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Abstract

Foundational advances in eicosanoid signaling, the free radical biology of oxygen and nitric oxide 

and mass spectrometry all converged to enable the discovery of nitrated unsaturated fatty acids. 

Due to the unique biochemical characteristics of fatty acid nitroalkenes, these species undergo 

rapid and reversible Michael addition of biological nucleophiles such as cysteine, leading to the 

post-translational modification of low molecular weight and protein thiols. This capability has led 

to the present understanding that nitro-fatty acid reaction with the alkylation-sensitive cysteine 

proteome leads to physiologically-beneficial alterations in transcriptional regulatory protein 

function, gene expression and in vivo rodent model responses to metabolic and inflammatory 

stress. These findings motivated the preclinical and clinical development of nitro-fatty acids as 

new drug candidates for treating acute and chronic metabolic and inflammatory disorders.
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Introduction

Three foundational discoveries helped direct us down the experimental pathway leading to 
the discovery of fatty acid nitroalkene derivatives (nitro-fatty acids, NO2-FA)

Prostaglandins and leukotrienes were identified as unsaturated fatty acid oxygenation 

products that mediate receptor-dependent regulation of inflammation, metabolism, and 
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vascular function (1). Prior to this discovery, fatty acids and complex lipids were typically 

viewed as sources of metabolic energy and structural constituents of membranes, rather than 

as substrates for signaling mediator biosynthesis. At about the same time, seminal 

discoveries that led to the fields of free radical biology and redox signaling were being 

made. Specifically, the generation of superoxide (O2
·-), hydrogen peroxide (H2O2) and other 

oxygen-derived species was identified in microbes, plants, fish and mammals, along with the 

existence of small molecule and enzymatic antioxidant networks that regulate cell levels of 

these oxidizing species (2). This led to the rapid acceptance of “reactive oxygen species” as 

mediators of xenobiotic toxicity and host defense and later, as cell signaling mediators. 

Finally, the free radical gas nitric oxide (·NO) was identified as a product of nitric oxide 

synthase-catalyzed arginine oxidative deamination and the roles of ·NO as a mediator of 

endothelial-dependent vascular relaxation and neurotransmission were described (3). With 

this critical perspective in mind, we discovered that convergent reactions of unsaturated fatty 

acids and reactive species derived from oxygen, nitric oxide and nitrite (NO2
−) yield a 

family of chemically-reactive products that mediate pleiotropic metabolic and anti-

inflammatory signaling actions. Moreover, synthetic homologs of NO2-FA may have 

pharmacologic utility, as present data indicates oral bioavailability, good pharmacokinetics, 

signaling pathway engagement and a promising safety profile in model systems and humans. 

There were a number of critical steps that had to be taken and pitfalls to overcome in this 

process of discovery:

1. Overcoming an initial bias that ·NO-derived reactive species primarily 

mediated pro-inflammatory and pathogenic oxidation and nitration 

reactions

We had discovered that the toxicity of O2
·− and ·NO could be transduced by peroxynitrite 

(ONOO−), the product of their radical-radical reaction, and by the product of ONOO− and 

carbon dioxide (CO2) reaction, nitrosoperoxocarbonate (ONOOCO2). These nitrogen oxides 

can react directly or rapidly undergo homolytic scission (as ONOOH) to yield nitrogen 

dioxide (·NO2), hydroxyl radical (·OH) and, in the case of ONOOCO2, carbonate radical 

(CO3
−·)(4–7). We also had discovered that the neutrophil-derived heme protein 

myeloperoxidase (MPO), upon degranulation and reaction with H2O2, catalytically 

consumes ·NO and further oxidizes NO2
− to the nitrating species nitrogen dioxide (·NO2)(8–

10). Because of the facile ability of MPO to generate ·NO2 during inflammatory responses 

and the unique ability of MPO to become anatomically “locked” in place by high affinity 

glycosaminoglycan binding, we also discovered a strong spatial co-distribution between 

