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Abstract

Objective—We offer a strategy for quantifying the impact of mortality and attrition on inferences 

from later-life health trajectory models.

Methods—Using latent class growth analysis (LCGA) we identify functional limitation 

trajectory classes in the Health and Retirement Study. We compare results from complete case and 

full information maximum likelihood (FIML) analyses, and demonstrate a method for producing 

upper- and lower-bound estimates of the impact of attrition on results.

Results—LCGA inferences vary substantially depending on the handling of missing data. For 

older adults who die during the follow up period, the widely-used FIML approach may 

underestimate functional limitations by up to 20%.

Discussion—The most commonly used approaches to handling missing data likely 

underestimate the extent of poor health in aging populations. Although there is no single solution 

for nonrandom missingness, we show that bounding estimates can help analysts to better 

characterize patterns of health in later life.
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Introduction

Mortality and other forms of non-random missingness present a major challenge for research 

on aging and health. As older adults’ health declines, they may be less able or willing to 

answer survey questions, and as follow-up time increases, so does the risk of death. 

Respondents who do remain in a study are likely to be positively selected based on their 

health, while those who drop out are more likely to be disadvantaged in terms of both health 

and socioeconomic and behavioral characteristics known to be associated with health. These 
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dynamics, along with the complexity of health at older ages, have led researchers to favor 

longitudinal models that can reflect diverse patterns of health.

Latent class growth analysis (LCGA) is a popular strategy for highlighting heterogeneity in 

patterns of age-related change by dividing a population into multiple subgroups, each 

following a distinctive trajectory (Muthén & Muthén, 2000; Nagin, 2005). Gerontological 

research has employed LCGA to characterize trajectories of multidimensional health, 

functional impairments, cognition, and multi-morbidities in later life (Lyu & Burr, 2016); 

(Gill, Gahbauer, Han, & Allore, 2010; Liang, Xu, Bennett, Ye, & Quiñones, 2010); 

Wickrama, Mancini, Kwag, & Kwon, 2012); Xu, Liang, Bennett, Botoseneanu, & Allore, 

2015). Researchers in the field of aging and health have also argued that LCGA can be more 

efficient in retaining information about respondents and handling problems of missing data 

across study waves (Palmer & Royall, 2010). Although the statistical literature has noted 

that LCGA and related longitudinal techniques have some limitations (Tofighi & Enders, 

2008; Warren, Luo, Halpern-Manners, Raymo, & Palloni, 2015), applied research using 

LCGA and related approaches often neglects to adequately address the impact of attrition 

and mortality on estimated population health trajectories. More specifically, standard 

estimating procedures often used in gerontological research likely underestimate the 

progression and severity of health problems among older adults. While this paper uses 

LCGA as a running example, the missing data challenges we highlight apply to other 

widely-used longitudinal models such as growth mixture, random effects, and latent 

trajectory models.

Background

Overview of latent class growth analysis (LCGA)—Growth mixture modeling 

(GMM) and latent class growth analysis (LCGA) are powerful extensions of standard 

growth models which can capture heterogeneity in population trajectories. A standard 

growth model is a multilevel random effects model which assumes a single mean growth 

curve for the total population and that individuals trajectories can be captured as person-

level deviations from the population growth curve (Muthén, 2004; Raudenbush & Bryk, 

2002). GMM extends the standard growth model by allowing estimation of multiple, 

subpopulation- (or “class”-) specific mean growth curves while also allowing for person-

level variation from the trajectory of his/her class (Muthén, 2004). LCGA is a special case of 

GMM which constrains the within class variance and covariance estimates to zero (Jung & 

Wickrama, 2008).

GMM and LCGA models have the advantages of explicitly modeling heterogeneity in a 

population by generating separate latent growth curve classes for previously unobserved 

subpopulations and classifying individuals into particular latent classes (Nagin, 1999). 

However, GMM and LCGA are not without limitations. It can be difficult to determine the 

preferred number of latent classes particularly when modeling the outcome as a non-normal 

distribution (Bauer & Curran, 2003). LCGA can also sometimes have poor predictive 

validity; an individual’s assigned latent class does not match their observed trajectory 

(Warren et al., 2015). Finally, although strategies for handling non-random missing data 
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have been proposed (Enders, 2011), standard LCGA estimation is not suited to generate 

unbiased estimates when data is missing not at random.

