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Abstract

Purpose—Lung auscultation has long been a standard of care for the diagnosis of respiratory 

diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical 

acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in 

settings, where skilled healthcare providers are commonly unavailable. We described features of 

normal lung sounds in young children using a novel signal processing approach to lay a 

foundation for identifying pathologic respiratory sounds.

Methods—186 healthy children with normal pulmonary exams and without respiratory 

complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at 

eight thoracic sites using a digital stethoscope. 151 (81 %) of the recordings were eligible for 

further analysis. Heavy-crying segments were automatically rejected and features extracted from 

spectral and temporal signal representations contributed to profiling of lung sounds.

Results—Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 

cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47 % were boys. We identified ten distinct 

spectral and spectro-temporal signal parameters and most demonstrated linear relationships with 

age, height, and weight, while no differences with genders were noted. Older children had a faster 

decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-

frequency cepstral coefficients, and spectro-temporal modulations also showed variations with 

recording site.

Conclusions—Lung sound extracted features varied significantly with child characteristics and 

lung site. A comparison with adult studies revealed differences in the extracted features for 

children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible 

tool for sound analysis in real-world environments.
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Introduction

Since the invention of the stethoscope by Laennec in 1819, few advances have been made in 

the field of auscultation. More recently, electronic stethoscopes and digital signal processing 

have grown in popularity but have yet to find clinical acceptance [1–7]. Acoustic 

information captured by clinical auscultation is limited by frequency attenuation due to the 

stethoscope, ambient noise interference, interobserver variability and subjectivity in 

differentiating subtle sound patterns [8–10].
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Computerized technologies come as a natural adjunct to aid in the diagnosis of respiratory 

disease and may be ideal for a pediatric population, especially in settings where skilled 

healthcare workers are unavailable. Electronic auscultation and automated analysis are 

advantageous for a number of reasons. They provide standardized methods for sound 

acquisition and enable continuous monitoring and analysis, which allows for a deeper 

understanding of the mechanisms that produce adventitious respiratory sounds. Finally 

automated interpretation of auscultatory findings may offer diagnostic potential for use by 

community health workers or other first line providers in low resource settings.

Existing approaches in the literature use techniques to capture spectral and temporal details 

of adventitious sounds like wheezes and crackles, employing frequency analysis [3, 11], 

time–frequency and wavelet analysis [7, 11–13], image processing methods [14], or 

comparison with reference signals. In most studies, however, auscultation recordings have 

been limited to adults and acquired in a controlled, near-ideal environment, where ambient 

noise was limited. In this study, we aimed to obtain better insight into the signal 

characteristics of lung sounds in healthy children without respiratory complaints recorded in 

a noisy hospital environment. We present an alternative signal-processing scheme and 

describe features of normal lung sounds in healthy children. By characterizing normal lung 

sounds in healthy children, our group aims to utilize these features to better differentiate 

pathologic sounds associated with respiratory disease in children.

Methods

Study Design

We enrolled 186 children without respiratory complaints from outpatient clinics at the 

Instituto Nacional de Salud del Niño in Lima, Peru between January and November 2012. 

Inclusion criteria were: (1) age 2–59 months, (2) no active respiratory complaint, and (3) 

normal respiratory exam performed by a skilled physician. Exclusion criteria were: (1) 

history of chronic lung disease excluding asthma, (2) significant cardiac disease, and (3) 

acute respiratory illness within the past month. We obtained informed consent from parents 

in the Emergency Department (ED) or outpatient clinics, where testing was performed in a 

single visit. Detailed methods are described in detail elsewhere [15]. The study was 

approved by the ethics committees of the Instituto Nacional de Salud del Niño and A.B. 

PRISMA in Lima, Peru, and the Johns Hopkins School of Medicine in Baltimore, USA.

Electronic Auscultation

We recorded lung sounds at 44.1 kHz using a digital stethoscope (ThinkLabs ds32a, 

Centennial, Colorado, USA) and a standard MP3 recorder at each of the following eight 

thoracic sites for 10 s: left and right anterior superior (AS), right and left antero-lateral 

inferior (AI), right and left posterior superior (PS), and left and right posterior inferior (PI). 

The ThinkLabs stethoscope contains a diaphragm, behind which is a metal plate that allows 

conversion of sound to an electronic signal at the level of the patient. Lung sounds were 

obtained as in most clinical settings, with the diaphragm in contact with the skin of the 

patient. The examiner adjusted the pressure applied to the diaphragm based on the 
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cleanliness of sound he/she appreciated through the earpieces and the cooperation of the 

patient.