MPO and nitrated biomolecules (11,12). More recently, we demonstrated that during ·NO 

autooxidation, NO2
− directly participates in fatty acid nitration reactions at neutral pH via 

the formation of symmetrical dinitrogen trioxide (ONONO)(13). These reactions, all 

operative in cell and murine models of inflammation and clinical observations, support the 

physiological relevance of these diverse mechanisms of nitro-oxidative stress (13,14).
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2. How we overcame bias and preconceived notions

In testing the concept that ·NO exacerbates oxidative inflammatory responses in more 

biologically-relevant model systems, we evaluated biochemical, cellular and in vivo 
responses to the co-generation of O2

·−, H2O2 and ·NO. It was first observed that ·NO more 

potently inhibited the oxidation of membranes and plasma lipoproteins than α-tocopherol 

(15,16). We then extended these studies to more biological model systems by showing that 

elevated rates of ·NO biosynthesis or the introduction of ·NO donors led to protection of 

pulmonary and vascular cells having elevated rates of O2
·− and H2O2 generation. Similarly, 

rodents inhaling 95% oxygen (thus enhancing rates of pulmonary O2
·− and H2O2 generation) 

were protected from pulmonary oxygen toxicity by the introduction of 8 ppm ·NO, a 

concentration of inhaled ·NO that is within the range of that used clinically to treat 

pulmonary hypertension (17–19). In these studies, anti-inflammatory, antioxidant and tissue-

protective responses prevailed that were contrary to dogma at the time regarding the 

biochemical effects of ·NO during oxidative inflammatory reactions (20).

3. New perspective was gained regarding the tissue-protective and anti-

inflammatory actions of ·NO during oxidative-stress

The antioxidant actions of ·NO were first ascribed to its kinetically rapid reaction with lipid 

peroxyl radicals, thus terminating autocatalytic free radical-mediated chain propagation 

reactions (15,16,21). It had become apparent that, depending on concentration and the nature 
of the local free radical milieu, the reactions of ·NO could promote both pro-inflammatory 
and anti-inflammatory responses. This was exemplified in a biochemical reaction system 

where rates of ·NO introduction and enzymatic O2
·− and H2O2 generation were varied 

inversely (15). The continuous variation of the ·NO/O2
·− ratios showed that when ·NO 

concentrations exceeded those of O2
·− and consequent ONOO−/ONOOH formation, lipid 

peroxidation was inhibited. The HPLC-MS/MS analysis of the different reaction conditions 

in this study also gave the first mass spectra showing the nitration of unsaturated fatty acids 

by oxidative inflammatory conditions. Further studies of linoleic acid reaction with ONOO−, 

·NO2, NO2
+ or NO2

−/HONO also revealed both linoleate oxidation and nitration products 

(22,23). Previously, photochemical air pollution-related studies of gaseous nitrogen dioxide 

(·NO2) reaction with fatty acids and phospholipids had also shown the formation of nitration 

products (24–26). Prior to appreciating that NO2-FA induce cell signaling responses via the 

PTM of nucleophilic protein targets, additional understanding of the chemical reactions that 

led to unsaturated fatty acid nitration was acquired (27–30). The fact that nitroalkene-

containing hydrocarbons, released at high pressure by a termite soldier gland, act as a 

termite chemical warfare armament for establishing turf domain also suggested that fatty 

acid nitroalkenes might have some unique reactivities (31).
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4. Nitric oxide and its secondary products were observed to regulate lipid 

signaling by modulating the enzymatically-catalyzed oxygenation of 

unsaturated fatty acids

The small molecular radius, lipophilicity and free radical character of ·NO all contribute to 

the broad range of actions that both ·NO and its secondary nitrogen oxides will exert on the 

oxidative generation of bioactive unsaturated fatty acid products. These effects have been 

extensively reviewed and include the regulation of the gene expression and changes in the 

catalytic activities and oxygenated lipid product profiles of cyclooxygenase-1 and -2, 

multiple lipoxygenases, CYP450s and soluble epoxide hydrolase (32–34). When catalyzing 

fatty acid oxidation, cyclooxygenase-1 and -2 and lipoxygenases were observed to 

catalytically consume ·NO and impair downstream cGMP-dependent signaling actions 

(10,35–37). Moreover, electrophilic NO2-FA species inhibit cyclooxygenase and 

lipoxygenase catalysis and gene expression (38,39). These observations affirmed to us that 

there is a very strong and diverse array of biochemical linkages between lipid and ·NO 

signaling.