When missingness is truly not random—Statistical analyses, including LCGA, often 

assume that data missingness is completely random, or at least, random after accounting for 

observed factors. Under the assumptions of missing completely at random (MCAR), missing 

data is independent of other variables while the missing at random (MAR) approach to 

handling missing data assumes that patterns of missingness are random after conditioning on 

observed factors (Rubin, 1976). In both cases, missingness is ignorable under an appropriate 

analysis, and the process leading to missing data need not be modelled for statistical 

inferences to be correct. In longitudinal analysis, the MAR assumption is often required to 

generate valid statistical inferences (Rubin & Little, 2002).

In longitudinal studies tracking changes in older adult health, sample attrition is often non-

random and directly related to unobserved changes in health, a clear violation of MAR 

assumptions (Kapteyn, Michaud, Smith, & Van Soest, 2006). Given the high rates of 

morbidity and mortality in later life, respondents may be less able or willing to participate in 

surveys if and when their health declines, and they may die prior to experiencing or 

reporting health changes (Kapteyn et al., 2006). As follow-up time increases, so does the 

impact of mortality selection. Respondents who remain in the survey after several waves of 

data collection are likely to be healthier and less likely to report serious morbidity and 

impairment precisely because they are positively selected based on their health as well as on 

education, wealth, and a variety of social and behavioral characteristics known to be 

associated with health.

Prior research suggests that the powerful impact of mortality selection on the composition of 

aging cohorts can lead to potentially misleading findings about older adults’ health. For 

example, cohort mortality rates may appear to plateau or decelerate and subpopulation 

mortality disparities may be eliminated or reversed with age because of differential dropout 

and mortality that disproportionately removes frail and unhealthy individuals from 

observation (Vaupel & Yashin, 1985; Wrigley-Field, 2014). The documented increase of 

later-life mortality variability in high longevity populations may further reflect increased 

heterogeneity in the health of survivors to older ages (Engelman, Canudas‐Romo, & Agree, 

2010). These phenomena underscore the contribution of longitudinal models, like LCGA, 

that can distinguish subgroups of the population with fundamentally different underlying 

trajectories of health. However, failing to account for the decidedly non-random nature of 

missing data may introduce considerable bias into the estimation of longitudinal health 

trajectories and underestimate the progression and severity of health problems (Lynch, 

2003).

Approaches to handling missing data—The possible bias related to non-random 

dropout has long been acknowledged in the statistical literature. However, there is a 

disconnect between methodological recommendations and the application of this guidance 

in longitudinal studies of health and aging.
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First, some applied studies restrict their sample to cases that have no missing data during the 

time frame covered by the analysis or to cases that contribute a certain number of 

observations to the analysis (e.g. Downie et al., 2016; Galatzer-Levy & Bonanno, 2012; 

Liang, Xu, Quiñones, Bennett, & Ye, 2011). Although not described as such, this strategy of 

dropping observations with insufficient data is a variation on complete case analysis, an 

approach assuming that cases are missing completely at random. However, complete case 

analysis necessarily restricts samples to individuals who survive the period of observation 

and are healthy enough to remain in the study protocols. By definition, then, the sample is 

selected for survival, and analysis neglects the prior experiences of those who die or leave 

the study.

Because dropping cases with missing data can introduce bias and sacrifice efficiency, full 

information maximum likelihood (FIML) is a popular strategy used by studies that model 

health trajectories of middle and older age adults (Downie et al., 2016; Galatzer-Levy & 

Bonanno, 2012; Holla et al., 2013; Lyu & Burr, 2016).1 The often-cited advantages of FIML 

are that the method keeps cases in the sample until the time of dropout and assigns all cases 

to a latent class. However, FIML has only been shown to be unbiased when data is missing 

at random (Enders & Bandalos, 2001; Laird, 1988). In studies of older adults, health 

selection often violates the missing at random assumption. If subjects who drop out go on to 

experience declining health, FIML will not capture these changes and results may 

misrepresent the population’s health trajectories.

Some longitudinal studies of older adult health have recognized the limitations of FIML and 

include as a sensitivity check using a method designed to handle data missing not at random. 

Pattern mixture modeling is one example: it estimates separate trajectories by patterns of 

missing data and weights these trajectories to produce population average trends (Bishop, 

Eggum-Wilkens, Haas, & Kronenfeld, 2016). Unfortunately, the resulting inferences are 

highly sensitive to chosen model constraints and assumptions about inestimable parameters 

(Enders, 2011). Another strategy often used in applied studies (see (Liang et al., 2010; Xu et 

al., 2015; Botoseneanu & Liang, 2013) is covariate-based attrition modeling. This approach 

allows an indicator denoting attrition to influence latent class membership, intercepts, and 

slopes, thus parametrically capturing trajectory differences between cases who dropout 

versus those who remain in sample (Hedeker & Gibbons, 2006). Covariate-based attrition 

modeling relies on the assumption that time of dropout does not affect latent trajectories and 

all missing data have the same covariance structure. It also has an important substantive 

limitation: models which include attrition or mortality reverse the appropriate causal 

ordering by conditioning on subject dropout and/or mortality — the outcomes latent 

trajectory models might otherwise be used to predict.