We obtained lung sounds recordings when the child was breathing normally without being 

asked to take deep breaths. Although not ideal for sound quality, deep breathing was not 

expected of infants and young children in real-world clinical settings for a few reasons. 

Developmentally, following simple commands occurs around age of 18 months, and 

realistically, sick, irritable children often refuse or are unable to breathe deeply due to 

tachypnea. All children were supine or upright and often were held by a parent during sound 

recording.

Computerized Lung Sound Analysis

Acquired signals were low-pass filtered using a fourth order Butterworth filter at 1 kHz 

cutoff, down-sampled to 2 kHz, and normalized to have zero mean and unit variance (Fig. 

1). This was done because 91 % of the total signal energy was found in frequencies below 1 

kHz. Sounds were processed into short-time 2-s segments using a rectangular window with 

50 % overlap.

Noise Segment Removal

We excluded segments judged as either non-informative or contaminated with noise from 

our analyses. We defined non-informative segments as intervals whose amplitude was less 

than 20 % of the average signal’s amplitude, typically corresponding to silent segments; and, 

segments contaminated with noise as those characterized with irregular high frequency 

contents in the range of 200–500 Hz, which corresponds with children’s crying [16–18]. 

Increased energy in the power spectrum was defined relative to a uniform threshold and set 

to 1E–07, to ensure that no false positives were produced during exclusion. (see Fig. 2a for 

an example of a crying interval.) The power spectrum was obtained using a 214-point Fast 

Fourier Transform [25] and was further smoothed by a low-pass fifth order Butterworth filter 

at 20 Hz to better capture regions of increased frequency contents. The above criterion was 

developed considering the current sample of healthy children. Extension of this approach to 

children with respiratory disease will require caution and further refinement to account for 

any abnormal sounds with overlapping spectral components.

Biostatistical Methods

We extracted ten unique parameters from the spectral and spectro-temporal representations 

of recordings from individual children (Table 1). The spectral analysis captures information 

about the frequency content of the recorded signal such as slow or fast variations in the 

signal and includes parameters such as peak width (PW), the spectrum slope (SL), power of 

regression line (PLN), and power ratio (PR). These features highlight energy concentration 

along frequency regions and were extracted from the smoothed power spectrum described 

above. In addition, Mel-frequency cepstral coefficients (MFCC) features were extracted. 

They encode information about the chest shape and resonances of lung sounds. Finally, more 

complete joint time–frequency parameters were extracted, including spectral shape and 

temporal modulations, to give a better representation of the dynamic changes (or 

modulations) in the frequency content of lung sounds. Preliminary analysis revealed linear 
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associations between spectral/spectro-temporal signals and basic clinical information. We, 

therefore, used multivariable linear regression to model each of the spectral and spectro-

temporal parameters as a function of age, weight, height, and gender, and determined 

goodness-of-fit with the coefficient of determination (see Online Supplement). A complete 

analysis was also performed for each auscultation site by combining both left and right 

recoded signals from AS, AI, PS, and PI sites. We conducted one-way ANOVA to determine 

if there were differences among thoracic sites. We used Matlab (www.mathworks.com) and 

R (www.r-project.org) for analyses.

Results

Patient and Sound Recording Characteristics

A total of 186 children were enrolled into the study. Mean age, height, and weight among 

study participants were 2.2 years (±1.4), 84.7 cm (±13.2), and 12.0 kg (±3.6), respectively. A 

total of 27 % were infants (2–12 months), 44 % were aged 1–2 years, and 30 % were aged 

3–5 years. We used 151 sound recordings (71 girls and 80 boys) out of 186 in our analysis. 

We excluded 21 (11 %) complete sound recordings because of technical difficulties during 

the recording process and 14 complete sound recordings (8 %) because of missing child 

data. The recordings were mostly comprised normal airflow and heart beat sounds. A total of 

11,721 two-second segments (50 % overlap) were available for analyses in the 151 children; 

however, after noise removal, 348 (3 %) segments were found to be either non-informative 

or noisy (Fig. 2a) and were not included in the analyses. For example, crying intervals were 

easily visualized through the spectral characteristics of the time waveforms due to their 

distinct patterns (Fig. 1).