5. The organic synthesis of nitro-oleic, nitro-linoleic and nitro-arachidonic 

acid provided the key to unlocking the analytical, biochemical and 

pharmacological characteristics of nitro-fatty acids

The characterization of nitration products of unsaturated fatty acids in model system 

reactions prioritized the first NO2-FA to be synthesized. This was first accomplished by a 

selenium-catalyzed nitration reaction that gave mixed regioisomers of linoleic and oleic acid 

nitroalkenes (40–42). Later, the synthesis of specific nitro-oleic acid regioisomers by the 

Henry nitro-aldol reaction further facilitated the discovery of the pleiotropic signaling 

actions of NO2-FA and the definition of structure-function relationships in the responses of 

signaling networks to different fatty acid nitroalkene derivatives (43–49). Moreover, these 

synthetic approaches allowed the synthesis of isotopically-labeled NO2-FA (13C, 15N and 
18O), permitting the development of HPLC-based isotopic dilution mass spectrometry 

methods. Overall, these capabilities and reagents were crucial for defining the endogenous 

generation, tissue levels, metabolism, and signaling actions of this new class of mediators 

(22,43,44,50–54). Nonetheless, some mistakes and incorrect assumptions were made in 

early studies of the structure and concentrations of NO2-FA species in biological systems 

(15,50). These analytical challenges were similar to the those faced in other studies of 

electrophilic fatty acid derivatives, for example 15-deoxyprostaglandin J2 (15d-PGJ2), 4-

hydroxy-2-nonenal and α,β-unsaturated fatty acid ketone derivatives, when trying to 

establish their endogenous tissue and plasma levels, with net tissue concentrations of these 

species still remaining controversial. The later development of improved sample preparation, 

chromatographic separations, and more refined mass spectrometric analyses improved NO2-

FA structural and concentration determinations (51,55–63). Also, better understanding of the 

bond scission mechanisms operative in mass spectrometer-based fragmentation studies 

permitted the definition of NO2-conjugated linoleic acid as the principal nitrated fatty acid 

regioisomer present in cellular models of inflammation, and endogenously in both animal 
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models and humans (13,14,55–57,64). The availability of solid analytical approaches and 

critical reagents for studying lipid nitroalkene pharmacology were crucial for obtaining 

consistent results between investigators and labs focused on defining the mechanisms of 

NO2-FA generation, metabolism and how these species impact cell and organ function. As 

discussed in the translational chapter of this series, these goals were accomplished in parallel 

with the acquisition of intellectual property protection, studies of NO2-FA actions in 

preclinical models of inflammatory and metabolic diseases and the attainment of investment 

for supporting new drug development activities. Importantly, freely sharing reagents, 

standards, analytical expertise and ideas with colleagues was crucial for correcting mistakes, 

improving methods, replicating results and advancing understanding.

6. Critical issues and novel insights regarding the unique nature of NO2-FA 

as endogenous mediators and new drug candidates

Do NO2-FA generate ·NO?

We initially viewed that NO2-FA might serve as an endogenous reserve of ·NO that would 

be formed by metabolic and inflammatory reactions, and that after decay or metabolism 

would subsequently mediate cGMP-dependent vascular relaxation. To this extent, we and 

others have documented very low stoichiometric levels of ·NO release by NO2-FA under 

aqueous conditions (40,44,65–70). While the mechanism of ·NO release is still a matter of 

debate (via a modified Nef reaction or a rearrangement to a nitrite ester and N-O bond 

homolysis), these potential reactions are inhibited in membranes and in the presence of 

plasma constituents such as protein and lipoproteins (44,65,70). Further lines of evidence 

coming from more biologically relevant systems such as rodent model and clinical studies 

also do not support the occurrence of ·NO-mediated, cGMP-dependent signaling actions of 

NO2-FA. For example, acute intravenous infusion of low to high concentrations of NO2-FA 

does not affect blood pressure or heart rate in rodents, dogs and humans (71). Still, there are 

other biochemical and cellular studies that still suggest that fatty acid nitroalkenes yield 

·NO. We view that additional experimental evidence is needed, that must be supported by 

the reactions of 15N-labeled NO2-FA and the subsequent detection of 15NO2
− and/or· 15NO. 