Because of the limitations of each method, statistical literature has suggested comparing 

inferences across MNAR methods and cautioned that no single strategy can completely 

handle bias related to non-random missingness. In a review of methods for working with 

1FIML is commonly used as an alternative to complete case analysis that preserves statistical power. However, in some cases the two 
approaches are used together: the sample is restricted to respondents who contribute a certain number of observations and FIML is 
used to manage cases with disparate drop-out times.
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data likely missing not at random, Enders (2011) suggest that methods of handling non-

random missing data share a common limitation; they “…rely heavily on untestable 

assumptions (e.g., normally distributed latent variables), and even relatively minor violations 

of these assumptions can introduce substantial bias.” (p.1) Furthermore, no general 

recommendations exist about when to use these approaches and which technique is most 

likely to reduce bias (Allison, 2001; Demirtas & Schafer, 2003; Schafer, 2003). Although 

existing methods of handling MNAR data have limitations, this study demonstrates why 

gerontological research should consider how MNAR data may affect estimates from LCGA 

models.

Sensitivity analyses, in which one seeks to determine the magnitude of non-randomness 

needed to materially alter findings in an analysis, provide an alternative strategy for 

addressing MNAR (Greenland, 1996; Robins, Rotnitzky, & Scharfstein, 2000). Following 

existing studies which use a combination of real data and simulation to evaluate the 

performance of LCGA models (Warren et al., 2015), we estimate LCGAs of functional 

limitation trajectories in a large sample of older adults and use sensitivity analysis to 

examine how much inferences would change if, following drop-out, individuals made a full 

recovery or experience a complete health decline.2 Expanding beyond existing approaches 

for handling non-random missing data, we explore the degree to which model inferences 

may change under violations of missing at random assumptions, and offer explicit bounds 

for the bias introduced by mortality and other forms of selective attrition. We finally offer 

recommendations/strategies to better address the challenges posed by mortality and other 

forms of selective attrition central challenge in longitudinal studies of health.

Methods

Data

This study uses longitudinal data from waves 2-10 of the Health and Retirement Study 

(HRS), collected in 1992–2010. Further sample details are available at http://

hrsonline.isr.umich.edu/data/index.html. The HRS is nationally representative and has 

extensive, repeated measures of later life health and information on mortality, rendering it an 

ideal resource for trajectory analysis. Our study sample comprises 9,914 members of the 

Health and Retirement Study cohort who were born between 1931 and 1941.3 Although the 

overall response rate for each of the follow-up waves is higher than 80%, there is still a 

substantial loss of 40% of the baseline sample over the duration of the study.

Measures

Our LCGA analysis models the accumulation of functional limitations, a stage in the 

disablement process that precedes the development of limitations in activities of daily living 

(Verbrugge & Jette, 1994). Functional limitations are measured using the sum of three 

scales:

2The sensitivity analyses described are computationally equivalent to a fixed value imputation or simulation.
3The analytic sample size for the complete case analysis is only 5959.

Jackson et al. Page 5

J Aging Health. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hrsonline.isr.umich.edu/data/index.html
http://hrsonline.isr.umich.edu/data/index.html


Mobility—Reported difficulty with: walking several blocks, walking one block, walking 

across the room, climbing several flights of stairs and climbing one flight of stairs.

Large muscle functioning—Reported difficulty with: sitting for two hours, getting up 

from a chair, stooping or kneeling or crouching, and pushing or pulling a large object.

Fine Motor Skills—Reported difficulty with: picking up a dime, eating, and dressing. All 

items are scored so a value of 0 indicates no difficulty and 1 indicates difficulty. The 

functional limitations measure ranges from 0 (no limitations) to 12 (most limited). Because 

they represent different aspects of impaired health, in sensitivity and descriptive analyses we 

also examine associations between attrition and health outcomes including diagnosed 

chronic conditions and limitations in activities of daily living. However, our analysis 

primarily focuses on the sum of functional limitations because of its theoretical importance 

as well as statistical properties that make it well suited for the LCGA approach; the sum of 

functional limitations is well distributed across categories and cannot be readily simplified 

into a categorical measure. We consequently treat it as a continuous measure.