Spectral Characteristics, Spectral Shape, and Temporal Modulation

In Fig. 2, we summarize the feature extraction process for the average power spectrum, 

spectral shape, and temporal modulation (panels a, c, and e), and the average profiles for 

these features (panels b, d, and f). As expected, lung sounds were found in the lower 

frequency range. For example, the average spectrum profile shows that most of the energy 

contents were concentrated in the lower frequencies (i.e., below 500 Hz) and the MFCC1 

contained resonances mostly at frequencies close to 56 Hz. Our analyses also revealed that 

the spectral shape profile was mostly smooth over the frequency axis, i.e., 70 % of the 

frequency contents of lung sounds were concentrated among scales less than 1 cycle per 

octave. The smoothness was not a feature of the inherent background noise. In fact, if we 

exclude some of the heavily noise-contaminated sounds, the average spectrum profile looked 

even smoother. This suggests that auscultation signals were strongly broadband and at any 

given time they varied smoothly along the frequency axis. The average temporal modulation 

profile showed high-energy contents around −1 Hz (i.e., upward deflection) and 2 Hz (i.e., 

downward deflection), suggesting a slow change in energy contents along the time axis.

Average population values for all spectral and spectro-temporal parameters are presented in 

the first column of Table 2; however, our analyses of 109 sounds with annotations of 

auscultation site (72 % of total data) revealed that spectral and spectro-temporal 

characteristics indeed varied across auscultation sites (Table 2). The proportion of sounds 
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that were excluded from analyses because they were either non-informative or contaminated 

with noise was similar across auscultation sites, and ranged from 1.4 % to 4.9 %. 

Specifically, we identified a wider power spectrum and a lower energy of MFCC1 in anterior 

versus posterior sites. Furthermore, the scale profile was increased in anterior sites versus 

posterior sites, especially in the AS which can be indicative of the prominent energy peaks 

due to heart rate. Finally, the upward rate profile was increased in posterior versus anterior 

sites, but this difference was not significant.

Effect of Child Characteristics on Spectral and Spectro-Temporal Signal Parameters

In Fig. 3, we show the relationship between spectral/spectro-temporal signal parameters and 

specific child characteristics. While most of the signal features revealed linear relationships 

with age, height, and weight for the particular study population, no significant relation was 

found with gender. We did not find differences when data were analyzed using either Z-

scores instead of raw anthropometry data or if non-parametric tests were used (see Online 

Supplement). Trends of the regression lines for age, height, and weight were similar across 

parameters. In other words for RR, HR, PW, and SL parameters, lower distribution values 

were found for subjects of lower age, height, and weight, while older kids yielded higher 

distribution values for MFCCs, PR, PLN, and Rates-parameters. A detailed display of the 

regression coefficients can be found in Table 3 and in the Online Supplement.

Discussion

Our results provide a novel method of analysis and characterization of normal lung sounds 

in children. By extracting spectral and spectro-temporal signals in recordings of lung 

sounds, we were able to identify ten unique parameters that characterize both static and 

dynamic features of normal breathing in healthy children. With these parameters, we provide 

a range of normal lung sounds in children ≤5 years of age taken in real-world noisy 

environments. With this information, we offer simple, reproducible equations that account 

for age, height, and weight that allow for comparison with pathologic sounds in future 

studies.

While age, height, and weight were shown to influence normal sounds in children, no 

significant relation was found between the extracted features and gender information in this 

age range. Age was also correlated strongly with both heart rate and respiratory rate in our 

study, as would be expected. MFCC coefficients, or measurements of chest formation, were 

also strongly associated with age, particularly low-frequency filter MFCCs, which showed 

higher spectral envelope power for older children.

Comparing results with previously published work on adult subjects [19, 20], the spectral 

slope in our study was found to be shallower. This could be a result of additional noise in 

our dataset or intrinsic to age itself. Broader spectrum peaks and shallower slopes were 

observed in signal segments containing more noise, which tend to manifest mostly at higher 

frequencies and broaden the spectral profile; however, this might also be unique to young 

age. More research and improved noise-cancelation techniques will allow clarification of 

this discrepancy. With regard to different lung fields, our results differed from those of 

Boersma, who found the spectral slope varied among site locations [19]. While this was not 
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consistent with our study, peak width, MFCC coefficients, and the spectral modulations 

varied significantly with site locations, particularly when respect to front versus back sites. 

This may be partially due to the finding that children were more likely to be agitated when 

the stethoscope was out of their visual range, possibly altering variable analysis.

The spectral shape profile portrayed interesting information about HR and RR in pediatric 

subjects. In the temporal profile, two distinctive peaks were observed: one with negative and 

one with positive phase. The envelope of the HR cycle has been shown to have a strong 

positive peak followed by a weaker negative one [21–23], while the breathing cycle has been 

reported to have a strong negative peak (at the end of expiration phase) followed by a strong 

positive peak (beginning of inspiration phase) [24, 25]. This would suggest that the observed 

peak at +2 Hz is likely a result of HR, as it was strong and non-variable across individual 

subjects. In contrast, content at −1 Hz was weaker and more variable, which is indicative of 

uncontrolled pediatric respirations.