These approaches are important for eliminating the confounding effects of adventitious 

NO2
−, contamination and the concomitant modulation of cellular or in vivo sources of ·NO 

generation. In the latter regard, NO2-FA a) induce endothelial nitric oxide synthase gene 

expression and catalytic activity and b) promote the upregulation of multiple antioxidant 

mechanisms that will “preserve” ·NO by limiting its oxidative inactivation and the 

subsequent generation of secondary nitrogen oxides.(72)

NO2-FA displays a unique pharmacology that is dissimilar from ·NO

In the early 2000s, two cell biological studies documented non-cGMP-dependent inhibition 

of platelet and neutrophil function by nitro-linoleic acid (73,74). This work significantly 

transformed our understanding of the mechanisms accounting for the potential signaling 

actions NO2-FA signaling. Both of these studies revealed that, in the absence of cytotoxicity, 

NO2-FA induced novel anti-inflammatory signaling actions at very low concentrations. This 

data affirmed that there were effects of NO2-FA on calcium homeostasis and cAMP/adenyl 
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cyclase signaling that occurred in the absence of transcriptional responses and reactions that 

could be attributable to ·NO/cGMP.

Michael acceptor properties – a crucial mechanism of action underlying NO2-FA signaling

The cGMP-independent signaling actions of NO2-FA pointed to non-canonical signaling 

actions being defined by the nitroalkene group of NO2-FA. This functionality confers unique 

electrophilic character to the β-carbon of nitro-activated alkenes. The −NO2 substituent is 
one of the most electron-withdrawing moieties in chemistry, thus when bonded to an alkene 
it promotes a kinetically rapid and reversible NO2-FA Michael addition with cysteine (Cys), 
a reaction that induces the post-translational modification (PTM) of proteins and potentially 
alters target protein structure and function (59,75,76). These biochemical characteristics 

(kinetically rapid and reversible) differentiate NO2-FA from most other endogenous 

signaling electrophiles such as cyclopentanone prostaglandins and aldehydic lipid oxidation 

products (e.g., 15d-PGJ2 and 4-hydroxy-2-nonenal). These non-nitrated lipid electrophiles, 

while potentially abundant, react slowly with nucleophiles, do not readily β-eliminate and 

can form irreversible Schiff’s base products. Unlike fatty acid cyclopentenone and lipid 

aldehyde derivatives, NO2-FA will not accumulate as thiol addition products or promote 

toxicity at low concentrations. The irreversible reaction of many Michael adducts under 

biological conditions can be a main cause of cell toxicity (77). Current model systems, 

preclinical pharmacokinetics and toxicology studies and Phase 1 safety evaluation in healthy 

and obese individuals continue to support that NO2-FA such as 10-nitro-oleic acid is safe in 

humans at pharmacologically-active doses. A single exception to this generalization comes 

from the topical application of NO2-FA in a model of allergic contact dermatitis. While oral 

and subcutaneous NO2-FA administration inhibits dermal responses to hapten-induced 

inflammation, the topical administration of solvated NO2-FA results in a sustained 

neutrophil-dependent inflammation (78,79). Even though the inflammatory milieu of 

psoriasis in humans actually increases dermal production and levels of NO2-FA, it appears 

that the high local epithelial concentrations that would result from dermal administration of 

solvated NO2-FA induces pro-inflammatory responses.

NO2-FA detection approaches evolved in response to new understanding of NO2-FA 
electrophilic character and metabolism

HPLC-MS/MS was crucial for resolving and detecting fatty acids having NO2 substituents. 

