth

parameter of the von Bertalanffy model (K), and one additional susceptibility attribute (deple-

tion). The intrinsic rate of population growth represents the maximum growth rate of the pop-

ulation at a low stock size. This parameter is directly related to stock productivity and is a

combination of many of the other productivity attributes. The value of r was calculated using

the method of McAllister et al. [45]. The von Bertalanffy growth equation is the most com-

monly applied model to describe the growth of fish and is used in the population dynamics

model of this analysis. The risk categories of Patrick et al. [19] were adopted for both attributes

(Table 2).

Patrick et al. [19] included several more susceptibility attributes in the ePSA, including

migration patterns and schooling behavior, morphology affecting capture, value of the fishery,

and management. These attributes were not included in this analysis, primarily because of the

difficulty in objectively relating these attributes to the parameters of the population dynamics

model. The current relative spawning stock biomass (depletion; SSB/SSB0) was included as an

additional susceptibility attribute and was based on the same risk thresholds as Patrick et al.

[19] (Table 2).

Although the ePSA includes fishery management as a susceptibility attribute, it was not

included in this evaluation of the PSA. The basis for this decision was because the intention of

this analysis is to examine the relationship between the vulnerability score from the PSA and

the inherent risk of the stock declining to low levels under numerous scenarios [8] and active

fishery management confounds this relationship. For example, consider an omniscient man-

ager that can enforce exploitation precisely at target level (e.g. fishing at FMSY). In this ‘perfect’

management scenario there would be no relationship between productivity and susceptibility

attributes and the risk of stock collapsing to undesirable levels, as the stock biomass would be

maintained exactly at the target level. While clearly hypothetical, this highlights a highly ques-

tionable attribute of the fishery management attribute in the ePSA that could nullify the impact

on risk of all other attributes combined.

Fisheries dynamics model

The DLMtool R package [46] was used to simulate and evaluate the risk of failing to meet man-

agement objectives under the various biological and fishery management scenarios corre-

sponding to the PSA. DLMtool uses a typical age-structured fisheries model to generate the

population dynamics. We briefly describe the population dynamics model here and refer read-

ers to [46] for full details of the model. The fisheries dynamics model includes parameters that

describe the population biology and the behavior of the fishing fleet. We refer to these compo-

nents as the stock object and fleet object respectively.

The stock object contains the information describing the biology of the modeled fish stock,

such as growth, maturity schedule, natural mortality rate, and stock-recruitment relationship,

as well as the current stock status (i.e., the level of depletion). The fleet object describes the

interaction between the fishing fleet and the stock, and contains parameters that define the his-

torical fishing mortality, the selectivity schedule, and discarding rate.

Simulating life histories with equivalent vulnerability. Assuming each risk category

is equally probable for the 9 productivity and susceptibility attributes of the sPSA, this consti-

tutes over 19,000 scoring permutations. The additional 3 attributes in the ePSA increases the

number of scoring combinations to over 500,000. It was not feasible to evaluate all permuta-

tions of the sPSA and ePSA attributes. Instead a four-step approach was used to sample the
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permutations of the PSA attributes, generate operating models, simulate the populations, and

calculated quantitative estimates of risk:

1. All PSA scoring permutations were generated and the total productivity and susceptibility

scores were calculated for each. This resulted in 19,683 and 531,441 scoring combinations

for the sPSA and ePSA respectively. For each scoring combination, total productivity and

susceptibility was categorized into 8 classes of equal width (1–1.25, 1.25–1.50, . . ., 2.75–3.0)

leading to 64 possible categories of combined productivity and susceptibility. The number

of permutations in each scoring category varied, with a median of 150 for the sPSA, and a

median of 4,270 for the ePSA.

2. From each of the 64 categories, 10 sets of scores were sampled leading to 640 scoring com-

binations distributed evenly over the possible range of productivity and susceptibility.

3. Each of the 640 scores were mapped to corresponding fishery dynamics operating models.

4. For each operating model 100 simulations were carried out, projecting populations forward

in time calculating the probability of the biomass declining below biological reference

points at the end of the projection period (Fig 2). From these 100 projections it was possible

to calculate risk metrics for the 640 PSA scoring combinations.

Fig 2. The four step process used to calculate risk of failing to meet a management objective for the different PSA

scores. This process was used to evaluate both the standard PSA and the extended PSA.

https://doi.org/10.1371/journal.pone.0198298.g002
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Some combinations of risk categories are not possible. For example, species in the low risk

category for maximum age (maximum age< 10 years) cannot be scored as high risk for the

age of maturity criterion (age of maturity > 15 years). Other less obvious correlations also

exist among the risk categories. For example, the maximum rate of increase (r), a productivity

attribute in the ePSA (Table 2), is a function of the other life history parameters (e.g., age of

maturity, von Bertalanffy K parameter, and steepness), and therefore is expected to be corre-

lated with the other attributes. Similarly, the von Bertalanffy growth parameter (K) can be

determined analytically from values of asymptotic length and both age and size at maturity,

and therefore only certain combinations of these parameters are plausible. The ratio of natural

mortality (M) to the von Bertalanffy growth parameter (K) is often assumed to be close to 1.5,

and rarely larger than 4 or smaller than around 0.3 [47]. Similarly, the relative size of maturity

Lm
L1

� �
is usually between 0.3 and 0.9 for most fish species [47,48]. Life history theory and empir-

ical evidence also suggests that the age of maturity is usually below 60% of the maximum age

[48,49]. These empirical findings were used to exclude implausible scoring combinations.

