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Abstract

Compressive sensing is a framework for acquiring sparse signals at sub-Nyquist rates. Once 

compressively acquired, many signals need to be processed using advanced techniques such as 

time-frequency representations. Hence, we overview recent advances dealing with time-frequency 

processing of sparse signals acquired using compressive sensing approaches. The paper is geared 

towards signal processing practitioners and we emphasize practical aspects of these algorithms. 

First, we briefly review the idea of compressive sensing. Second, we review two major approaches 

for compressive sensing in the time-frequency domain. Thirdly, compressive sensing based time-

frequency representations are reviewed followed by descriptions of compressive sensing 

approaches based on the polynomial Fourier transform and the short-time Fourier transform. 

Lastly, we provide brief conclusions along with several future directions for this field.
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1. Introduction

Time-frequency analysis provides a framework for a descriptive analysis of non-stationary 

signals whose models are not available or easily constructed [1], [2]. For such signals, time 

or frequency domain descriptions typically do not offer comprehensive details about changes 

in signal characteristics [3]. The main issue with the time domain representation is that it 

provides no details about the frequency content of those signals, and sometimes, even the 

time content can be difficult to interpret [4]. The frequency domain on the other hand 

provides no easily understood timing details about the occurrence of various frequency 

components [5]. In other words, timing details are buried within the phase spectrum of a 

signal, which is the most common reason for only analyzing the amplitude spectrum of a 
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signal obtained via the Fourier transform. To combine timing and spectral into a joint 

representation, a time variable is typically introduced into a Fourier-based analysis to obtain 

two-dimensional, redundant representations of non-stationary signals [6]. Such 

representation provide a description of spectral signal changes as a function of time, that is, 

the description of time-varying energy concentration changes along the frequency axis. In an 

ideal case, these two-dimensional signal representations would combine instantenous 

frequency spectrum with global temporal behavior of a signal [7], [8], [9],[10], [11], [12], 

[13], [14], [15].

Time-frequency analysis is often employed in the analysis of complex non-stationary signals 

(e.g., physiological signals [16], [17], [18], [19], [20], [21], [22], [23], mechanical vibrations 

[24], [25], [26], [27], audio signals [28], [29], [30], radar signals [31], [32], [33], [34], [35], 

[36]). However, continuously monitoring such signals for an extended period of time can 

impose heavy burdens on data acquisition and processing systems, even when sampling 

these non-stationary signals at low sampling rates. To avoid these data acquisition and 

processing burdens, compressive sensing aims to compress signals during a data acquisition 

process, rather than afterwards [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], 

[48], [49], [50], [51], [52].

In this paper, we review recent advances that combine the ideas of time-frequency and 

compressive sensing analyses. Section 2 reviews the main ideas behind compressive sensing. 

In Section 3, we introduce the main approaches to obtain compressed samples in the time-

frequency domain. Several different approaches are presented here including compressive 

sensing in the ambiguity domain, but also compressive sensing of non-stationary signals 

using time-frequency dictionaries. We also reviewed compressive sensing approaches that 

relied on the short-time Fourier transform and the polynomial Fourier transform. 

Compressive sensing based time-frequency representations are described in Section 4. 

Conclusions and future directions are provided in Section 5.

2. Compressive Sensing

In traditional signal processing, the Shannon-Nyquist sampling theorem mandates that any 

signal needs to be sampled at least twice the highest frequency present in the signal to be 

able to accurately recover information present in the signal. The traditional sampling 

approach can yield a large number of samples, and compressive strategies are often used 

immediately after sampling in order to reduce storage requirements or transmission 

complexities. While this has been a prevailing approach for many years, it is clearly a 

redundant approach as most of acquired samples are disregarded immediately after 

sampling. To avoid these redundant steps, compressive sensing has been proposed and it 

postulates a signal can be recovered using a fewer number of samples than required by the 

Shannon-Nyquist theorem [38], [39], [53], [40], [54] [55], [56], [57], [58], [59], [60], [61], 

[62], [63].

The main idea behind compressive sensing is to combine sensing and compression steps into 

a single step during a data acquisition process [39], [40], [42], [64], [65]. Compressive 

sensing approaches typically acquire signals at sub-Nyquist rates (e.g., one tenth of the 
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Nyquist rate) and signals can be accurately recovered from these samples with a certain 
probability [39]. These approaches work very well for K-sparse signals, i.e., signals that can 

be represented by K bases in an N-dimensional space. In other words, compressive sensing 

approaches will acquire M ≪ N samples that will encode a K-sparse signal of dimension N 
by computing a measurement vector y of a signal vector s [66], [67], [68], [69]:

y = Φs (1)

where Φ represents an M × N sensing matrix [40]. The signal vector s can be recovered from 

sparse samples by utilizing a norm minimization approach:

min ‖s‖0 subject to ‖y − Φs‖2 < ξ (2)

where ξ is measurement noise, ||s||0 represents the number of nonzero entries of s and ||●||2 

is the Euclidian norm. However, it should be mentioned that it is not guaranteed that eqns. 

