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Abstract

Objectives—Past research has linked alcohol outlet densities to drinking, drunken driving and 

alcohol-related motor vehicle crashes (MVCs). Because impaired drivers travel some distances 

from drinking places to crash locations, spatial relationships between outlets and crashes are 

complex. We investigate these relationships at three geographic levels: Census block groups 

(CBGs), adjacent (nearby) areas, and whole cities.

Methods—We examined risks for all injury MVCs as well as ‘had been drinking’ (HBD) and 

single-vehicle nighttime (SVN) subgroups using data from the Statewide Integrated Traffic 

Records System (SWITRS) across CBGs among 50 California cities from 2001 to 2008. 

Relationships between outlet densities at the city-level, within CBGs, and in adjacent CBGs and 

crashes were examined using Bayesian Poisson space-time analyses controlling for population size 

income and other demographics (all as covariates).

Results—All injury MVCs were positively related to adjacent CBG population size (RR=1.008, 

95%credible interval (CI)=1.004, 1.012), and outlet densities at CBG (RR=1.027, CI=1.020, 

1.035), nearby area (RR=1.084, CI=1.060, 1.106) and city levels (RR=1.227, CI=1.147, 1.315), 

and proportion of bars or pubs at the city level (RR=2.257, CI=1.187, 4.125). HBD and SVN 

crashes were comparatively less frequent in high outlet density CBG (RR=0.993, CI=0.986, 0.999; 

RR=0.979, CI=0.962, 0.996) and adjacent areas (RR=0.963, CI=0.951, 0.975; RR=0.909, CI=883, 

0.936), but positively associated with city-level proportions of bars (RR=3.373, CI=0.736, 15.644; 

RR=10.322, CI=1.704, 81.215). Overall a 10% increase in all outlets was related to 2.8% more 

injury crashes (CI=2.3%,3.3%), and 2.5% more HBDs (CI=1.7%,3.3%). A 10% increase in bars 

was related to 1.4% more crashes, 4.3% more HBDs and 10.3% more SVNs.

Conclusions—Population size and densities of bars or pubs were found to be associated with 

crash rates, with population effects appearing across cities and outlet effects appearing within 

dense downtown areas. Summary estimates of outlet and population impacts on MVCs must 

consider varying contributions at multiple spatial scales.

Corresponding author: Robert Lipton (510)486-1111; FAX: (510)644-0594 roblipton@gmail.com.
MR. ROBERT LIPTON (Orcid ID : 0000-0003-2467-3958)
MR. WILLIAM ROBERT PONICKI (Orcid ID : 0000-0002-6786-9718)

HHS Public Access
Author manuscript
Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:
Alcohol Clin Exp Res. 2018 June ; 42(6): 1113–1121. doi:10.1111/acer.13758.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

alcohol availability; alcohol outlet density; motor vehicle crashes; spatial analysis

Alcohol-related motor vehicle crashes (MVCs) are a major problem in the United States, 

resulting in more than 10,000 fatalities in 2010 and imposing annual estimated costs of $37 

billion (NHTSA, 2012). Approximately one third of crash fatalities since 1995 have been 

identified as alcohol related (Insurance Institute for Highway Safety, 2005, 2011). One 

policy based approach for reducing alcohol-involved traffic crashes is to limit the physical 

availability of alcohol and develop policies to reduce drinking and related problems 

(Gruenewald, 2011). Limiting alcohol outlets in a specific area is theorized to decrease the 

convenience of obtaining beverages and thus reduce alcohol demand and drinking-related 

problems (Chaloupka et al., 1998).

Some authors have argued that reductions in physical availability may be less effective at 

reducing motor vehicle crashes than other drinking problems because increased driving 

distances will increase crash exposures (McCarthy, 2003; Lapham et al., 1998; Gary et al., 

2003; Gruenewald et al., 2002) Most studies, however report overall positive associations of 

outlet densities to MVCs (Scribner et al., 1994; Jewell and Brown, 1995; Gruenewald et al., 

1996; Escobedo and Ortiz, 2002; McCarthy, 2003, 2005; Farmer et al., 2005; Treno et al., 

2007). A handful of studies report negative associations with different forms of availability 