For each simulation, the population was initialized in the unfished condition and simulated

for 50 historical years. The depletion (B/B0) in the 50th year was set as a parameter in the oper-

ating model. The sPSA was examined under three scenarios of historical exploitation where

depletion in the final historical year was uniformly distributed between 0.025–0.25, 0.25–0.4

and 0.4–0.8. These scenarios are referred to as ‘Low’, ‘Medium’ and ‘High’ initial stock status,

respectively. Current stock status is included as an attribute in the ePSA, therefore depletion

was determined by the risk category for each sample, i.e., below 0.25 for high risk, 0.25 to 0.4

for medium risk and between 0.4 and 0.8 for low risk (Table 2). Density dependence was mod-

elled with a Beverton-Holt stock-recruitment relationship, with steepness determined in each

simulation by the relevant PSA attribute and risk category (Table 2). Process error in recruit-

ment was assumed to be log-normally distributed with a coefficient of variation (CV) uni-

formly distributed between 0.3 and 0.9, and an auto-correlation coefficient uniformly

distributed between 0 and 0.9.

Calculating risk. After the initial 50-year simulation, the model was projected forward for

50 years with three alternative scenarios of future exploitation intensity, an exploitation rate of

0.2, 0.4 and 0.6 respectively. The purpose for the alternative exploitation patterns was to evalu-

ate the conditions where the PSA is a reliable predictor of the inherent risk of a population to

fishing [8].

Risk for each analysis and three exploitation rate scenarios was calculated as the probability

of failing to meet three different management objectives relating to biological sustainability:

the probability of spawning stock biomass declining below 50% of BMSY and below 10% and

20% of the unfished level. These risk metrics were calculated over the last 10 years of the

simulation timeframe, i.e., the fraction of the 100 simulations where biomass was below the

reference points in years 41–50 of the projection period. These metrics were chosen as the rep-

resent common reference points and measures of risk in international fisheries management

agencies [50–52].

Analysis of results

Risk is an additive function of total productivity and susceptibility scores. To examine

the assumption that risk is linearly related and additive with respect to the overall productivity

and susceptibility scores, the total productivity and susceptibility scores were binned into the

same discrete classes described above and the probability of failing to meet the management

objectives was calculated for each of the 64 combinations of productivity and susceptibility

scores. This resulted in an 8 by 8 matrix for each variation of the PSA analyzed in the study.
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The expected relationship was generated using the same method, and all matrices were stan-

dardized to a minimum and maximum value of 0 and 1 respectively.

The distance (F) between the expected (E) and observed (O) matrices was calculated using

the Frobenius norm:

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðAA�Þ

p
ð4Þ

where A = E − O and A� is the conjugate transpose of A, and trace is the sum of the main diago-

nal elements of AA�. The distance F was standardized to a similarity score such that a value of

1 represented an observed matrix identical to the expected pattern and a value of 0 represented

the average score of 1,000 matrices where the elements were randomly assigned values between

0 and 1. The similarity score was used to quantitatively compare the different variations of the

PSA evaluated in this study to the expected linear and additive relationship of the productivity

and susceptibility scores and overall risk (see Fig 3).

Individual productivity and susceptibility attributes are equally weighted. The

assumption of equal weighting of the individual productivity and susceptibility attributes was

examined by fitting a multiple regression model with the risk measure as the predicted variable

Fig 3. The assumed and observed relationship between productivity and susceptibility scores and risk. The

relationship between the productivity and susceptibility scores and risk assumed by the PSA (top left) and the observed

patterns for the analysis with the highest similarity score (top right; additive ePSA with low exploitation rate and

B< 0.2B0 reference point), mean similarity score (bottom left; multiplicative sPSA with low initial stock size, high

exploitation rate and B< 0.1B0 reference point) and the lowest similarity score (bottom right; multiplicative sPSA with

high initial stock size, high exploitation rate and B< 0.2B0 reference point). Risk in each plot has been standardized to

a minimum and maximum value of 0 and 1 and the similarity score is shown in white text in the top right corner of

each plot.

https://doi.org/10.1371/journal.pone.0198298.g003
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and the individual productivity and susceptibility attributes as predictors, and calculating the

relative importance of each predictor variable using the relaimpo R package [53].

Individual attributes are linearly related. The PSA assumes that the individual produc-

tivity and susceptibility attributes are linearly related and additive. For example, if this assump-

tion is valid, risk is expected to increase linearly as the scores of two attributes increase from 1

to 3, such that risk is lowest when both attributes are scored 1, highest when both are scored 3,

and equal when the two attributes are scored 1 and 3 or 3 and 1 respectively. This assumption

was evaluated by calculating the two-way interaction between the 12 individual productivity

and susceptibility attributes of the ePSA and the quantitative measure of risk.