Perhaps the greatest challenge and limitation of this study was also one of the most 

innovative aspects, analyzing sounds from noisy children in a noisy environment. Literature 

to date do not account for the above factors. Instead, most studies involve adults in 

controlled sound environments with specific instructions for respiration rate and depth of 

breathing. Our study was designed to promote analysis of a vulnerable population in a real-

world environment. We used minimal noise-cancelation techniques for this analysis. We 

opted to simply remove excessively low or high-energy segments that are outside the range 

of known lung sound frequency. While our results contain variable information, we have 

shown trends with a range of data points that can be considered within normal. In addition, 

we were able to identify simple linear relationships and equations among extracted features 

and patient information that will allow for subsequent comparison with adventitious lung 

sounds.

Future work will include improved sound acquisition and sound processing techniques. Our 

group has been developing a device composed on electret pressure microphone arrays, 

inverted large area electret microphones, piezoelectric, and pseudo-piezoelectric transducers 

designed to achieve a uniform sensitivity over the entire area of the chest. With improved 

coupling to the body to reduce leaks from the outside and echo-canceling techniques to 

further mitigate environmental noise, we will improve the quality of sound before signal 

processing occurs.

This study has successfully presented a thorough characterization of control cases in 

pediatric auscultation, and described the inherent challenges and the way those challenges 

may affect the profiles of lung sounds of a subject. Future work by our group will focus on 

two crucial areas: noise reduction techniques and identifying abnormal lung sounds using 

our knowledge of what is normal. Further noise modification techniques will be required for 

analyzing and automating pathologic sounds, as wheezing has been shown to elicit similar 

peaks in the power spectrum [19]. Nonetheless, electronic auscultation will likely benefit 

from using additional clinical information to avoid misinterpretation of pathologic versus 

normal sounds. We aim to then utilize the information gained from this study to compare 

these sound parameters with those of children with respiratory diseases to better understand 
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how disease processes affect their spectral profiles. Our eventual goal is to create an 

automated algorithm for the diagnosis of respiratory disease in children, particularly where 

trained ears are not readily available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Recording excerpt of one study subject. Top the time waveform. Bottom the corresponding 

spectrogram representation, calculated on a 64 ms Hanning window with 50 % overlap. A 

processing window of 2-s duration is marked within the black margins. The two arrows 
indicate recorded noise, in the form of stethoscope movement (short burst of energy at 4.9 s) 

and cry (longer duration interval starting at 7.2 s). The color bar is shown in decibels (db)
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Fig. 2. 
a Power spectrum computed from the 2-s window marked in Fig. 1 bottom, and a power 

spectrum of an interval containing crying (dashed line). The peak width feature (PW) is 

marked. Inset shows the logarithmic spectrum (dashed line) and the corresponding 

regression line (solid line). The slope of the regression line (SL) is −11.26 dB/octave and is 

marked together with an octave interval. b The average subject profile of the power 

spectrum, as calculated using a short-time FFT, smoothed with a Butterworth low-pass filter. 

The dashed lines depict variations among different subjects. c Schematic representation for 
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the extraction of the Spectral shape profile. Spectrogram information was processed for each 

time index and passed through a bank of 31 filters varying from narrowband (ex. top filter 
shown), capturing the peaky contents, to broadband (ex. bottom filter shown) capturing the 

smooth contents. For display purposes, spectrogram was computed on a 64 ms Hanning 

window with 50 % overlap. d The average profile for the spectral shape over all subjects. 

Dashed lines depict the variation among subjects, and the vertical bold line indicates the 

separation of contents below and above 1 cycle/octave. e Schematic representation for the 

extraction of the temporal modulation profile. Spectrogram information was processed along 

each frequency band and passed through a bank of 23 filters varying from high/fast rates 

(filters shown on the left) to low/slow rates (filters shown on the right), for both positive 

phase-downward direction (+) and negative phase-upward direction (−), capturing the 

changes of the frequency content along time. For display purposes spectrogram was 

computed on a 64 ms Hanning window with 50 % overlap. f The average profile for the 

temporal modulations over all subjects. Dashed lines depict the variation among subjects. 