(McCarthy, 2003 for off-premise density; Baughman et al., 2001; Treno et al., 2007 for 

restaurant density). Even among those that report positive effects, estimated effect sizes 

relating outlets to MVCs vary widely because of differences in (1) the measurement of 

physical availability, (2) the selection of geographic units of analysis, (3) models used to 

assess alcohol-involved MVC risks relative to expectations, and (4) the degree to which each 

study accounts for pertinent confounders. Considering several examples, some studies use 

legal regulations in place of direct measures of physical availability (e.g., Baughman et al., 

2001; Gary et al., 2003), others characterize physical availability in terms of overall outlet 

densities while others distinguish on- vs. off-premise places (e.g., Toomey et al., 2012; 

Ponicki, et al., 2013), yet others aggregate data into county (Jewell and Brown, 1995; 

Kelleher et al., 1996), city (Scribner et al., 1994; McCarthy, 2003; Farmer et al., 2005), ZIP 

code (Treno et al., 2007), or smaller units (Toomey, et al, 2012). Further, crash rates may be 

estimated relative to local population sizes (Scribner, et al., 1994), roadway miles 

(Gruenewald, et al., 1996) and other metrics of exposure to crash risks. It should be noted 

that alcohol-related MVCs may or may not occur within the geographic unit used to 

characterize outlet densities. Indeed, if the geographic unit of analysis is small, then alcohol 

use in one unit will be related to crashes in another (Gary, et al., 2003; De Boni, et al., 2013; 

Levine, 2015; Morrison, et al, 2017). For these reasons, of all problems related to alcohol 

use that occur in community environments, neighborhood and population correlates of 

alcohol-related MVCs are particularly difficult to characterize at the community level. Thus, 

based on these considerations one should expect that there will be substantial spatial 

variations in rates of alcohol-related MVCs across different/multiple types of community 

areas that may exist simultaneously in any particular urban setting. It is important to 

consider that there are many contexts that may produce alcohol related MVCs. Thus, place-
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of-last-drink studies indicate that upward of 50% of drivers stopped for drinking and 

drunken driving were coming from private residences (Robinson, et al., 2005; Padilla and 

Morrissey, 1993). In contrast, other outcomes related to alcohol outlets, like violence and 

property damage, appear to exhibit less spatial variation and relatively invariant effects 

related to specific outlet types (e.g., night clubs and bars(Cameron et al, 2016a,b)).

Obviously, no one study can address the many measurement issues and approaches related to 

understanding the spatial dynamics of alcohol availability/alcohol outlets and MVCs. This 

being said, it’s important that research (1) use detailed quantitative metrics for availability 

whenever possible, (2) recognize that outlet effects may be multi-scale and (3) related to 

exposures in complex ways, and (4) keep in mind the multiple sources of crash risks across 

community areas. To address these concerns, we think it important to start with relatively 

small spatial units that allow investigators to identify local outlet effects more accurately and 

discriminate these from larger-scale effects related to neighborhood and city areas. Analyses 

at a single areal level may badly mis-measure correlates of crash outcomes. For example, 

Ponicki et al. (2013) found that bar densities were related to alcohol-involved MVCs across 

ZIP code areas, but these effects were very small; a 10% increase in outlets was related to a 

less than 1% rise in alcohol-involved MVCs. Zip codes may poorly estimate outlet effects in 

this situation because the analyses could not distinguish competing sources of crash risks at 

multiple geographic scales. Indeed, there may be, as we discuss above, other processes 

involved, occurring simultaneously, at different areal levels, that were not accounted for.

In this study we address these issues by analyzing CBG data from 50 cities in California 

from 2001 to 2008 in which 30,960 accidents occurred . Physical availability is 

distinguished in a way to minimize collinearity in measures of outlet density across outlet 

types. Relationships of population size (a critical covariate due to possible effects across 

spatial scales), income and outlets are assessed at local CBG, nearby area CBG and city 

levels to identify multi-scale effects and provide suitable controls across levels of analysis. 

Finally, availability relationships are distinguished by their effects upon all MVCs vs. 

alcohol-related MVCs more specifically. Areas of cities with more outlets are likely to have 

more motor vehicle traffic and more crashes; the key questions are whether, net of overall 

exposures to crash risks, alcohol-related MVCs occur more often in or around the areas 

where alcohol outlets are located and to what extent multiple scales of effects can be 

observed?