Early bioanalysis of NO2-FA was occasionally complicated by acid-catalyzed nitration 

occurring by the formation of nitrous acid from the protonation of NO2
− to nitrous acid 

(HNO2) during lipid extractions and de-esterification reactions, leading to further generation 

of NO2-FA. We learned that one could control for this artifact by including 15NO2
− during 

tissue handling and extractions, with the formation of 15NO2-FA indicating unwanted 

processing-induced nitration. Upon realizing that these species were electrophilic, new 

strategies were developed for “fishing out” protein-adducted NO2-FA for MS-based 

structural and quantitative analysis. Three techniques have been particularly revealing. The 

first involves addition of a high concentration of β-mercaptoethanol to cell preparations and 

tissue homogenates to force the β-elimination of adducted NO2-FA and reaction with excess 

β-mercaptoethanol, yielding higher molecular weight adducts that would yield a fragment 

ion of m/z 78. A second approach is the addition of HgCl2 to biological fluid or tissue 
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samples. Since NO2-FA form reversible adducts with thiols, after an “off reaction” (β-

elimination of NO2-FA from a thiol) Hg will react with the free thiol formed by NO2-FA 

dissociation, resulting in the inhibition of subsequent thiol reactions. Overall, this results in a 

net increase in detectable “free” NO2-FA and still-electrophilic NO2-FA metabolites. The 

chemistry of this reaction has not been studied in depth and direct interactions of Hg with 

the NO2-FA adduct should not be excluded. Applying this approach to healthy human urine, 

the Hg-induced NO2-FA displacement strategy increases detectable “free” NO2-FA levels by 

10–20 fold (57). More recently, the clinical administration of 15N-labeled nitrite and nitrate 

has convincingly shown that fatty acid nitration occurs in humans during digestion (Fig. 1) 

(80,81). This observation in turn motivated the proposal that the cardiovascular benefits of a 

Mediterranean-like diet, rich in both vegetable-derived NO2
− and NO3

− and marine or olive 

oil-derived unsaturated fatty acids, could be (in part) ascribed to increased NO2-FA 

generation and the downstream elevation of vasoactive and anti-inflammatory lipid 

mediators (82).

In intracellular environments, where the concentration of low molecular weight and protein 

thiols can exceed 15 mM, the concentration of free NO2-FA is expected to be below 1% of 

total available NO2-FA, given the calculated equilibrium constants (83). This underscores 

the need to identify the specific protein targets of these bioactive electrophilic lipids. While 

biotin derivatives of the carboxylate of NO2-FA were initially used, these suffer from 

increased bulkiness, the intrinsic problem of esterase cleavage and disruption of potential 

CoA ester formation, potentially impairing detection and altering intracellular distribution 

and pharmacokinetics. To address this, ω-terminal azido derivatives of NO2-FA were 

synthesized for click chemistry-based definition of protein targets. Finally, NO2-FA 

alkylation increases HPLC retention times of modified peptides, allowing for more facile 

target identification and providing an alternative mass spectrometry-based approach for 

target protein determinations (84).

NO2-FA reaction with the cysteine proteome regulates protein expression by the 
electrophile-responsive genome

Affinity labeling and mass spectrometry studies have identified susceptible NO2-FA protein 

targets and now focus has been placed on understanding the biochemical and cellular 

consequences of NO2-FA-protein reactions. Current perspective holds that transient post-
translational modification (PTM) of hyperreactive protein thiols by NO2-FA modulates 
signaling pathways involved in cell proliferation and inflammatory responses(85). This 

occurs as a result of the alkylation of functionally-significant Cys residues in transcriptional 

regulatory proteins, including the Kelch-like ECH-associated protein-1 (Keap1) regulator of 

nuclear factor (erythroid-derived-2)-like 2 (Nrf2) signaling, the nuclear lipid receptor 

peroxisome proliferator-activated receptor γ (PPARγ), heat shock factor-1 (HSF-1) and NF-

κB (48,86,87). Of relevance to the anti-inflammatory actions of NO2-FA is the potent and 

multifaceted inhibition of NF-κB-mediated signaling, as demonstrated in diverse cell and 

murine models of cancer, metabolic syndrome, cardiopulmonary disease and both acute and 

chronic renal disease (87–90). Unbiased gene expression response studies in human vascular 

endothelial and smooth muscle cells affirm the broad and pleiotropic modulation of adaptive 

cell responses by NO2-FA that would be anticipated from the PTM of key transcriptional 
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regulatory proteins (91,92). Functional enrichment analysis of differentially expressed genes 

reveals multiple cellular processes will be affected, including cell proliferation, lipid 

metabolism, antioxidant and inflammatory-related gene expression responses.