PSA vulnerability score is a reliable predictor of risk. The overarching principal of the

PSA is that the vulnerability score is correlated with the risk of failing to meet management

objectives. This was examined by plotting the PSA vulnerability score against the quantitative

measure of risk for each simulation and examining the relationship between the two variables.

These results were quantified in terms of accuracy and error rate by calculating the probability

of correctly rating a fishery using the PSA. For example, non-governmental organisations

(NGOs) such as Marine Stewardship Council [44] and Seafood Watch [54] use the multiplica-

tive sPSA and follow Hobday et al. [16] by categorizing risk as: V < 2.64 = Low Risk, 2.64< V

< 3.18 = Medium Risk, and V> 3.18 = High Risk. They do not, however, define how these

risk categories relate to the probability of failing to meet the management objectives. In this

analysis, the probability of each risk measure was similarly divided into three equal categories

(P< 0.33 = Low, 0.33< P< 0.66 = Medium, 0.66< P = High), and an error matrix was calcu-

lated for each variant of the PSA. The sensitivity (true positive rate) and overall accuracy was

calculated using the methods in the caret R package [55]. All simulations and analyses were

conducted using the R statistical environment [56].

Results

Fig 3 shows the assumed relationship between the productivity and susceptibility scores and

the overall risk (top left) and the observed relationship for three analyses with the highest,

mean, and lowest similarity scores (top right, bottom left, bottom right, respectively). The

observed patterns were similar to the assumed relationship where the risk scores were lowest

when both productivity and susceptibility were in the lowest risk categories, and highest when

they were in the highest risk categories. However, the observed pattern did not follow the PSA

assumption of a linear increase in risk as the productivity and susceptibility scores increased.

While the PSA assumes that the productivity and susceptibility risk scores are additive, that is,

risk is symmetrical around the diagonal, this was not found to be the case for either the sPSA

or ePSA. For example, in the case with the highest similarity score (top right Fig 3) risk was 3

times higher in the lowest productivity and highest susceptibility category (top left corner)

compared to the reverse situation (lower right corner). In the analysis with the lowest similar-

ity score (lower right Fig 3) risk was equivalently high for the highest productivity and lowest

susceptibility risk categories (lower right corner), the lowest productivity and highest suscepti-

bility risk categories (upper left corner), and the highest productivity and highest susceptibility

risk categories (upper right corner).

These results suggest that the assumption of a linear and additive relationship between the

productivity and susceptibility scores is not valid, and that the susceptibility score is of greater

importance compared to the productivity score in determining the overall risk to the stock.

Figures of the observed relationship between the productivity and susceptibility scores and the

overall risk for all the analyses are shown in S1–S6 Figs and S7–S12 Figs for the sPSA and

ePSA analyses respectively.
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In general, ePSA was closest to the underlying assumptions of PSA and provided the closest

re-creation of risk with respect to its productivity and susceptibility scores with a mean simi-

larity score of 0.61 and a range of 0.54–0.69 (Fig 4). Similarly, the multiplicative method to cal-

culate the overall susceptibility scores generally resulted in a lower similarity score compared

to the additive method, for both the sPSA and the ePSA, although in many cases this difference

was only marginal (Fig 4). The sPSA was most similar to the predicted pattern (similarity

score = 0.66) when the initial stock size was low, exploitation rate was low, and the risk mea-

sure of B< 0.1B0 was used (Fig 4). The similarity score for the sPSA tended to decrease as the

initial stock status and the exploitation rate increased. The closest matching ePSA, with a simi-

larity score of 0.69, occurred when exploitation rate was low and the risk measure of B< 0.2B0

Fig 4. Similarity scores of the observed relationship between the productivity and susceptibility scores and risk compare to that assumed by the PSA. The

similarity scores of the observed relationship between the productivity and susceptibility scores and risk compare to that assumed by the PSA for the standard PSA

(sPSA) with low, medium and high initial stock status (black circle, triangle and square respectively) and the extended PSA (ePSA) for three quantitative measures of

risk (columns) and three future exploitation rates (rows). The results are shown for both the additive and multiplicative method for calculating the overall

susceptibility score (x-axis).

https://doi.org/10.1371/journal.pone.0198298.g004
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was used (Fig 4). Similar to the sPSA, the similarity score declined as the exploitation rate

increased.