METHODS

Data on motor vehicle crashes, alcohol retail outlets, and other variables for 50 cities in 

California over the years 2001 through 2008 are used (see supplement X). We aggregated to 

the Census 2000 Block Group level for purposes of these analyses. As part of a larger study 

of the social ecology of alcohol problems in the state, 50 non-adjacent cities were randomly 

selected from a universe of 138 incorporated municipalities with between 50,000 and 

500,000 residents as of the 2000 Census. Block groups were included in these analyses if 

their geographic centroids were within the outer boundaries of one of these 50 cities (with 

unincorporated “islands” within a given city being counted as part of that municipality). The 
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50-city data set included 3,870 of the statewide total of 22,132 block groups, with the 

individual cities ranging from 23 block groups in Temecula to 340 in Sacramento.

Traffic crash data within California for the years 2001 through 2008 were obtained from the 

widely used California Highway Patrol’s (CHP) Statewide Integrated Traffic Records 

System (SWITRS). (Scribner et al., 1994; McCarthy, 2003; Treno et al., 2007; Ponicki et al., 

2013). Crashes involving an injury or death were selected for these analyses because state 

law requires that crashes involving any injury or death be reported to the CHP (California 

Vehicle Code Section 20008). Property-only crashes are far less complete and were not 

included. Crash locations were geocoded to block groups in two phases. First, nearly 100% 

of SWITRS records listing highway post-miles were geocoded by the University of 

California’s Safe Transportation Resource and Education Center (SafeTREC). Second, other 

crash locations were geocoded to StreetMap USA (ESRI, 2010) street segments within each 

of California’s 58 counties in order to facilitate automatic geocoding. Statewide, 94.0% of 

SWITRS crash records were successfully geocoded to the block group level, and the un-

geocoded crashes were disproportionately outside of major cities. The models below analyze 

three outcome measures: the block-group-by-year counts of all injury crashes, and the 

counts of alcohol-involved crashes as indicated by had been drinking (HBD) or single-

vehicle nighttime (SVN, occurring between 8 PM and 4 AM) status. HBD crashes have 

shown high validity as a measure of impaired driving (McCarty et al., 2009; Brubacher et 

al., 2013; Grossman et al., 1996; Brick and Carpenter, 2001), while SVN crashes are a 

common impaired-driving surrogate that has been shown to be highly alcohol-involved 

(Voas et al., 2009).

California uses three general retail alcohol outlet types; restaurants (license types 41 and 

47), off-premise establishments (license types 20 and 21), and bars/pubs (license types 23, 

40, 42, 48, 61 and 75). We obtained active license records as of January of each year from 

the California Department of Alcohol Beverage Control (ABC). Premise address was 

geocoded for each record. The analyses allow for the three types of outlets to have differing 

associations with both crashes and alcohol involvement. Because local densities are 

somewhat correlated across outlet types, the models control for overall density (10s of 

outlets per square mile) as well as the proportions of those establishments that are bars or 

restaurants (making off-premise the implicit standard for the overall density measure). These 

outlet density measures were calculated at three levels of geographic resolution: within the 

local block group, averaged among adjacent block groups where adjacent areas are those 

which share a border with any CBG and adjacent area measures are unweighted averages of 

measures across adjacent CBGs, not including the local CBG, and across all block groups 

within a city, with each geographic level having an overall outlet density per area as well as 

proportions of that density that are bars and restaurants. We did not include CBGs that were 

outside city boundaries and assumed that variations in crash rates related to populations 

living outside city areas (edge effects) would be captured by the city random effect in the 

analysis model.

Annual estimates of Census-based demographic data at the block-group level were extracted 

from GeoLytics Estimates Premium (2010). Variables used included local population density 

(1000s per square mile), total population across adjacent block groups and city-wide (in 
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thousands), inflation-adjusted household income both locally and across adjacent block 

groups (year 2007 dollars divided by 10,000), average household size, percentages 

unemployed or in poverty, and proportions of population that were male, racially white or 

black (with all others as the excluded group), of Hispanic ethnicity, and within four age 

groups (20–24, 25–44, 45–64, and 65+). Because prior research suggests that alcohol-

involved crashes were strongly related to shares of population that are white or young adult, 

the model includes controls for proportions white and age 20–24 both locally and across 

adjacent block groups. The models also include an indicator variable for whether each block 

group touches a class 1 or 2 highway (ESRI, 2010). A single yes/no variable was chosen 

because a given stretch of roadway may share multiple designations (e.g., a state highway 

number and a Federal highway designation), which could lead to duplication in counting of 

the number or mileage of such routes.