(1) and (2) will provide an accurate representation of sparse signals. In some applications 

that are sensitive to small changes such as medical diagnostic applications, it is almost 

mandatory to achieve almost perfect recovery of these sparse signals, otherwise compressive 

sensing schemes are not useful at all in medical diagnostic applications. To reach these 

almost perfect reconstructions of sparse signals, compressive sensing can be performed in 

other domains (i.e., other than the time domain), which yields a new reformulation of the 

compressive sensing appraoch proposed in (1) as [64], [67]:

y = Φs = ΦΨx . (3)

Here, x is the vector of expansion coefficients representing the sparse representation of the 

signal s in the basis Ψ. A very good example of this change is representing a single sinusoid 

in the frequency domain. This transformation would enable us to represent such a sinusoid 

with by a two-sparse vector. In this paper, this change of the domain is achieved by 

representing a signal in the time-frequency domain, rather than using its time-domain 

samples.

It should be understood that the compressive sensing approach proposed by eqn. (3) affects 

the sparsity in the transform domain, which then inherently affects the number of 

measurements needed to reconstruct a signal. This is assessed using the so-called coherence 

measure between the matrices Φ and Ψ [70], [71], [72], [73]:

μ(Φ, Ψ) = n max ∣ 〈ϕk, ψ j〉 ∣ (4)

where N is the signal length, ϕk is the kth row of Φ, and ψj is the jth row of Ψ. Smaller 

values of the coherence measure typically denote that a smaller number of random 

measurements is needed to accurately reconstruct a signal.
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3. Time-frequency based compressive sensing

The time-frequency domain represent an ideal domain to sparsely represent nonstationary 

signals for several different reasons. First, it is very difficult to represent nonstationary 

signals sparsely either in time or frequency domains. For example, a frequency modulated 

signal is concentrated along its instantaneous frequency in the time-frequency domain, and 

most of other values are equal to zero. But, its frequency domain representation has many 

non-zero components, and its time domain representation typically has many (large) 

amplitude changes that can be difficult to compress. Therefore, such a frequency modulated 

signal or any other signal with complex non-stationary structures should be compressively 

sampled in the time-frequency domain, as their representations are often sparse in the time-

frequency domain [74], [75], [76]. Second, recent advances in computational resources 

enabled fast manipulations of large matrices, which are required for compressive sensing of 

nonstationary signals in the time-frequency domain [77].

In this section, we will overview two major approaches for compressive sensing of 

nonstationary signals in the time-frequency domain. We will begin with compressively 

sampling a nonstationary signal in the ambiguity domain as proposed in [78] with 

understanding that this approach is only applicable for quadratic time-frequency 

representations. A more general approach is to utilize time-frequency dictionaries to obtain a 

sparse time-frequency representation of a nonstationary signal, which can be then used to 

compressively sensed such a signal.

3.1. Compressive sensing in the ambiguity domain

As mentioned in the previous paragraph, the ambiguity domain provides a suitable 

framework to compressively sampled non-stationary signals. To achieve representations in 

the ambiguity domain, we can start with the Wigner-Ville distribution, WVD(t, f), and take 

the two-dimensional Fourier transform of it to obtain the ambiguity domain representation 

[1], [79]:

Ax(ν, τ) = ℱ2D{WVD(t, f )} (5)

where ℱ2D is the forward and inverse two-dimensional Fourier operator. The ambibuity 

domain offers an opportunity to supress or completely remove cross-terms, which plague the 

quadratic time-frequency representations, as cross-terms are typically displaced from the 

origin in the ambiguity domain, and the auto-terms are typically centered around the origin. 

Therefore, low-pass filtering by multiplying the ambiguity representation of the signal, 

Ax(ν, τ ), by a kernel function k(ν, τ ):

𝒜x(ν, τ) = Ax(ν, τ)k(ν, τ) . (6)

However, it should be mentioned here that compressive sensing appraoches here are mostly 

used to obtain enhanced time-frequency signal energy localization in the time-frequency 

domain. Specifically, we compressively sample the ambiguity domain representation of the 

Sejdić et al. Page 4

Digit Signal Process. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signal in order to obtain a very sparse time-frequency domain signal representation. This is 

achieved by solving the l1-norm minimization problem to obtain a sparse time-frequency 

distribution ϒ̂x(t, f):

ϒx(t, f ) = arg minϒx(t, f ) ‖ϒx(t, f )‖1 (7)

F2D{ϒx(t, f )} − 𝒜x
M = 0 (ν, τ) ∈ Ω (8)

where 𝒜x
M denotes the set of samples from the ambiguity domain in the region defined by 

the mask (ν, τ ) ∈ Ω, ϒx(t, f) denotes the time-frequency distribution, and ||·||1 denotes the ℓ1 

norm. Noise distributions can be approximated as follows:

ϒx(t, f ) = arg minϒx(t, f ) ‖ϒx(t, f )‖1 (9)

‖F2D{ϒx(t, f )} − 𝒜x
M‖2 ≤ ε

(ν, τ) ∈ Ω
(10)

One has to carefully select samples in the ambiguity domain via an appropriate ambiguity 

function masking, which is formed as a small, mostly rectangular, area around the origin in 

the ambiguity plane. This resembles an approach taken to achieve high-resolution time-

frequency distributions [80], [81], as we design the mask to pass auto-terms, and reduce 

cross-terms.

As an illustrative example of this approach, let us consider a sinusoidally-modulated signal 

with additive white Gaussian noise. For illustrative purposes, the time-frequency 

representations in Figure 1 are of size 60 × 60 points. Here, we consider a very small 

rectangular mask of size 7 × 7 points in the ambiguity domain, which represents just over 

one percent of the total number of samples. Now, let us consider the time-frequency 

representations of the signal. Figure 1(a) depicts the signal in the ambiguity domain which is 

observed as a domain of observations. The Wigner distribution is considered as a standard 

time-frequency distribution that can be derived from the ambiguity function in Figure 1(a) 

and it is the most appropriate to the considered signal type. This standard form of the time-

frequency distribution is used only for the comparison purpose and it is calculated assuming 

the full set of samples from the ambiguity domain is available, Figure 1(b). Lastly, the 

compressive sensing based sparse time-frequency representation is presented in Figure 1(c). 