We also consider participants’ dropout and mortality status. Dropout cases are those who 

report functional limitations in at least one survey round but are not followed through wave 

10 of the HRS. Participants’ mortality status and approximate date of death is ascertained 

via linkage to the National Death Index.

Statistical Analysis

Our statistical analysis consists of multiple steps. First, we examine whether the data suggest 

that attrition from the survey is completely random or not,. We compare the HRS sample 

retained across survey rounds with individuals who drop out of the study along several key 

characteristics, distinguishing cases lost to mortality from those who drop out for other 

reasons. If data were missing completely at random, we would expect few differences across 

subsamples, but this is not what we find.

Next, we examine the extent to which non-random attrition may be a source of bias for 

inference from health trajectory models. We estimate latent class growth curves and compare 

inferences from a sample containing only cases with complete follow up histories and from 

the sample containing all cases who provide information in at least one wave. The latter 

LCGAs are estimated via full information maximum likelihood (FIML).

We then examine whether a common practice for handling non-randomly missing data – 

covariate based adjustment for attrition – indeed sufficiently addresses the bias related to 

dropout and attrition. To do so, we estimate two growth mixture models that account for 

attrition and mortality as predictors of class membership and class intercept and slope. The 

first model adjusts for dropout without distinguishing between dropouts who die and those 

who survive the follow up period. The second model has two covariates, one identifying 

dropouts who die during the survey follow up period, and a second covariate identifying 

those who survive the follow up period.
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We assess the comparability of results across these estimation strategies using several 

indicators. First, we compare the recommended number and shape of LCGAs across the 

complete case and full sample FIML estimation. Next, we compare the mean number of 

limitations at the first and final survey waves estimated under the complete case, standard 

FIML, and FIML with both types of dropout adjustment, and calculate the average 

differences in the expected number of limitations across strategies.4 We also examine the 

variance around these means. This numerical comparison distills the LCGA results to simple 

indicators that can be compared even if the recommended number of latent classes differ 

across sample specifications. This approach quantifies how much, on average, inferences 

about health would change across methods of handling missing data.

We also investigate potential health selection bias by comparing the reported and model-

predicted functional limitations at baseline and at the last observed round for: respondents 

who remained in the sample, respondents who dropped out but did not die, and respondents 

who dropped out and died during survey follow-up. In the absence of health selection bias, 

we would expect that the model should fit equally well for all groups across time. However, 

if health selection is operating, we might expect that models will underestimate the 

limitations of respondents who drop out and later die – particularly at the last observed 

round if health declines precipitate the dropout.

In the next stage of analysis, we characterize the bias potentially caused by the non-random 

drop-out via several sensitivity analyses designed to provide upper and lower bounds for the 

range of possible health trajectories. First, we assume we have no information about the 

mortality status of respondents after they leave the sample and estimate LCGA trajectories 

under two hypothetical scenarios: in one, all respondents who are lost to follow up are 

assumed to experience a complete recovery, and are thus assigned no functional limitations 

after their last observed survey round. In the second simulated scenario, the same 

respondents are assumed to experience the poorest health state, and are assigned the 

maximum (12) number of limitations for all waves between their last observed round and the 

end of follow up.5

In a subsequent analysis, we estimate LCGA trajectories using a strategy that explicitly 

incorporates information about mortality and its impact on population composition. We 

assign respondents who died before the end of survey to have, with random noise, functional 

limitations one standard deviation above the time-specific sample mean for all rounds 

between when they exit the survey and die.6 Drop-outs who survive the follow-up period are 

assumed to be missing at random between the time left the survey and the end of follow up. 

We compare these results with those obtained from the full sample FIML estimation via the 

same indicators listed and described above.

4We supplement this analysis by calculating the expected number of functional limitations for the complete case sample using 
standard and FIML estimation strategies in order to better disentangle how using FIML may affect prediction of limitations for the 
complete case sample.
5This strategy assumes we have no information on mortality. In supplemental analyses, we run a simulation which assigns respondents 
good/poor health up until the time period they are known to have died. An extension of our approach would be to discard the model 
predicted health of dropout cases after the time of death.
6Of the 2,148 respondents who died during the follow up period, 435 respondents died in the same year as they would have been 
surveyed. 1713 respondents died after the year they would have been surveyed, and the average time between dropout and death was 
about one survey round of data (Mean=1.07 survey rounds SD=.63 survey rounds, Median=.97 survey rounds).
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In all trajectory analyses, we compare models with 2-6 latent classes and linear as well as 

polynomial functions of time. The final number of latent classes (visualized via the number 

and shape of trajectories) for each analysis is chosen based on an examination of overall and 

component fit statistics. Following suggested practice, we chose the best-fitting model based 

on properties including having the smallest Sample Adjusted Bayesian information criterion 

(SABIC) value combined with a significant Lo, Mendell, and Rubin likelihood ratio test 

(Jung & Wickrama, 2008; Tofighi & Enders, 2008). The results described below refer to the 

best-fitting models for each set of analyses; SABIC and BIC values are available upon 

request. All analyses are performed using Mplus software (version 7).