For the additive ePSA and the B< 0.5BMSY reference point, in all three exploitation rate

scenarios the Selectivity attribute contributed the greatest to explaining the variability in risk,

followed by Discard Mortality and the Rate of Increase (r; Fig 5). In contrast, attributes such as

the Size of Maturity, Maximum Size, and Age of Maturity explained very little of the variability

in risk. The result for the additive sPSA and the B< 0.5BMSY reference point show that at low

initial stock size the Selectivity attribute explained ~30% of the variance, with Discard Mortal-

ity the second most important attribute (Fig 6). A similar pattern was observed in when initial

stock size was at medium levels. The results were more varied at high initial stock size, with

Steepness the most important attribute when exploitation rate was 0.2, and the second most

important when exploitation rate was 0.4 and 0.6. In all scenarios the Size of Maturity was

ranked the least important attribute (Fig 6). Although the results varied marginally depending

on the risk measure and the method to calculate the susceptibility score, the importance rank-

ing of the attributes was consistent (S13–S22 Figs).

These results provide a strong theoretical case against the assumption that the individual

productivity and susceptibility attributes contribute equally to risk. In contrast, the results sug-

gest that the susceptibility attribute Selectivity (size of capture relative to the size of maturity)

is the strongest predictor of risk. The most important productivity attributes are, in the case of

the ePSA, the intrinsic rate of increase and the steepness of the stock-recruitment relationship,

and for the sPSA, steepness and maximum age.

The relationship between the 3 risk categories of each of the 12 ePSA attributes and the

quantitative estimate of risk is shown for the risk measure of B< 0.5BMSY and an exploitation

rate of 0.4 in Fig 7 (the other risk measures and exploitation rates are shown in S23–S30 Figs).

The PSA assumes that risk increases with increasing risk scores of the individual attributes:

i.e., from a minimum in the lowest risk categories (lower left corner of each plot in Fig 7) to a

maximum in the highest risk categories (upper right corner of each plot in Fig 7).

Fig 5. The relative contribution of the productivity and susceptibility attributes to overall risk for the exended PSA. The

relative contribution of the 7 productivity and 5 susceptibility (italics) attributes of the additive extended PSA in explaining the

variation of spawning biomass (B) at the end of the projection period being below 0.5BMSY under conditions of low, medium, and

high exploitation rates.

https://doi.org/10.1371/journal.pone.0198298.g005
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Furthermore, the PSA assumes that risk is an additive function of the individual productivity

and susceptibility attributes: i.e., the risk in the lower right and upper left corner of each plot is

assumed to be equivalent. In general, overall risk was lowest in the joint lowest risk categories

of the individual attributes and increased to a maximum in the joint highest risk categories

(Fig 7). However, there were several cases where this pattern was not observed. For example,

the probability of biomass declining to low levels was highest when the Rate of Increase attri-

bute was in the highest risk category and the Age of Maturity in the lowest and declined as the

risk category for the Age of Maturity increased (Fig 7). A similar pattern was observed for the

Steepness and Size of Maturity attributes, where risk declined as the risk category for Size of

Maturity increased. The strong influence of the Selectivity attribute is clear in these results,

which demonstrates that the probability of stock declining to low levels is relatively low when

Fig 6. The relative contribution of the productivity and susceptibility attributes to overall risk for the standard PSA. The

relative contribution of the 5 productivity and 4 susceptibility (italics) attributes of the additive standard PSA in explaining the

variation of spawning biomass (B) at the end of the projection period being below 0.5BMSY under conditions of low, medium and

high initial stock size (rows) and low, medium, and high exploitation rates (columns).

https://doi.org/10.1371/journal.pone.0198298.g006
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the Selectivity attribute is in the lowest risk category irrespective of the rating of the other 11

attributes (Fig 7).

These results demonstrate that there is a complex non-linear relationship between the indi-

vidual productivity and susceptibility attributes and their relationship with overall risk. Fur-

thermore, they demonstrate that certain combinations of risk scores for the productivity and

susceptibility attributes are implausible. A clear example is the relationship between Size of

Maturity and Maximum Size, where it was not possible to generate simulations where Size of

Maturity is in the highest risk category and the Maximum Size in the lowest. Similarly, when

Size of Maturity was rated in lowest risk category, it was not possible to generate life histories

where Maximum Size was rated as medium or high risk.

Fig 7. Interaction plot of the productivity and susceptibility of the additive extended PSA and risk. Interaction plot of the 7

productivity and 5 susceptibility (italics) attributes of the additive extended PSA and the probablity of spawning biomass (B) ending

below 0.5 BMSY at the end of the projection period with an exploitation rate of 0.4.

https://doi.org/10.1371/journal.pone.0198298.g007
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Applications that use the PSA to evaluate a range of species and rank them according to

risk assume that the PSA vulnerability score is a reliable indicator of biological risk. The results

from this study demonstrate that, in general, the lowest and highest vulnerability scores

correlate with a low and high biological risk respectively. However, while the risk generally

increased with increasing vulnerability score, there was high variability among the individual

simulations, particularly for vulnerability scores between 2.5 and 3.5 where the probability of

B< 0.5BMSY was found to range from 0 to 1 (Figs 8 and 9 for additive sPSA and ePSA respec-

tively). This finding is particularly important as both the theory (Fig 1) and applications of the

PSA (shaded regions in Figs 8 and 9) reveal that most stocks evaluated with the PSA result in

mid-range vulnerability scores, where the vulnerability score is a very poor predictor of risk. A

similar pattern was observed for the two alternative risk metrics (B< 0.2B0 and B< 0.1B0) and

multiplicative method for calculating susceptibility score (S31–S40 Figs).