Unlike the standard time-frequency representation that requires full set of samples, the 

sparse representation is calculated from a very limited number of available samples. Despite 

this fact, we may observe that compared to the standard distribution (Figure 1(b)) the sparse 

representation achieved using compressive sensing approach offered a number of distinct 
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advantages. First, it reduced the noise influence on the time-frequency representation, that is, 

it almost removed it completely from the distribution. Second, a number of non-zero terms 

in the sparse representation is about 50, which represents slightly over one percent of the 

total number of points in the time-frequency domain. Hence, by compressively sensing the 

ambiguity representation of the signal, not only did we manage to compress the signal 

representation, but we also de-noised it.

An inherent issue with this approach is one requires the representation of a signal in the 

ambiguity domain. Hence, any hardware implementation of this approach is quite complex. 

Furthermore, this approach is applicable only to quadratic signal representations, which 

limits our further signal manipulations (e.g., obtaining its time domain samples).

3.2. Compressive sensing based on time-frequency dictionary and matching pursuit

A more widely adopted approach is to utilize time-frequency dictionaries and obtain sparse 

signal representations using eqns. (2) and (3). Needless to say, this approach has very high 

computational costs which hindered its applications for many years. However, matching 

pursuit [82] or its variations (e.g., [83]) are very useful to avoid computational burdens 

associated with traditional compressive sensing approaches. Here, it is important to mention 

that a wide selection of time-frequency dictionaries exists, such as Gabor frames, curvelet 

frames, wavelet frames, overcomplete Fourier dictionaries or any combinations of these 

dictionaries [70], [84], [85], [86], [87], [88], [89], [90], [91].

Compressive sensing based implementation of a typical matching pursuit approach starts 

with an initial approximation of the signal, x̂(0)(m) = 0, and the residual, R(0)(m) = x(m). 

Here m represent the M time indices that are uniformly or non-uniformly distributed, that is, 

M time indices compressively acquired. At each subsequent stage, the matching pursuit 

algorithm identifies a dictionary atom with the strongest contribution to the residual and 

adds it to the current approximation:

x(k)(m) = x(k − 1)(m) + αkϕk(m) (11)

R(k)(m) = x(m) − x(k)(m) (12)

where αk = 〈R(k−1)(m), ϕk(m)〉/||ϕk(m)||2. The process continues till the norm of the residual 

R(k)(m) does not exceed required margin of error ε > 0: ||R(k)(m)|| ≤ ε [82], or a number of 

bases, 𝖓 , needed for signal approximation should satisfy 𝖓  ≤ . Lastly, an 

approximation of a compressively sampled signal is obtained using L bases as

x(n) = ∑
l = 1

L
〈x(m), ϕl(m)〉ϕl(n) + R(L)(n) (13)
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where ϕl are L bases from the dictionary with the strongest contributions. L bases used in the 

signal approximation are obtained regardless of the implemented stopping criterion.

The approach based on time-frequency dictionaries is suitable for any post-processing of 

compressively sampled signals. For example, we can easily obtain any time-frequency 

representation of a signal using this L-bases based approximation:

𝒯ℱ{x(n)} = ∑
l = 1

L
〈x(m), ϕl(m)〉𝒯ℱ{ϕl(n)} (14)

where ℱ{} is a time-frequency operator (e.g., the S-transform or short-time Fourier 

transform) [1], [92].

As mentioned in the previous paragraphs, M samples can be acquired in uniform or 

nonuniform manners and the exact time values are needed to acquire proper values of the 

time-frequency dictionary. Nevertheless, many real-life conditions may prevent us from 

acquiring such exact times, and there is a need to estimate the sampling time instances. This 

is achiavable via annihilating filters contributions [38], [93], [94], which rely on determining 

the roots of an autoregressive filter in order to estimate the sampling instances.

3.2.1. A case study of a time-frequency dictionary for compressive sensing: 
Modulated discrete prolate spheroidal sequences—Discrete prolate spheroidal 

sequences were proposed by Slepian in 1978 [95]. For N samples and a normalized half-

bandwidth value, W, a discrete prolate spheroidal sequence, vk(n,N,W), is defined as the real 

solution of[95]:

∑
m = 0

N − 1 sin [2πW(n − m)]
π(n − m) vk(m, N, W) = λk(N, W)vk(n, N, W) k = 0, 1, …, N − 1 (15)

with 0 < W < 0.5, and λk(N,W) being non-zero eigenvalues of (15). The amplitude of these 

eigenvalues can be also approximated for fixed k and large N as

1 − λk(N, W) π
k! 2

14k + 9
4 α

2k + 1
4 [2 − α]−(k + 0.5)Nk + 0.5e−γN (16)

where α = 1− cos(2πW) and γ = log 1 + 2 α
2 − α

. It can be shown that the first 2NW 

eigenvalues are very close to 1 while the rest rapidly decays to zero [95]. These eigenvalues 

are also the eigenvalues of an N × N matrix C(m, n) defined as [95]:

C(m, n) = sin [2πW(n − m)]
π(n − m) m, n = 0, 1, …, N − 1. (17)
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By time-limiting a discrete prolate spheroidal sequence, vk(n,N,W), we can obtain an 

eigenvector of C(m, n). The discrete prolate spheroidal sequences are doubly orthogonal, 

that is, they are orthogonal on the infinite set {−∞, …,∞} and orthonormal on the finite set 

{0, 1, …,N − 1}.