Results

Members of the HRS cohort who remained in the study through survey wave 10 differ from 

those who dropped out of the study in a variety of characteristics, including their 

demographic composition, educational attainment, and health and lifestyle factors (Table 1), 

underscoring the likely non-random nature of attrition in the study population. Drop-outs 

were more likely to be non-white, male, less-educated, not married at baseline, and ever 

smokers. At the baseline survey round, they had more chronic conditions, more functional 

limitations, and more limitations in activities of daily living than individuals who remained 

in the sample (Column 2). While much of the difference between the complete case and 

drop-out samples is driven by those who died prior to the end of data collection, drop-outs 

who survived the follow up period also had more chronic diseases and limitations in 

activities of daily living at baseline compared to the complete case sample (Columns 3 and 

4).

The trajectories of functional limitation produced by the LCGA using the complete case 

versus full sample vary substantially, underscoring influential impact of selective attrition in 

the HRS cohort (Figure 1). In the complete case analysis, three latent classes are 

recommended: a healthy class with few limitations at baseline and a steady progression of 

functional limitations, an intermediate class characterized by approximately four limitations 

at baseline and steadily increasing functional limitations, and an unhealthy class with about 

seven limitations at baseline and relatively stable levels of limitation across time. In the 

FIML analysis, where dropouts are included for the duration of their participation in the 

survey, four latent trajectory classes are recommended. Three of these classes appear 

relatively similar to those recommended by the complete case analysis; but the fourth 

trajectory is distinctive, with few limitations at baseline, a steep accumulation of limitations 

early on, and some evidence of later decline in limitations. The difference in the preferred 

number of classes suggests that drop-out cases included in the FIML sample may have had 

substantially different health trajectories from their contemporaries who remained in the 

sample.7

7The three latent classes look similar across the complete case and full samples. However, while fit statistics consistently recommend 
a fourth latent class for the full sample, there is insufficient information to recommend a fourth class for the complete case sample, a 
result that suggests a fourth latent class is fit because of the inclusion of dropout cases. A comparison of fit statistics across models 
with multiple numbers of classes is available upon request.
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Table 2 strengthens this inference by showing that the number of estimated limitations 

differs across the unadjusted FIML and complete case samples. At baseline, the full sample 

was predicted to have 1.86 limitations in the unadjusted FIML model compared with 1.59 

limitations among the complete case sample. By the final survey round, the gap widened, 

with the unadjusted FIML predicted to have 3.36 limitations while the complete case sample 

had 2.92 limitations.8

Next, we show how the predicted number of functional limitations from LCGA models 

compares with limitations reported by the HRS cohort. Table 3 compares the mean number 

of observed limitations with those predicted by three modeling strategies. Columns 1 and 2 

suggest that even FIML, which shows higher levels of functional limitation than the 

complete case model, still underestimates the total number of limitations experienced by the 

sample. The underestimate is driven by the limitations experienced by those who drop out 

and die. At the last observed round for these individuals, the model predicts 3.56 functional 

limitations on average, but they reported, on average, 4.58 limitations.

We then show how predicted limitations from covariate based adjustment models compare 

with limitations reported by the sample in Columns 1, 3, and 4 of Table 3. Results from the 

first LCGA, which conditioned on dropout status, do not vary substantially from the 

unadjusted FIML. The LCGA which conditioned on dropout status and mortality, however, 

does appear to capture more limitation for the subsample who dropped out and died during 

the follow up period, predicting 4.27 limitations for these individuals compared to the 4.58 

limitations actually reported. The estimated differences between the predicted and observed 

number of limitations would likely be higher if more information about health declines that 

occurred following dropout were available.