The sPSA, under conditions of low future exploitation rate, medium initial stock status,

additive method to calculate susceptibility score, and a biological reference point of

B< 0.5BMSY, had the highest accuracy (67%) in terms of correctly assigning the risk fishery

rating of a fishery (Fig 10). Prediction error rate of the sPSA tended to increase when the

exploitation rate increased, or the multiplicative method was used to calculate the susceptibil-

ity score (Fig 10). In the worst case, under conditions of medium or high future exploitation

rate, medium or high initial stock size, and using the multiplicative method, the classification

success rate of the PSA was <50%, indicating that in more than half of these scenarios the PSA

incorrectly assigned the risk rating (Fig 10). This was particularly the case for the Medium risk

category, where the average true positive rate was 22% (range 16–33%).

The highest classification success rate of the ePSA was similar to that of the sPSA (66%), in

the scenarios where future exploitation rate was low, the biological risk reference point of

B< 0.1B0 was considered, and either the multiplicative or additive methods were used (Fig

10). Like the sPSA, accuracy declined as exploitation rate increased, with the worst perfor-

mance occurring under conditions of medium or high exploitation rate and the multiplicative

method of calculating susceptibility score (classification success rate of 53 and 52% respec-

tively; Fig 10).

Discussion

At the extreme ranges (V< 2 and V> 3.5) the PSA vulnerability score, for all the variants

examined in this study, correlates reasonably well with risk of over-exploitation, although

arguably this may be anticipated in the absence of a formal scoring system. More significant is

the high uncertainty in risk for the intermediate vulnerability values where most fisheries are

scored. For these mid-range values, the vulnerability score appears unrelated to risk, and fish-

eries ranked by these scores are unlikely to be ordered correctly with respect to risk of over-

exploitation. Calculating a single vulnerability score is an attractive way to summarize the

complex processes involved in determining the inherent risk of a fishery to over-exploitation.

Our results suggest, however, that due to the high variability in relationship between risk and

the vulnerability score this approach is overly-simplistic.

Given that the PSA approach has been used to evaluate risk of over 1,000 stocks, including

fish, sharks and rays, marine mammals, sea turtles, and seabirds (Table 1), these results have

sobering implications for the use of qualitative risk-based frameworks for evaluating and rank-

ing risk of over-exploitation of target and by-catch species. The results of this study suggest

that, under the most favorable conditions (one of the 72 simulated conditions), the expected

success rate of the PSA in categorizing fisheries as low, medium, or high risk is about 66%.

Under other conditions, for example, high exploitation rate and low initial stock size, the
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Fig 8. Scatterplots of PSA vulnerability scores and quantitative measure of risk for the standard PSA. Scatterplots showing PSA vulnerability scores (x-axis) and

the probability of biomass being below 0.5BMSY (y-axis) for the standard PSA (sPSA) using the additive method for calculating overall susceptibility score, for low,

medium, and high initial stock size (rows) and low, medium, and high exploitation rate (columns). The gray shaded regions represent the 5th and 95th (light gray) and

25th and 75th (dark gray) percentiles of applications of the sPSA [17] and show that the scores for most applications fall within the mid-range values of the

vulnerability score.

https://doi.org/10.1371/journal.pone.0198298.g008
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performance declines considerably, to success rates of less than 50% (worse than a coin toss)

for the sPSA and ~55% for the ePSA.

Qualitative scoring systems are often considered useful tools for evaluating vulnerability of

marine stocks to fishing pressure, particularly for prioritizing research and management of

fisheries according to risk of over-exploitation [47,57,58]. However, these frameworks are

often subjective and not reproducible. Reproducibility is a key tenet of the scientific method

and crucial for theoretical testing of proposed methods in a simulation framework [59]. The

difficulty in observing biological processes means that expert opinion is required in many

areas of research in biology and ecology, and fisheries are no exception. It is important that the

heuristic process of consolidating expert knowledge to inform modeling or analysis is well

documented, reproducible and testable [60]. Qualitative scoring systems that are proposed for

evaluating fisheries and providing advice to management and research should follow these

principles so that their predictions and recommendations can be evaluated against empirical

evidence and also theoretically by simulation.