In recent years, discrete prolate spheroidal sequences were used to obtain sparse signal 

representations especially in the cases when these sequences and an analyzed signal are in 

the same frequency band [96], [97]. Nevertheless, when the sequences and the signal are not 

aligned in the frequency domain, a larger number of discrete prolate spheroidal sequences is 

needed to obtain an accurate approximation and resulting approximations are often not 

sparse. To avoid this issue with discrete prolate spheroidal sequences, modulated discrete 

prolate spheroidal sequences were proposed in [96], which are defined as:

Mk(N, W , ωm; n) = exp ( jωmn)vk(N, W; n) (18)

where ωm = 2πfm is a modulating frequency. Modulated discrete prolate spheroidal 

sequences are also doubly orthogonal, have most of properties of original discrete prolate 

spheroidal sequences and are bandlimited to the frequency band [−W + ωm : W + ωm] [96].

Choosing a proper modulation frequency ωm requires some a priori knowledge, or a guess. 

The simplest case is when a signal is confined to a known band [ω1; ω2], then the 

modulating frequency, ωm, and the bandwidth of the modulated discrete prolate spheroidal 

sequences are given by

ωm =
ω1 + ω2

2 (19)

W =
ω2 − ω1

2 (20)

as long as both satisfy:

∣ ωm ∣ + W < 1
2 . (21)

Nevertheless, the exact frequency band is not known in many practical applications. In 

general, we will only have details about a relatively wide frequency band. To account for 

many different possibilities, we proposed to construct a time-frequency dictionary 

containing bases which reflect various bandwidth scenarios [96]. This approach was used in 

a number of recent compressive sensing contributions [98], [92], [99], [100].
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A sample case, depicted in Figure 2(a), involves a signal consisting of four basis functions 

from a 25-band dictionary based on modulated discrete prolate spheroidal functions with the 

normalized half-bandwidth equal to W = 0.495 and N = 256. For both uniform and non-

uniform sampling, only 42 samples were needed to accurately recover the signal (less than 

17% of the total number of samples) and its spectrograms based on regular and irregular 

sample times as shown in 2(c) and (d). A greater percentage of samples was required for this 

case in comparison to the first case as the second case is recovered almost exactly.

3.3. Compressive sensing in the time-frequency domain using short-time Fourier 
transform sparsity

Many of the signals appearing in real applications have a sparse representation in the Fourier 

transform domain, but also in the short-time Fourier transform domain [101], [102]. 

However, when the signal is affected by the noise, the number of non-zero components 

significantly increases thus ruining the sparsity, as shown in Figure 3(a) (its sorted values are 

shown in Figure 3(b)). By applying the L-estimation over columns of the short-time Fourier 

transform matrix, we may discard most of the unwanted coefficients from the short-time 

Fourier transform domain [103], [32]. However, many useful coefficients are also discarded 

in this process and we need to recover them using the compressive sensing approach. In the 

matrix form the short-time Fourier transform vector calculated at the time instant n using a 

rectangular window of size M can be defined as follow:

STFT(n, 0)
STFT(n, 1)

⋮
STFT(n, M − 1)

=

Ψ(0, 0) … Ψ(0, M − 1)
Ψ(1, 0) … Ψ(1, M − 1)

⋮ … ⋮
Ψ(M − 1, 0) … Ψ(M − 1, M − 1)

x(n)
x(n + 1)

⋮
x(n + m − 1)

(22)

or in a more compact form:

STFTM(n) = ΨMxM(n) (23)

where ΨM is the discrete Fourier transform matrix of size M ×M:

Ψ(m, k) = exp − 2πkm
M m = 0, 1, …, M − 1, k = 0, 1, …, M − 1 (24)

The index M denotes the size of corresponding vectors. For the sake of simplicity, let us 

assume the non-overlapping windows, meaning that the short-time Fourier transform is 

calculated for time instants n taken with the step M : {0,M, 2M, …,N − M}. The short-time 

Fourier transform calculation results in a set of short-time Fourier transform vectors: 

STFTM(0),STFTM(M), …,STFTM(N − M). Therefore, the STFT for all considered time 

instants n ∈ {0,M, 2M, …,N −M} is defined as follows [32]:
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STFTM(0)
STFTM(M)

⋮
STFTM(n − M)

=

ΨM … 0M

0M … 0M

⋮ … ⋮
0M … ΨM

xM(0)
xM(M)

⋮
xM(N − M)

(25)

or equivalently: STFT = Θx. The signal vector x consists of N samples and can be expressed 

using a sparse vector X of DFT coefficients:

x = ΨN
−1X (26)

where ΨN
−1 is the N-point inverse Fourier transform. Hence, the relationship between the 

short-time Fourier transform and discrete Fourier transform vectors can be written as 

follows:

STFT = (ΘΨN
−1) X = AX . (27)

Now, let assume that the short-time Fourier transform is subject to L-estimation based 

filtering. After sorting the values of STFT and discarding a certain percent of the highest 

and the lowest components, we are left with missing data in the short-time Fourier transform 

domain. On the positions of discarded components, the zero values remain (Figure 3(c)). 