Having established that FIML likely underestimates functional limitation for those believed 

to have health declines following drop out, we move to a sensitivity analysis which examines 

the impact of varied post-dropout health trajectories on the shape of estimated functional 

limitation trajectories (Figure 2). For the unadjusted FIML analysis and both scenarios, a 

four class model with a quadratic term provides the best fit. However, the shape of these four 

trajectories differs significantly. In a best-health scenario (Panel B), cases who dropped out 

are assumed to have no functional limitations following their exit from the survey. The first 

latent trajectory in this LCGA starts with few functional limitations and these appears to 

decline over time. The second and third latent classes comprise respondents who had 

intermediate and high levels of limitation at baseline, with steady increases in limitations 

over time. A fourth latent class has high limitation at baseline, and sees a rapid increase 

followed by a steep decline over time. A contrasting scenario (Panel C) assumes that cases 

who dropped out experienced maximum limitation following survey exit. Under this 

scenario, one latent class starts with few functional limitations and gains slightly over survey 

rounds. The second and third classes comprise respondents who had relatively few 

limitations at baseline, but rapidly accumulated limitations either early or late in the course 

8The predicted number of limitations for the complete case sample is actually very similar in the complete case and full sample 
analyses for all survey rounds. Again, this suggests differences are driven by those who left the sample.
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of the study. Finally, a fourth latent class has high limitations at the onset of the survey and a 

gradual accumulation of limitation over the course of the survey.

The expected number of limitations under each model is also quite different (Table 4). The 

predicted number of limitations at baseline (round 2) is similar (approximately 1.9) across 

the observed and simulated samples. However, by the 10th round, there is divergence, with 

the observed sample averaging 3.36 limitations, the recovery scenario predicting an average 

of 1.84 limitations, and the health decline scenario predicting an average of 6.53 limitations 

at the end of follow up. The distribution of limitations also differs across scenarios. While 

the positively skew diminishes over time in all scenarios, by the final survey round, the skew 

is greatest for the recovery simulation and smallest in the poor health scenario.

These two simulated scenarios represent the extreme bounds of functional limitation 

trajectories in situations where there is no additional information about respondents who 

drop out. However, if additional information on respondents is available (e.g. via 

administrative linkages or a post-drop-out questionnaire), a more moderate boundary may be 

appropriate. Specifically, for dropouts who died before the end of the survey follow-up 

period, we assign, with random noise, functional limitations to be one standard deviation 

above the time specific sample mean up until the time of death; for dropouts who survived 

the observation period, we allow the data to be missing at random. This assumption may be 

a reasonable approximation given descriptive statistics (Table 1) that highlight significant 

differences in health between the complete case sample and the two types of respondents 

with missing data. Figure 3 compares estimates from the original FIML estimation with the 

more moderate scenario. Again, four latent classes are recommended under this scenario. 

While they are generally similar to the classes recommended by the FIML, the two middle 

classes are notable for beginning at a level similar to that of the lowest limitation class and 

ending at the same level as the highest limitation class, but differing in whether trajectories 

increase early or later during the follow up period. Under this moderate scenario, the 

expected number of limitations (4.09 by round 10, and 2.84 across all rounds) falls between 

the FIML and worst-health case scenarios (table 4, column 4).

Discussion

Our analyses suggest results from LCGAs are subject to bias from health-related attrition 

and may consequently underestimate the prevalence, progression, and severity of health 

problems. Prior research has suggested that latent trajectory models may, in some instances, 

have poor predictive validity and the number of recommended classes may vary by sample 

size (Tofighi & Enders, 2008; Warren et al., 2015). With a few exceptions (Lynch, 2015; 

Wolf, Freedman, Ondrich, Seplaki, & Spillman, 2015; Zimmer, Martin, Nagin, & Jones, 

2012), the question of selective attrition has received less attention, despite the fact that 

nonrandom mortality and drop out have important implications for inferences from latent-

class analyses in longitudinal studies of older adults’ health. This paper has focused on 

inferences from LCGAs, but the problem of dropout related to the dependent variable arises 

in other forms of longitudinal analysis (e.g. hierarchical linear modeling and more general 

latent growth curves) that do not account for the competing risks of dropout and mortality.
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Using the HRS as a case study, we show that conclusions about the number and shape of 

latent classes and predicted functional limitations vary across approaches to handling 

missing data. Under complete case analysis only three latent classes are recommended, but 

in the FIML and simulation analyses, four latent classes are suggested. Beyond affecting the 

number of latent classes preferred, the method of handling missing data influenced the 

predicted number of functional limitations for the sample. We found that standard FIML 

estimation substantially underestimates the functional limitations for the subsample most 

likely to experience health declines, those who die in the course of follow up. The overall 

expected number of functional limitations is also affected by assumptions about the health of 

dropouts. By the 10th survey round, the predicted number of limitations ranged from under 

two to over six depending on assumptions built into the sensitivity analyses. Inferences can 

thus vary substantially depending on the handling of missing data. Common approaches like 

restricting samples to individuals who responded to a pre-determined number of survey 

rounds or employing FIML tend to under-estimates poor health trajectories among older 

adults, yielding a biased portrait of health decline patterns in later life. Furthermore, when 

examining latent classes under an FIML framework, one might conclude that some members 

of the sample experience a rapid increase in limitations before leveling out or even making a 

health recovery. However, a recovery pattern is not observed in the complete case analysis, 

raising questions about whether the recovery class is an artifact of the FIML model’s 

handling of dropouts. Conversely, failure to detect a class with rapidly increasing limitations 

in the complete case analysis may reflect the exclusion of such individuals from the sample. 