The results of this simulation study reveal that the productivity and susceptibility attributes

make an unequal contribution to risk. For example, the size of capture relative to the size of

maturity (Selectivity) was the most significant predictor of risk in all analyses examined here,

while the Size of Maturity attribute contributed very little. This suggests that the scoring system

may be over-parameterized where the addition of irrelevant or correlated attributes may

degrade the predictive capacity of the approach. We examined this possibility by recalculating

the PSA vulnerability score with the three, four, and five most important predictors and com-

paring the prediction error rate with that of all 12 attributes in the ePSA (Fig 11). This analysis

revealed that the overall prediction error rate increases as more attributes were added to the

scoring system, with the highest prediction accuracy occurring when only one productivity

and two susceptibility attributes were used (Rate of Increase, Selectivity, and Discard Mortality

respectively) and the lowest accuracy when all 12 attributes were used (Fig 11). This prelimi-

nary analysis, which only included the assumption of high exploitation rates, suggests that for

the poorly performing Medium risk category the optimum model complexity is 4 attributes

Fig 9. Scatterplots of PSA vulnerability scores and quantitative measure of risk for the extended PSA. Scatterplots showing PSA vulnerability scores (x-axis) and

the probability of biomass being below 0.5BMSY (y-axis) for the extended PSA (ePSA) using the additive method for calculating overall susceptibility score, for low,

medium, and high exploitation rate (columns). The gray shaded regions represent the 5th and 95th (light gray) and 25th and 75th (dark gray) percentiles of applications

of the ePSA [20] and show that the scores for most applications fall within the mid-range values of the vulnerability score.

https://doi.org/10.1371/journal.pone.0198298.g009
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(Rate of Increase, Selectivity, Discard Mortality, and Encounterability), which leads to an

increase in true prediction rate from 41% with all 12 attributes to 59%. However, more exten-

sive testing over a wider range of conditions should be carried out before establishing a modi-

fied version of the scoring system with fewer or alternative productivity and susceptibility

attributes.

The inability to map certain PSA attributes to operating model parameters (e.g., trophic

level), our quantitative interpretation of some attributes, or our definitions of risk, may be per-

ceived as important limitations of this research—that by omitting potentially critical features

of PSA this was an unfair test of the approach. Conversely, the fact that we assumed biological

parameters and fishing characteristics were known perfectly when calculating the PSA risk

scores (i.e., there was no observation error in assigning the risk scores for each productivity

Fig 10. The expected accuracy of the standard PSA for different measures of risk and exploitation rates. The expected accuracy (with 95% confidence intervals)

of the standard PSA (sPSA) with low, medium and high initial stock status and the extended PSA (ePSA; lightest gray) for three quantitative measures of risk

(columns) and three future exploitation rates (rows). The results are shown for both the additive and multiplicative method for calculating the overall susceptibility

score (x-axis).

https://doi.org/10.1371/journal.pone.0198298.g010
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and susceptibility attribute) may be considered to bias the results towards an overly optimistic

evaluation of the performance of PSA. Such criticism is welcomed since it goes to the philo-

sophical subject of this paper. If there are grounds to criticize the approach applied here, what

are the objective substance of these criticisms? Quantitatively, how important are these omis-

sions? Answers to these questions must lie in either more thorough theoretical testing similar

to this research or demonstrated empirically, for example meta-analyses of historical stock per-

formance in relation to the proposed attributes (e.g., trophic level).

Despite the difficulties in interpreting some of the PSA attributes, we were able to construct

operating models based on the individual scores of the productivity and susceptibility attri-

butes. We argue that the information required to complete a qualitative scoring system such as

the PSA is comparable to that needed to populate an operating model. An operating model,

however, offers several advantages over qualitative approaches. It provides a transparent repre-

sentation of the current state of knowledge of the fishery, for both the population and the fish-

ing dynamics, and can incorporate uncertainty in critical aspects of the system. Importantly,

this allows analysts to evaluate alternative hypotheses about the current or future population

dynamics and evaluate the impact of the uncertainty on the risk to the population. We recom-

mend developing operating models for exploited stocks and using conventional simulation

frameworks to evaluate risk, determine critical uncertainties, and inform research and man-

agement of the fishery. A key advantage of the operating model approach it can be easily incor-

porated into a management strategy evaluation (MSE) framework which can be used to

evaluate alternative management strategies and identity those methods that are robust to

uncertainty and likely to meet the management objectives of the fishery.

Fisheries managers, environmental NGOs, and other stakeholders face an enormous chal-

lenge of quickly and efficiently evaluating risk and prioritizing species for management and

further research and rely on the science community to develop tools to tackle these problems.

The PSA and other similar qualitative risk assessment frameworks were initially developed

to address this challenge and undoubtedly have been valuable in providing a framework for

identifying species most at risk of over-exploitation. Recent developments including the

Fig 11. A comparisoin of the PSA risk ratings and the quantitative measure of risk calculated from different numbers of risk attributes. Comparison of the PSA

risk ratings and the quantitative measure of risk for 3 (rate of increase, selectivity, and discard mortality), 4 (previous plus steepness), 5 (previous plus encounterablity),

and all 12 productivity and susceptibility attributes of the ePSA with high exploitation rate and B< 0.5 BMSY reference point. The values in each cell represent the

fraction that the PSA assigned each risk category (y-axis) compared to the quantitative evaluation of risk (x-axis). Each column sums to one, and the values on the

antidiagonal represent the true prediction rates for each risk category. The overall true prediction rate is shown in the top left corner of each plot.

https://doi.org/10.1371/journal.pone.0198298.g011
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affordability of high power computing, open-source software, and online data-bases have

substantially lowered the barriers to developing operating models and evaluating risk with

simulation modelling. Rather than relying on subjective scoring systems, these resources

and technologies should be harnessed to develop quantitative and objective risk assessment

tools that provide robust and reliable advice to support sustainable management of marine

resources.
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standard PSA (sPSA). Risk in each plot has been standardized to a minimum and maximum
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extended PSA (ePSA). Risk in each plot has been standardized to a minimum and maximum

value of 0 and 1.