Hence, a compressive sensing problem can be observed in the short-time Fourier transform 

domain:

y = AcsX . (28)

where

• y is a vector of Na available values from STFT (i.e., nonzero values);

• X is a sparse discrete Fourier transform vector;

• Acs is obtained from ( ΘΨN
−1) after removing the rows on the positions of missing 

samples in STFT.

In order to reconstruct STFT, the minimization problem is observed in the form:
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min ‖X‖1 s.t. y = AcsX . (29)

The reconstructed stationary components in the short-time Fourier transform domain are 

shown in Figure 3(d).

The amplitudes of the reconstructed components in the DFT domain corresponds to the 

original signal components: [2, 2, 1.5, 1, 1,7, 3.5, 3.5]. The proposed method is compared 

with the results produced by an ideal case of notch filter (its inverse form), where we need to 

assume that all signal frequencies are known. The ideal notch filter response will pick all 

values along the considered frequencies, meaning that will pick also the noise producing 

wrong amplitudes of certain signal components as follows. The recovered amplitudes of 

components are as follows: [2, 2, 1.5, 1.14, 2.17, 3.6, 3.76] as shown in Figure 4.

Finally, let us consider a real-world radar signal. The radar signal consist of five rigid body 

components (stationary components) and three corner reflectors rotating at 60 RPM 

(nonstationary components). The stationary and non-stationary components intersects in 

both time and frequency dimensions. The short-time Fourier transformation of the observed 

signal is shown in Figure 5(a), while the Fourier transform of the signal is shown in Figure 

5(b).

The goal is to separate the micro-Doppler and rigid body components. As previously 

described, the short-time Fourier transform is calculated using non-overlapping windows 

(Figure 6(a)). The values in the short-time Fourier transform matrix are then sorted and 50% 

of lowest values are discarded. Namely, the micro-Doppler components appears to be 

smaller valued than the rigid body components in the sorted time-frequency signal 

representation because of their shorter duration. The remaining short-time Fourier transform 

values are shown in Figure 6(b) and represent the compressive sensing measurements that 

are subject to the compressive sensing reconstruction procedure. The reconstructed 

stationary rigid body components are sown in Figure 6(c), while the remaining micro-

Doppler components are shown in Figure 6(d).

3.4. Compressive sensing of signals based on the polynomial Fourier transform

The sparse representation of polynomial phase signals can be achieved by applying the 

polynomial Fourier transform [104]. The polynomial Fourier transform of signals s(n) can 

be defined as follows:

X(k1, …, kL) = ∑
n = 0

N − 1
s(n) exp − j2π

N
n2k2

2 + … +
nLkL
L! − j2π

N nk1 (30)

where the polynomial coefficients are assumed to be bounded integers. If s(n) is a mono-

component polynomial phase signal of the form:
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s(n) = A exp j2π
N nφ1

n2φ2
2 + … +

nLφL
L! (31)

and if a set of polynomial Fourier transform coefficients (k2, k3, …, kL) match the signal 

phase parameters (φ2, φ3, …, φL):

k2 = φ2, k3 = φ3, …, kL = φL (32)

then we will obtain the sinusoid in the polynomial Fourier transform domain at the position 

k1 = φ1. Otherwise, the polynomial Fourier transform of s(n) is not sparse. In that sense, the 

polynomial Fourier transform transform can be observed as the discrete Fourier transform of 

s(n) demodulated by the exponential term d(n):

X(k1, …, kL) = ∑
n = 0

N − 1
s(n)d(n) exp − j2π

N nk1 (33)

where

d(n) = exp − j2π
N

n2k2
2 + … +

nLkL
L! (34)

The situation becomes more complex when s(n) is a K-component polynomial phase signal:

sK(n) = ∑
i = 1

K
Ai exp j2π

N na1i +
n2a2i

2 + … +
nLaLi

L! . (35)

The coefficients of demodulation term d(n) should be then chosen to correspond to one of 

the components:

k2 = φi2, k3 = φi3, …, kL = φiL . (36)

As a result, the ith signal component is demodulated and becomes a sinusoid in the 

polynomial Fourier transform domain [105]. The polynomial Fourier transform 

representation is not strictly sparse as in the case of a single polynomial phase signal, but the 

ith component will be dominant in the polynomial Fourier transform spectrum. In that sense, 

we might say that if k2 = φi2, k3 = φi3, …, kL = φiL is satisfied, then the polynomial Fourier 

transform is compressible with the dominant ith component. Note that the sparsity 
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(compressibility) in the polynomial Fourier transform domain is observed with respect to the 

single demodulated component. Thus, we need to change the values of polynomial Fourier 

transform coefficients k2, k3, …kL within a certain range [kmin, kmax] until we obtain a 

dominant component in the polynomial Fourier transform domain, which means that we 

revealed one of the K signal components: k2 = φi2, k3 = φi3, …, kL = φiL, i ∈ [1,K].

In the compressive sensing context, the signal vector s is randomly undersampled having 

only Na ≪ N available samples. It means that the demodulation vector d should be also 

calculated only for Na available instants. Now, the measurement vector y can be defined as 

follows [105]:

y = s(na)d(na) = x(na) (37)

where na denotes available sample positions.