We thus urge caution in the interpretation of any specific trajectory. Researchers should keep 

in mind that the recommended number of latent classes is sensitive to the handling of 

missing data, and respondents with missing data may be more likely to be misclassified into 

a particular latent class. Rather than relying on optimal fit statistics, researchers should 

weigh the strength of evidence across models and approaches.

Our analysis yields several cautionary conclusions for researchers employing LCGAs and 

related methods. First, restricting the analysis to cases who contribute to a defined number of 

waves potentially biases the number and shape of estimated trajectory classes. Second, 

FIML does not produce unbiased estimates when data is likely missing not at random 

(MNAR).9 Third, covariate-based attrition adjustment – a common method of handling 

MNAR data in gerontological research – still underestimates the functional limitations 

experienced by the subsample that dropped out and died during the follow up period. More 

generally, it is not possible to determine if methods of handling MNAR data are introducing 

bias into estimated trajectories, because the data to adjudicate this determination are not 

observed. Finally, because respondent characteristics such as race, gender, and baseline 

health are associated with the likelihood of leaving the sample, LCGA models may be 

9In this paper, we present results that use FIML for handling of missing data. Past research suggests that for other types of longitudinal 
models, FIML and multiple imputation (MI) would yield similar results (Enders & Bandalos, 2001; Newman, 2003), but there is an 
ongoing debate about the appropriateness of MI in the context of LCGA models. Seminal work on MI (Schafer, 1997; Rubin, 1976) 
suggests that MI may not be theoretically compatible with the LCGA framework because MI assumes that data are sampled from a 
single population while LCGA models emphasize the identification of distinct sub-populations, each with potentially different 
underlying missing data mechanisms. More recent studies, however, suggests that LCGA in fact presents an opportunity for a more 
complex imputation strategy that can improve the handling of missing data (Gebregziabher & DeSantis, 2010). Implementing such 
methods and systematically comparing them to existing approaches is a promising avenue for further research.
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especially prone to mischaracterize the health trajectories of vulnerable subgroups, and 

future research should explore this issue in greater detail.

Our findings point to several recommendations for future studies of health trajectories. First, 

assessing rates of attrition is crucial, and documenting mortality is extremely useful for 

diagnosing potential deviations from assumptions of random missingness. Our analysis 

found that mortality was key for identifying cases which had data likely MNAR. Second, 

when a substantial amount of data is believed to be MNAR, we recommend caution when 

interpreting the shape of latent trajectories, as they may be heavily influenced by the 

unobserved outcomes of dropout cases and the potential misclassification of dropout cases 

into particular latent classes. Third, when dropout rates are substantial, we recommend using 

sensitivity analysis (Enders, 2011) as demonstrated in this paper, to provide quantitative 

bounds for the magnitude of potential bias.10 When developing appropriate scenarios for 

such sensitivity analyses, it may be helpful to consider both the mechanisms associated with 

non-randomly missing data and how the health outcomes being analyzed may change 

following attrition. The extreme value scenarios may be of interest and use to researchers 

because they offer bounds on the potential impact of the missingness problem: although our 

study found that the handling of cases lost to follow-up significantly affected the results, 

other studies may find that even extreme handling of missing data does not substantially 

affect conclusions, obviating the need for more detailed sensitivity analyses.