(PNG)
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probability of B< 0.5BMSY as predicted by the PSA and the observed pattern for the
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multiplicative extended PSA (ePSA). Risk in each plot has been standardized to a minimum

and maximum value of 0 and 1.

(PNG)

S9 Fig. The relationship between the productivity and susceptibility scores and the proba-

bility of B < 0.2B0 as predicted by the PSA and the observed pattern for the additive

extended PSA (ePSA). Risk in each plot has been standardized to a minimum and maximum

value of 0 and 1.

(PNG)

S10 Fig. The relationship between the productivity and susceptibility scores and the proba-

bility of B < 0.2B0 as predicted by the PSA and the observed pattern for the multiplicative

extended PSA (ePSA). Risk in each plot has been standardized to a minimum and maximum

value of 0 and 1.

(PNG)

S11 Fig. The relationship between the productivity and susceptibility scores and the proba-

bility of B < 0.1B0 as predicted by the PSA and the observed pattern for the additive

extended PSA (ePSA). Risk in each plot has been standardized to a minimum and maximum

value of 0 and 1.

(PNG)

S12 Fig. The relationship between the productivity and susceptibility scores and the proba-

bility of B < 0.1B0 as predicted by the PSA and the observed pattern for the multiplicative

extended PSA (ePSA). Risk in each plot has been standardized to a minimum and maximum

value of 0 and 1.

(PNG)

S13 Fig. The relative contribution of the 7 productivity and 5 susceptibility (italics) attri-

butes of the additive extended PSA in explaining the variation of spawning biomass (B) at

the end of the projection period being below 0.2B0 under conditions of low, medium, and

high exploitation rates.

(PNG)

S14 Fig. The relative contribution of the 7 productivity and 5 susceptibility (italics) attri-

butes of the additive extended PSA in explaining the variation of spawning biomass (B) at

the end of the projection period being below 0.1B0 under conditions of low, medium, and

high exploitation rates.

(PNG)

S15 Fig. The relative contribution of the 7 productivity and 5 susceptibility (italics) attri-

butes of the multiplicative extended PSA in explaining the variation of spawning biomass

(B) at the end of the projection period being below 0.5BMSY under conditions of low,

medium, and high exploitation rates.

(PNG)

S16 Fig. The relative contribution of the 7 productivity and 5 susceptibility (italics) attri-

butes of the multiplicative extended PSA in explaining the variation of spawning biomass

(B) at the end of the projection period being below 0.2B0 under conditions of low, medium,

and high exploitation rates.

(PNG)
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S17 Fig. The relative contribution of the 7 productivity and 5 susceptibility (italics) attri-

butes of the multiplicative extended PSA in explaining the variation of spawning biomass

(B) at the end of the projection period being below 0.1B0 under conditions of low, medium,

and high exploitation rates.

(PNG)

S18 Fig. The relative contribution of the 5 productivity and 4 susceptibility (italics) attri-

butes of the additive standard PSA in explaining the variation of spawning biomass (B) at

the end of the projection period being below 0.2B0 under conditions of low, medium and

high initial stock size (rows) and low, medium, and high exploitation rates (columns).

(PNG)

S19 Fig. The relative contribution of the 5 productivity and 4 susceptibility (italics) attri-

butes of the additive standard PSA in explaining the variation of spawning biomass (B)

at the end of the projection period being below 0.1B0 under conditions of low, medium

and high initial stock size (rows) and low, medium, and high exploitation rates (col-

umns).

(PNG)

S20 Fig. The relative contribution of the 5 productivity and 4 susceptibility (italics) attri-

butes of the multiplicative standard PSA in explaining the variation of spawning biomass

(B) at the end of the projection period being below 0.5BMSY under conditions of low,

medium and high initial stock size (rows) and low, medium, and high exploitation rates

(columns).

(PNG)

S21 Fig. The relative contribution of the 5 productivity and 4 susceptibility (italics) attri-

butes of the multiplicative standard PSA in explaining the variation of spawning biomass

(B) at the end of the projection period being below 0.2B0 under conditions of low, medium

and high initial stock size (rows) and low, medium, and high exploitation rates (columns).

(PNG)

S22 Fig. The relative contribution of the 5 productivity and 4 susceptibility (italics) attri-

butes of the multiplicative standard PSA in explaining the variation of spawning biomass

(B) at the end of the projection period being below 0.1B0 under conditions of low, medium

and high initial stock size (rows) and low, medium, and high exploitation rates (columns).

(PNG)

S23 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.5 BMSY

at the end of the projection period with an exploitation rate of 0.2.