The vector form of the polynomial Fourier transform definition given by eqn. (33) is given 

by:

X = ΨNx (38)

where ΨN
N is a N × N discrete Fourier transform matrix. From eqns. (37) and (38), we may 

write:

y = ΨNa
−1X (39)

Algorithm 1

Calculate compressive sensing based polynomial Fourier transform

Require: na > 0

 for kj = kmin : step : kmax, j = 2, …, L do

  y = s(na)d(na)

  X = ΨNay

  if k2 = φi2, k3 = φi3, …, kL = φiL ⇔ there is a dominant sinusoid Xi then

   k1i = arg max(X)

   Save ki = (k1, k2, …, kL) = (φ1i, φ2i, …, φLi)

  end if

 end for

where ΨNa
−1 is the partial random inverse Fourier matrix of size Na × N obtained by omitting 

rows from inverse discrete Fourier transform matrix ΨNa
−1 that correspond to the unavailable 

samples. If the demodulation term is chosen such that k2 = φi2, k3 = φi3, …, kL = φiL then X 
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can be observed as a demodulated version of the ith signal component Xi, having the 

dominant ith component in the spectrum with the support k1i. Other components in spectrum 

are much lower than Xi and could be observed as noise. The minimization problem can be 

written in the form:

min ‖Xi‖1 subject to ‖yΨNa
−1X‖

2
< ξ . (40)

The procedure can be described in the form of pseudo code as shown in Algorithm 1. Hence, 

as a result of this phase we have identified the sets of signal phase parameters: ki = (k1, k2,
…, kL) = (φ1i, φ2i,…, φLi).

Next, we need to recover the exact components amplitudes. Denote the set of available 

signal samples positions by na = (n1, n2, …, nNa). In order to calculate the exact amplitudes 

A1, A2, …,AK of K signal components, we observe the set of equations in the form:

s(n1)
s(n2)

⋮
s(nNa

)

=

Φ(1, 1) … Φ(1, K)
Φ(2, 1) … Φ(2, K)

⋮ … ⋮
Φ(Na, 1) … Φ(Na, K)

A1
A2
⋮

AK

(41)

where

Φ( j, i) = exp j2π
N (n jk1i + …n j

LkLi
) j = 1, …, Na; i = 1, …, K . (42)

In other words we have another system of equations given by:

s(na) = Φα (43)

where α = [A1, …,AK]T contains the desired K signal amplitudes. The rows of Φ correspond 

to positions of measurements n1, n2, …, nNa, and columns correspond to the K components 

with phase parameters (k1, k2, …, kL) = (φ1i, φ2i, …, φLi), for i = 1, …,K. The solution of 

the observed problem can be obtained in the least square sense as:

α = (Φ∗Φ)−1Φ∗ (na) (44)

Let us consider a polynomial phase signal in the form that consists of three chirp 

components:
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s(t) = s1(t) + s2(t) + s3(t) = exp ( − jπφ21t2 + jπφ11t) + exp ( − jπφ22t2 + jπφ12t) + exp ( − jπφ23t2

+ jπφ13t) = exp ( − jπ8Tt2 + jπ16Tt) + exp ( − jπ32Tt2 + jπ16Tt) + exp ( − jπ8Tt2 + jπ16Tt)

where the signal parameters are given as: t = [−1/2, 1/2) with step Δt = 1/1024, T = 32, and 

the total signal length is 1024 samples. Observe that there are three chirp components with 

the rates: φ21 − 8T, φ22 = 32T, φ23 = 8T. The demodulation term is given in the form d(t) = 

exp(j2πk2Tt2). We need to search for parameter k2. Thus, we change the values of parameter 

k2 within a predefined range to match components one after the other. The discrete Fourier 

transform spectrum of full length signal before applying the demodulation term (as a part of 

the polynomial Fourier transform) is shown in Figure 7(a). When k2 = −8T, the first 

component is detected and it becomes dominant in the spectrum (Figure 7(b)). The same 

situation appears when k2 = 32T (Figure 7(c)) and k2 = 8T (Figure 7(d)).

We may observe that the polynomial Fourier transform with an appropriate demodulation 

term d(t) can be considered as compressible for the dominant component matched by the 

demodulation term. As such, it is amenable for compressive sensing reconstruction.

Next, we consider a small number of randomly selected available samples, i.e., 128 out of 

1024 are available (12.5% of the total signal length). The missing samples within s(t) are 

considered as zero values, and then the demodulation term is applied iteratively for a range 

of values k2. The results for the PFT when k2 matches φ21 = −8T, φ22 = 32T and φ23 = 8T 
are given in Figures 8(a)–(c). Note that noise appears as a consequence of missing samples 

that are set to zero value in order to calculate the initial polynomial Fourier transform. 

However, the demodulated components are prominent in the spectrum (Figure 8). For the 

illustration, Figure 9 depicts the initial polynomial Fourier transform when k2 does not 

match any of φ21, φ22 and φ23. The spectrum is noisy with no dominant components 

revealed.

The compressive sensing reconstruction method needs to determine the support of 

components revealed after the appropriate demodulation as shown in Figure 8. In the same 

time, it should ignore the cases with inappropriate k2. The simplest solution can be achieved 

using a threshold derived for the single iteration compressive sensing reconstruction 

algorithm, proposed in [106]. When the threshold (horizontal red line in Fig. 3) is applied on 

the spectrum after demodulation with appropriate k2 (k2 matches either φ21 = −8T, φ22 = 

32T and φ23 = 8T), a support of demodulated component is returned as a result: φ11 = −8T, 

φ12 = −16T and φ13 = 16T. Otherwise, when the threshold is applied to the spectrum after 

demodulation with inappropriate (wrong k2), the method returns no support (Figure 9).