Statistical Approach

Bayesian Spatial Models: Block-group crash counts were analyzed using hierarchical 

Bayesian space-time Poisson models (Besag et al., 1991; Bernardinelli et al., 1995; Carlin 

and Louis, 2000). These models allow for repeated annual measures among block groups 

nested within cities. This Bayesian spatial approach corrects for both large outlying risk in 

low-population areas as well as the effects of unexplained spatial autocorrelation. Per 

previous work, (Ponicki, 2013), spatial autocorrelation may be a particular issue when 

studying motor vehicle crash risks for a number of reasons; 1) including drinkers traveling 

across multiple block groups for alcohol where the effects of these longer trips may not be 

fully captured by the adjacent-area model variables; 2) data that control for factors such as 

weather patterns may be inconsistently gathered. Both of these issues can lead to biased 

results, if left untreated, due to standard regression assumption violations. Specific/precise 

model-based estimates of local rates utilizing both local and neighboring (adjacent/lagged) 

observations using Bayesian methods can help to resolve these problems.

By allowing each area unit to “borrow strength” from its neighbors conditional 

autoregressive (CAR) random effects may mitigate the leverage influence of outlying local 

rates and properly treat residual spatial autocorrelation (Waller and Gotway, 2004). The 

CAR random effects approach accounts for similarity of problem risks among block groups 

located near each other, while assessing non-spatial random effects allows for block group 

differences in unexplained risk that are not spatially autocorrelated (over dispersion can also 

be controlled). (Carlin and Louis, 2000). Lord et al. (2005) report that hierarchical Bayesian 

methods can account for “excess” zero counts that often occur in small areas with high crash 

risk although zero-inflated count models are generally not well suited to crash data . In a 

panel of Pennsylvania counties, (Aguero-Valverde and Jovanis,2006) Bayesian CAR Poisson 

models were reported to provide a comparable fit to negative-binomial specifications for 

crash risks with the former being preferred as spatial autocorrelation is controlled.

Given that the outcome measures are the counts of injury crashes (total, HBD, or SVN) in a 

given block group and time period, a Poisson regression model is used:

Lipton et al. Page 5

Alcohol Clin Exp Res. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Y i, t μi, t Poisson(Ei, texp(μi, t)) (1)

where Yi,t represents the count of injury crashes in block group i during year t and Ei,t 

denotes the expected number of the injury crashes. For the total crash analyses, this 

expectation assumes that crashes are distributed in direct proportion to block-group 

population. Hence exp(µi,t) may be interpreted as the relative injury-crash risk of residing in 

spatial unit i at time t: regions with exp(µi,t) > 1 will have greater crash counts than expected 

based on their population, and regions with exp(µi,t) < 1 will have fewer than expected. 

Because expected outcomes cannot be zero in these log-linear Poisson models, the 70 block-

group observations (0.23%) with zero populations were given a minimal expectation of 

0.0001 to allow for the possibility of positive crashes even in unpopulated areas. A 

sensitivity analysis with a dummy variable allowing for additional crash risk in these 

unpopulated cases produced nearly identical results. For the analyses of HBD or SVN 

crashes, the expectation Ei,t assumes that statewide crashes in that alcohol-related category 

are distributed in direct proportion to local injury crashes that do not fall in that category, 

again with an expectation of 0.0001 being used in the 3.18% of block groups observations 

with no non-alcohol crashes. In these cases exp(µi.t) can be interpreted as a risk ratio of 

injury crashes being designated as alcohol involved rather than not alcohol involved. Nearly 

identical results were obtained in sensitivity analyses with expectations based on total injury 

crash rates, in which case exp(µi.t) would be interpreted as the likelihood that any given 

crash is designated as HBD or SVN.

Following standard generalized linear models, the log-relative risk, µi.t, is modeled linearly 

as:

μi, t = α0 + α1 ∗ t + Xi, t′ β + Ωi + θi + ϕi (2)

This is a linear combination of fixed covariate effects and random effects which account for 

spatial and/or temporal correlation. Parameters α0 and α1 are an intercept and linear time 

trend that control for statewide level and growth of injury crash risks, respectively, that are 

not explained by other covariates. Matrix X’i,t contains space- and time-specific covariates 

and β is a vector of fixed-effects estimates of the effect of those covariates. Ωi denotes a 

random effect allowing for time-invariant variation among the 50 cities within which the 

block groups i are nested. θi,t and φi,t represent the pair of random effects at the block-group 

level capturing spatially unstructured heterogeneity and CAR spatial dependence, 

respectively. Models were estimated using WinBUGS 1.4.3 software (Lunn et al., 2000). 