To be sure, there is no strategy that can “solve” the problem of bias related to non-random 

missing data because outcomes following drop out are simply not observed. However, 

sensitivity analysis offers an effective and accessible strategy for quantifying how much 

health declines may be under-estimated when using the FIML approach. Implementing these 

recommendations will help researchers in gerontology more effectively acknowledge and 

address the problem of selective attrition.
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Figure 1. Estimated Trajectories of Functional Limitation in Complete Case and FIML Analyses
* p<.05 **p<.01 ***p<.001
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Figure 2. Estimated Trajectories of Functional Limitation Under FIML and Extreme Value 
Scenarios
* p<.05 **p<.01 ***p<.001
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Figure 3. Estimated Trajectories of Functional Limitation Under FIML and Moderate Scenario
* p<.05 **p<.01 ***p<.001
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Table 1

Descriptive Statistics for the Health and Retirement Study Cohort (N=9914)

(1) (2) (3) (4)

Variables
Complete Case Sample All Dropouts

Dropouts Alive at 
End of Survey 

Follow up

Dropouts Died 
Before End of 

Survey Follow up

N=5959 N=3955 N= 1807 N=2148

 Demographic Characteristics

White 0.81 0.76*** 0.78* 0.74***

Black 0.16 0.20*** 0.17 0.22***

Hispanic 0.09 0.10 0.11 0.09

Male 0.44 0.52*** 0.47** 0.55***

Age 55.57 56.07*** 55.67 56.41***

 Education

Less than HS Diploma 0.28 0.37*** 0.31* 0.42***

Completed HS 0.33 0.31* 0.34 0.29***

Some College 0.20 0.18** 0.19 0.17**

Completed College Degree 0.19 0.14*** 0.17* 0.13***

 Life Style Factors

Ever Smoked by Baseline 0.59 0.69*** 0.60 0.77***

Married at Baseline 0.76 0.70*** 0.75 0.67***

 Health Measures at Baseline: Sum of

Diagnosed Chronic Conditions at Baseline 0.88 1.30*** 0.95** 1.60***

Functional Limitations at First Round Collected 
(Round 2)

1.57 2.32*** 1.61 2.90***

Limitations in ADLs at First Round Collected 
(Round 2)

0.09 0.22*** 0.11* 0.31***

*
p<.05

**
p<.01

***
p<.001 in two-tailed t-test comparing group to complete case sample. Supplemental chi squared tests yield similar findings.

Sample Eligibility: HRS Cohort Members Born Between 1931–1941

N reported represents total sample size. Sample size for some items may be smaller due to item-missingness. Proportions in race/ethnicity 
categories do not sum to 1 because a small subsample reported their race as other and some Hispanic respondents reported their race as white or 
black.
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Table 2

Expected Number of Limitations Across Complete Case (N=5959) and Full Sample (N=9914) FIML Analyses

(1) (2)

Complete Case Estimation Full Sample Estimation—

FIML As Observed

Round 2

Mean Predicted Limitations 1.59 (1.89) 1.86 (2.15)

Skewness 1.96 1.78

Round 6

Mean Predicted Limitations 2.04 (1.59) 2.45 (2.13)

Skewness 1.66 1.45

Round 10

Mean Predicted Limitations 2.92 (1.38) 3.36 (1.68)

Skewness 1.49 1.20

Average Across Rounds

Mean Predicted Limitations 2.13 (1.61) 2.52 (1.99)

Skewness 1.69 1.40

Estimates are based on predicted values from LCGA estimates under two common sets of assumptions. When estimated with the full sample, the 
complete case sample is estimated to have, on average, 1.6 limitations at survey round 2 and 3.13 limitations at Round 10.
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Table 4

Expected Number of Limitations for Full Sample FIML Analysis and Sensitivity Scenarios (N=9914)

(1) (2) (3) (4)

Full Sample Estimation 
–Unadjusted FIML

Scenario with– 
Dropouts in Good 

Health

Scenario with– 
Dropouts in Poor 

Health

Scenario with– 
Dropouts who Die in 

Poor Health

Round 2

Mean Predicted Limitations 1.86 (2.15) 1.88 (0.98) 1.86 (1.72) 1.88 (1.94)

Skewness 1.78 1.71 2.56 2.04

Round 6

Mean Predicted Limitations 2.45 (2.13) 1.91 (1.75) 4.09 (3.73) 2.73 (2.30)

Skewness 1.45 1.59 1.05 1.02

Round 10

Mean Predicted Limitations 3.36 (1.68) 1.84 (2.49) 6.53 (4.57) 4.09 (2.94)

Skewness 1.20 1.61 0.11 0.46

Average Across Rounds

Mean Predicted Limitations 2.52 (1.99) 1.89 (1.59) 4.14 (3.09) 2.84 (2.18)

Skewness 1.40 1.32 0.73 (0.89)

Absolute Difference Between FIML and Simulation in Predicted Limitations Across Rounds

 Mean – 1.57 (1.35) 2.33 (2.43) 1.05 (1.24)

 Median – 0.75 1.29 0.23

 90th Percentile – 3.31 7.73 2.96

 Skewness – 2.02 1.14 1.48

Standard deviation in parentheses

Estimates are based on predicted values from LCGA estimates.
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