4. Compressive sensing based time-frequency representations

Most of time-frequency distributions can be observed as the Fourier transforms of the local 

autocorrelation functions. In order to produce highly localized energy distributions, the 

autocorrelation functions must locally approximate a sinusoidal signal at each time sample. 

The overall instantaneous frequency characteristics are obtained based on the individual 
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sinusoidal frequencies from different shifted signal windows [107], [108], [109], [110]. In 

the context of compressive sensing, we observe the case when a signal is represented by a 

small set of random samples. Consequently, only a small percent of total autocorrelation 

function samples are considered as available for time-frequency distrubition calculations and 

instantenous frequency estimations. The standard form of time-frequency distributions 

calculated from coarsely under-sampled autocorrelation functions would be seriously 

degraded by noise, with amplitudes of components being much below their true values. As a 

solution, we can consider compressive sensing based time-frequency representations 

obtained by applying the compressive sensing reconstruction algorithm to autocorrelation 

functions, in lieu of the Fourier transform, to achieve an ideal time-frequency signal 

representations [111], [112].

We can start with a definition of time-frequency distributions defined as the Fourier 

transform of a higher order local autocorrelation function:

TFD(t, f ) = ∫
−∞

+∞
R(t, τ)e− j2πτdτ . (45)

The general form of the local autocorrelation function can be defined as follows:

R(t, τ) = ∏
i = 1

P/2
x

bi(t + aiτ)x
∗ bi(t − aiτ) (46)

where P is an even number representing the order of a distribution, while the coefficients ai 

and bi depend on a particular time-frequency distribution. Without loss of generality, the 

rectangular window function is assumed. For instance,

1. The Wigner distribution is obtained when P = 2 and a1 = 1/2, and b1 = 1.

2. The L-Wigner distribution is obtained when P = 2, a1 = 1/(2L), and b1 = L as it 

yields R(t, τ) = xL (t + τ
2L ) x ∗ L (t − τ

2L ).

3. For P = 4 and a1 = 0.675, b1 = 2, a2 = −0.85, b2 = 1, the auto-correlation function 

in given by R(t, τ) = x2 (t + 0.675τ ) x*2 (t − 0.675τ ) x (t − 0.85τ ) x* (t 
+ 0.85τ ), which leads to the polynomial distribution.

Now, assume that only a small number of M random samples from R(t, τ ) are available in 

each windowed part where M ≪ N holds (N is the total number of samples within the 

window). For the sake of simplicity we may write the autocorrelation function in the form:

R(t, τ) = x1x2…xp = ∏
i = 1

P
xi (47)

and
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R(t, τ) =
R(t, τnm

) m = 1, …, M

0 otherwise
(48)

where the discrete signal terms are denoted by vectors xi, while τnm for m = 1, …, M are 

random positions of available samples in one lag-window. Hence, we have:

‖R(t, τ)‖l0
= ∏

i = 1

P
xi

l0

= M . (49)

The standard TFD calculated on the basis of R(t, τ ) with missing samples, would be 

affected by the noise due to the missing samples. Namely, the missing samples needs to be 

considered as zero values in R(t, τ ) which will produce noise in the time-frequency domain. 

Hence, we consider the possibility to apply the concept of CS reconstruction in order to 

provide a noise-free time-frequency representation. If we observe the vector of 

autocorrelation samples for a single time instant tj denoted as R(t, τ ), then the optimization 

problem can be defined as follows:

min ‖X(t j, τ)‖
l1

subject to R(t j, τ) = AX(t j, f ) (50)

where for the observed tj, X(tj, f) represents a sparse vector belonging to an ideal time-

frequency representation at the time instant tj. The matrix A is the Fourier transform based 

compressive sensing matrix. The minimization problem can be solved using some of the 

known compressive sensing reconstruction algorithms, such as the orthogonal matching 

pursuit.

Let us consider an illustrative example in the form:

x1(t) = exp ( j160πt3 − j190πt) (51)

The polynomial distribution of the fourth order is considered for a time-frequency 

representation of the observed signal. The amount of available samples x1 is 35% of the total 

number of window samples (N = 128 samples). The standard polynomial distribution 

calculated with zero values on the positions of missing samples in auto-correlation function 

is shown in Figure 10(a). In order to provide the compressive sensing based time-frequency 

representation, the orthogonal matching pursuit is applied to each windowed signal part in 

order to recover sparse spectrum corresponding to each particular time instant. It means that 

in the case of the considered monocomponent signal, a single frequency component is 

obtained for each time instant, resulting in an ideal time-frequency representation as shown 

in Figure 10(b).
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Similarly, let us consider a signal with a fast varying instantenous frequency given in the 

form:

x2(t) = exp ( j6 sin (2.4πt) + j3 cos (1.5πt) − j20πt2) (52)

As a suitable time-frequency distribution, the complex-time distribution is usually 

considered for fast varying instantaneous frequency estimations, since it provides significant 

concentration improvements with respect to the quadratic but also polynomial distributions 

[113], [114]. A commonly used complex-lag distribution is defined for the autocorrelation 

function in the form:

R(t, τ) = x t + τ
4 x−1 t − τ

4 x− j t + j τ
4 x j t − j τ

4 (53)

Let us assume that for x2, there is approximately 40% of available samples. The standard 

form of the complex-time distributions and its improved compressive sensing version are 

provided in Figures 10(c) and 10(d). The compressive sensing based complex-time 

distribution provides almost an ideal representation for the instantaneous frequency 

estimation. Compared to the standard form, the compressive sensing based form is noiseless 

and highly compressible providing a set of enhanced peaks along the instantaneous 

frequency, while the other values in the tim-frequency plane are zeros.