Notice the strong energy around the region of −1 Hz and 2 Hz
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Fig. 3. 
Linear fit (solid line) for each feature (rows, y axis) with respect to patient characteristics 

(columns, x axis). Point-wise prediction bounds (see Online Supplement) with 95 % 

confidence level are also shown with dashed lines. Inset Ra
2, the adjusted coefficient of 

determination of the quadratic fit; r, the linear correlation coefficient, displayed only if a 

significant correlation (P value <0.01) was achieved. Gender column: boxplots for boys (M) 

and girls (F). HR: heart rate, RR: respiratory rate, MFCC1,2,3: Mel-frequency cepstrum 

coefficients for filters centered at 56, 116, and 181 Hz, respectively, PW: spectrum peak 
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width, SL: slope of regression line fit of the logarithmic spectrum, PR: power ratio of the 

total calculated power versus the power of the regression line, PLN: total power of the 

regression line
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Table 1

Spectral and spectro-temporal parameters

Peak width (PW) The peak width of the smoothed power spectrum, P. The peak of the spectrum was identified in the range of 
0–200 Hz. Its width was measured at 75 % of the corresponding height (Fig. 2a)

Spectrum slope (SL) The slope of the linear regression line, fit to spectrum P in logarithmic axes. The power spectrum, when 
plotted in dB as 20 log (P/Pmin) with Pmin = 5 E–05, was previously shown to decrease exponentially with 
frequency for contents higher than 75 Hz [19]. SL is measured in dB/octave, where an octave represents the 
interval needed to double the frequency (Fig. 2a inset)

Power of regression line (PLN) The power of the area under the regression line

Power ratio (PR) The power ratio is defined as PR = 1 – I1 – Espectrm/EregressionI, where Espectrm is the area under the 
logarithmic spectrum and Eregression is the area under the regression line. These areas are computed using 
trapezoidal integration method. A power ratio value close to 1 means that the logarithmic spectrum follows 
the regression line closely [19]

Mel-frequency cepstral 
coefficient (MFCC)

Mel-frequency cepstral coefficients encode information about the peak energies or resonances of a sound 
signal and are indirectly related to the impulse response of the system used to produce the sound. In our 
study, we can consider the chest as a solid system and the resulting MFCC coefficients as indicators of its 
impulse response. As the lung sound signal is recorded after traveling through various chest chambers, 
different chest formations are expected to yield variations in the MFCCs (see Online Supplement A). MFCC 
sequences can be calculated using filters centered at various frequencies. For the current study, three 
coefficients (MFCC1, MFCC2, MFCC3) were kept for each subject by averaging over all short-time 
extracted MFCCs, corresponding to filters centered at frequencies {56, 116, 181} Hz respectively

Spectral shape (scales) Scales estimate how broad or narrow the spectral profile is. These spectral modulations reflect how contents 
vary along frequency and were calculated from the auditory spectrogram, modeling the cochlear 
representation of sounds, calculated over 8 ms window. The auditory spectrogram was filtered using 31 
Gabor-shape seed filters, logarithmically spaced, and varying from wideband to narrowband: 0–8 cycles/
octave (c/o) [26, 27]. The response, produced for each scale and time index, was averaged over time to yield 
the scale profile. Low scale values (<1 c/o) corresponded to a very smooth spectral profile with peaks that 
spread over more than 1 octave; high scale values corresponded to a peaky spectrum with number of tips to 
troughs in the spectrum greater than 1 in each octave. Figure 2c shows a schematic representation

Temporal modulations (rates) Rates capture how fast or slow the frequency contents change with time and in which phase (direction), 
positive or negative. These temporal modulations were calculated from the auditory spectrogram using 23 
exponential filters, constructed of varying velocities ∈ [0, 64] Hz for both directions [26, 27]. Rates were 
computed for each frequency band of the spectrogram, and results were averaged to yield one rate profile per 
subject. Figure 2e shows a schematic representation
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Table 3

Spectral and spectro-temporal parameters as a function of age, gender, weight, and height as extracted using 

the complete recordings

Fitted regression line Lower/upper limits of normal (±1.64 σ)

Respiratory rate 44.97 + 0.46 × age – 0.196 × height – 0.260 × weight ±37.00

Heart rate 118.63 − 3.45 × age + 0.277 × height – 1.842 × weight +320.54

MFCC1 3.97 + 0.050 × age + 0.013 × height – 0.024 × weight ±0.23

MFCC2 −0.24 + 0.074 × age + 0.004 × height – 0.009 × weight ±0.14

MFCC3 0.69 + 0.015 × age + 0.006 × height – 0.013 × weight ±0.05

Spectral width (PW) 220.64 – 0.67 × age − 0.892 × height + 1.23 × weight ±3,588.45

Spectral slope (SL) −7.11 – 0.013 × age − 0.043 × height + 0.05 × weight ±1.15

Power ratio (PR) 0.99 + 0.002 × age − 0.000023 × height – 0.000041 × weight +5.93 × 10−5

Power of regression line (PLN) 3844.61 + 30.72 × age + 89.11 × height – 144.06 × weight +3.96 × 106
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