NO2-FA esterification in complex lipids

Since the initial demonstration of increased cholesterol nitrolinoleate levels in post-prandial 

human plasma, further advances related to the characterization and quantitation of esterified 

NO2-FA have been scarce (53,61). These analyses are complicated by the instability of NO2-

FA in most hydrolysis conditions, ion suppression by native complex lipids during direct 

mass spectrometric analysis and the complexity of the different molecular species expected 

from various esters of NO2-FA in phospholipids, glycerides and sterols. Fortunately, recent 

advances in the detection and characterization of esterified NO2-FA have been made. While 

phospholipid analysis has not yet been translated into in vivo measurements, the presence of 

NO2-FA containing triglycerides has been reported in animal models supplemented with 

NO2-FA (93,94). Of importance, triglycerides are an important storage depot and 

distribution mechanism for remote organ deposition of NO2-FA. In this regard, the 

hydrophobic environment of membranes, lipid droplets, and lipoproteins abrogates any 

nitroalkene reactivity with thiols, even those present in small molecules such as β-

mercaptoethanol, cysteine and glutathione. In addition to these accessibility limitations for 

Michael addition by esterified NO2-FA, current data indicates that NO2-FA also do not add 

to thiolates in organic solvents, supporting that acid-base chemistry for NO2-FAnucleophile 

reactivity.

7. Conclusions

The study of interactions between ·NO-derived species and lipid peroxidation intermediates 

motivated the discovery of a functionally unique class of endogenous mediators (lipid 

nitroalkenes). The unique biochemical qualities of the electrophilic nitroalkene substituent 

prompted the evaluation of downstream signaling responses, the acquisition of better 

understanding of the pharmacokinetics and potential toxicity of orally and 

intravenouslyadministered NO2-FA and the in vivo testing of NO2-FA pharmacology in 

preclinical models of metabolic and inflammatory disease. Moreover, the detection of fatty 

acid nitroalkenes in plants and their linkage with plant stress responses expands the scope of 

actions of this class of mediators. These data, reinforced by the observation that NO2-FA are 

endogenously-generated during digestion, inflammatory responses and metabolic stress, has 

motivated their evaluation as therapeutic agents for treating pathogenic cell proliferation, 

metabolic and inflammatory-related diseases in humans.
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Highlights

• The discovery of nitro-fatty acids (NO2-FA) was motivated by new insight 

into the biochemistry of nitration reactions and the signaling actions of 

oxidized fatty acids.

• Four main areas of discovery supported the notion that NO2-FA serve as 

mediators of physiological homeostasis and in pure form as 

pharmacologically-active agents:

◦ The reversible reaction of electrophilic nitro-fatty acids with 

cysteine and the central role of this reaction in modulating key 

signaling and gene expression responses.

◦ The identification of conjugated diene-containing fatty acids such as 

conjugated linoleic acid as main substrate for nitration.

◦ The digestive and inflammatory formation of NO2-FA in humans 

and rodents.

◦ The protective anti-inflammatory and anti-fibrotic actions of NO2-

FA in a wide range of preclinical animal models of metabolic and 

inflammatory disease.
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Figure 1. Fatty acid nitration is induced by nitrite and nitric oxide dependent mechanisms
The concentrations of nitrogen oxide precursors for nitrogen dioxide generation and levels 

of readily-nitrated unsaturated fatty acids such as conjugated linoleic acid will impact rates 

of formation and tissue concentrations of fatty acid nitroalkene derivatives.
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