Next, we estimated the required number of available samples that can provide an accurate 

instantaneous frequency representation after the reconstruction in the time-frequency 

domain. The results are shown in Figures 11a and 11b for the polynomial distribution and 

the complex-time distribution, respectively. The assumed signal length is 129 samples. In the 

case of the polynomial distribution, a high level of precision (100% of points are exactly 

reconstructed) is achieved with 30% of available samples (40 samples out of 129). For the 

complex-time distribution, we can observe that the acceptable precision is achieved even 

with 30% of available samples (app. 40 samples out of 129), while in the case when the 

amount of available samples is 55% or more (app. 70 samples or more), the accurate 

estimation is achieved.

While these illustrative examples depict that the major advantage of these approaches is the 

fact that we can obtain very accurate representations of non-stationary signals even a small 

number of samples, it needs to be pointed out that these compressive sensing based time-

frequency approaches are computationally more expensive than traditional time-frequency 

approaches. The increased computational complexity is due to the optimization procedure 

implemented to recover missing samples.

5. Conclusions and future directions

In this review paper, we summarized recent advances regarding compressive sensing and 

time-frequency analysis. All these recent contributions demonstrate that compressive sensing 
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provided a framework for sparse time-frequency processing of non-stationary signals. Based 

on the current contributions, we anticipate the following future directions:

• There is a great need to develop hardware solutions for all these signal 

processing schemes consider in this paper. Hardware developments are severely 

lagging the algorithmic development, which currently leaves many questions 

unanswered when it comes to practical applicability of these algorithms.

• Compressive sensing based time-frequency representations address a major issue 

associated with traditional time-frequency representations, that is, the ability to 

obtain a time-frequency representation of a signal using only a small number of 

random samples. However, the major disadvantage of these approaches is that 

they are much more computationally expansive than traditional time-frequency 

approaches. Hence, future research directions include the development of 

computationally in-expensive compressive sensing based time-frequency 

representations, that have the computational cost of the same order as traditional 

time-frequency methods.

• Adaptations of these new algorithms in many different areas is still an open 

questions. While there are applications that have highly redundant information 

and can tolerate errors (e.g., communication systems) for which compressive 

sensing provides excellent results, there are many more that require compressive 

sensing to provide perfect reconstruction every time (e.g., most of medical 

diagnostic applications). Hence, the time-frequency based compressive sensing 

approaches have the largest value in these applications requiring very high 

accuracies, as typical compressive sensing approaches based on random basis 

dictionaries are not suitable.

In conclusion, this paper provides a concise summary of the work in compressive sensing for 

sparse time-frequency precessing. While the framework provides very powerful tools to 

process sparse non-stationary signals, we strongly believe it is still in its early stages, and it 

is expected that further research and applications of the existing schemes will grow in the 

near future. In our companion paper [115], we describe MATLAB functions used to generate 

figures presented in this manuscript.
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Figure 1. 
Representations of a sinusoidally-modulated signal in the time-frequency domain using: (a) 

the Wigner distributions, (b) the ambiguity function, (c) the resulting sparse time-frequency 

representation.
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Figure 2. 
The time domain representation of the consider signal is shown in (a). Spectrograms of: (b) 

the original signal; (c) the signal based on equal distance samples; (d) the signal based on 

irregular samples.
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Figure 3. 
Compressive sensing and short-time Fourier transform: (a) noisy short-time Fourier 

transform; (b) sorted values of the noisy short-time Fourier transform; (c) available samples 

in the short-time Fourier transform after L-estimation; (d) reconstructed stationary 

components.
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Figure 4. 
Comparing time-frequency based compressive sensing approaches and a notch filter: (a) 

reconstructed frequency components obtained using the proposed approach; (b) noisy 

components that would be selected by an ideal notch filter are marked by ‘*’.
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Figure 5. 
A sample radar signal: (a) the short-time Fourier transform of the observed signal; (b) the 

corresponding Fourier transform.
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Figure 6. 
Compressive sensing and the short-time Fourier transform: (a) the short-time Fourier 

transform of the signal; (b) available samples in the short-time Fourier transform after L-

estimation; (c) extracted rigid body components; (d) extracted micro-Doppler components.
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Figure 7. 
The effects of demodulation on the discrete Fourier transform spectrum: (a) the discrete 

Fourier transform of s(t) before demodulation; (b) demodulation with k2 = −8T; (c) 

demodulation with k2 = 32T; (d) demodulation with k2 = 8T.
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Figure 8. 
The polynomial Fourier transform for the compressive sensing case: (a) demodulation with 

φ21 = −8T; (b) demodulation with φ22 = 32T; (c) demodulation with φ23 = 8T.

Sejdić et al. Page 33

Digit Signal Process. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Compressive sensing of the polynomial Fourier transform with an incorrect demodulation 

term: (a) demodulation with k2 = 18T; (b) demodulation with k2 = 12T; (c) demodulation 

with k2 = 16T
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Figure 10. 
Comparison between the traditional time-frequency distributions and their compressive 

sensing based equivalents: (a) the traditional polynomial distribution x1(t), (b) a compressive 

sensing based polynomial distribution of x1(t) (c) the traditional complex-time distribution 

of x2(t), (d) a compressive sensing variant of the complex-time distribution of x2(t).
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Figure 11. 
Estimated numbers of points to accurately estimate instantaneous frequency with (a) the 

polynomial distribution; (b) the complex-time distribution.
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