(PNG)

S24 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.5 BMSY

at the end of the projection period with an exploitation rate of 0.6.

(PNG)

S25 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.2 B0 at

the end of the projection period with an exploitation rate of 0.2.

(PNG)
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S26 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.2 B0 at

the end of the projection period with an exploitation rate of 0.4.

(PNG)

S27 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.2 B0 at

the end of the projection period with an exploitation rate of 0.6.

(PNG)

S28 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.1 B0 at

the end of the projection period with an exploitation rate of 0.2.

(PNG)

S29 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.1 B0 at

the end of the projection period with an exploitation rate of 0.4.

(PNG)

S30 Fig. Interaction plot of the 7 productivity and 5 susceptibility (italics) attributes of the

additive extended PSA and the probablity of spawning biomass (B) ending below 0.1 B0 at

the end of the projection period with an exploitation rate of 0.6.

(PNG)

S31 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.2B0 (y-axis) for the standard PSA (sPSA) using the additive method

for calculating overall susceptibility score, for low, medium, and high initial stock size

(rows) and low, medium, and high exploitation rate (columns). The gray shaded regions

represent the 5th and 95th (light gray) and 25th and 75th (dark gray) percentiles of applications

of the sPSA [17] and show that the scores for most applications fall within the mid-range val-

ues of the vulnerability score.

(PNG)

S32 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.1B0 (y-axis) for the standard PSA (sPSA) using the additive method

for calculating overall susceptibility score, for low, medium, and high initial stock size

(rows) and low, medium, and high exploitation rate (columns). The gray shaded regions

represent the 5th and 95th (light gray) and 25th and 75th (dark gray) percentiles of applications

of the sPSA [17]and show that the scores for most applications fall within the mid-range values

of the vulnerability score.

(PNG)

S33 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.5BMSY (y-axis) for the standard PSA (sPSA) using the multiplicative

method for calculating overall susceptibility score, for low, medium, and high initial stock

size (rows) and low, medium, and high exploitation rate (columns). The gray shaded

regions represent the 5th and 95th (light gray) and 25th and 75th (dark gray) percentiles of appli-

cations of the sPSA [17] and show that the scores for most applications fall within the mid-

range values of the vulnerability score.

(PNG)

A quantitative evaluation of the Productivity Susceptibility Analysis (PSA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0198298 June 1, 2018 27 / 32

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s026
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s027
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s028
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s029
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s030
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s031
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s032
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198298.s033
https://doi.org/10.1371/journal.pone.0198298


S34 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.2B0 (y-axis) for the standard PSA (sPSA) using the multiplicative

method for calculating overall susceptibility score, for low, medium, and high initial stock

size (rows) and low, medium, and high exploitation rate (columns). The gray shaded

regions represent the 5th and 95th (light gray) and 25th and 75th (dark gray) percentiles of appli-

cations of the sPSA [17] and show that the scores for most applications fall within the mid-

range values of the vulnerability score.

(PNG)

S35 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.1B0 (y-axis) for the standard PSA (sPSA) using the multiplicative

method for calculating overall susceptibility score, for low, medium, and high initial stock

size (rows) and low, medium, and high exploitation rate (columns). The gray shaded

regions represent the 5th and 95th (light gray) and 25th and 75th (dark gray) percentiles of appli-

cations of the sPSA [17] and show that the scores for most applications fall within the mid-

range values of the vulnerability score.

(PNG)

S36 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.2B0 (y-axis) for the extended PSA (ePSA) using the additive method

for calculating overall susceptibility score, for low, medium, and high exploitation rate

(columns). The gray shaded regions represent the 5th and 95th (light gray) and 25th and 75th

(dark gray) percentiles of applications of the ePSA [20] and show that the scores for most

applications fall within the mid-range values of the vulnerability score.

(PNG)

S37 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.1B0 (y-axis) for the extended PSA (ePSA) using the additive method

for calculating overall susceptibility score, for low, medium, and high exploitation rate

(columns). The gray shaded regions represent the 5th and 95th (light gray) and 25th and 75th

(dark gray) percentiles of applications of the ePSA [20] and show that the scores for most

applications fall within the mid-range values of the vulnerability score.

(PNG)

S38 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.5BMSY (y-axis) for the extended PSA (ePSA) using the multiplicative

method for calculating overall susceptibility score, for low, medium, and high exploitation

rate (columns). The gray shaded regions represent the 5th and 95th (light gray) and 25th and

75th (dark gray) percentiles of applications of the ePSA [20] and show that the scores for most

applications fall within the mid-range values of the vulnerability score.

(PNG)

S39 Fig. Scatterplots showing PSA Vulnerability scores (x-axis) and the probability of bio-

mass being below 0.2B0 (y-axis) for the extended PSA (ePSA) using the multiplicative

method for calculating overall susceptibility score, for low, medium, and high exploitation

rate (columns). The gray shaded regions represent the 5th and 95th (light gray) and 25th and

75th (dark gray) percentiles of applications of the ePSA [20] and show that the scores for most

applications fall within the mid-range values of the vulnerability score.
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