Non-informative priors were specified for all fixed and random effects. Models were 

allowed to burn-in for 20,000 (HBD and SVN crashes) to 60,000 (total injury crashes) 

Markov Chain Monte Carlo (MCMC) iterations, which were sufficient for all parameter 

estimates to stabilize and converge between two chains with different initial values. Posterior 

estimates were then sampled for an additional 50,000 iterations within each MCMC chain to 

provide model results. Traces of MCMC iterations demonstrated good convergence for all 
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parameters. A major benefit of this Bayesian approach is that it allows us to combine a 

parameter’s association with population crash rates as estimated in one analysis with the 

estimated probability that a given crash is alcohol-involved (HBD or SVN) from another 

analysis. We therefore first present the results of each outcome’s model separately in Table 

2, below. Noting that the outcome from the model explaining total crashes serves as the basis 

for estimating rates of HBD and SVN crashes, we then combine the posteriors of total and 

HBD parameter estimates and total and SVN parameter estimates, respectively, to calculate 

total covariate effects across each pair of models (as presented in Table 3).

RESULTS

Table 1 presents descriptive statistics for the outcome measures and explanatory variables 

included in the analyses. (in supplementary table 1 we provide city specific details relevant 

to our analysis). The average block group had 1,706 residents in an area of 1.2 square miles, 

experiencing 9.5 injury crashes per year, of which 1.0 were categorized as HBD and 0.6 as 

SVN. It had 0.13 outlets per square mile, of which 8.0% were bars and 40.8% were 

restaurants. The outlet densities among adjacent areas tend to be similar, but the city-level 

mean is lower (0.06 per square mile) due to a few large outlying block groups.

Table 2 presents results for the Bayesian spatial Poisson analyses. The first set of columns 

represents effects related to all injury MVCs relative to population. The second and third sets 

of columns present effects related to HBD and SVN crashes, respectively, net of non-HBD 

and non-SVN crashes. The raw coefficients from these Poisson models are log relative rates 

from the posterior distribution, and for ease of interpretation all values have been 

exponentiated in the table to represent relative rates. The median relative rate from each 

model’s sampled MCMC iterations represents the expected value for each effect. This 

median relative rate is followed in parentheses by a credible interval indicating a range of 

values that is expected to contain the true relative rate with 95% probability (a Bayesian 

concept analogous to standard confidence intervals).

The positive intercept in the all-injury-crash analysis indicates that such CBGs have crashes 

that grow more than one-to-one with population, whereas their alcohol-involved crashes rise 

less than one-to-one with population, a background population source of crash risks not 

recognized in previous analyses. The population risks of all injury crashes and the risk ratio 

that those crashes are SVN both decline with local population density. CBGs with higher 

populations in adjacent areas have higher population risks of injury crashes and greater 

likelihood that those crashes are HBD. City population has no effect in any model. Net of 

these population effects, injury crash rates and their likelihood of alcohol involvement are 

substantially influenced by alcohol outlet densities. Injury crash rates are positively related 

to alcohol outlet densities at each geographic level (city, local, adjacent areas), with the 

relative rates being higher at greater levels of aggregation (i.e., city density has the largest 

proportional effect, whereas local densities have the smallest). The relative risk that these 

crashes are alcohol involved (HBD or SVN), however, decline (are negatively associated) 

with the density of outlets in local and adjacent block groups.
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The city-level proportion of bar outlets has a positive relationship to crash rates as well as to 

the likelihood that the crashes are SVN, but local and adjacent bar proportions do not have 

well-supported effects for any outcome (i.e. we define a covariate as “well-supported” if it’s 

95% credible interval excludes no effect) . The proportion of restaurant outlets within 

adjacent areas has a negative association with the chances of a local crash being categorized 

as HBD.

Population crash risks are also negatively associated with income, household size, 

unemployment, and the local proportions that are older or black. They are positively related 

to the presence of major highways, poverty, and proportion Hispanic within the local block 

group, as well as to the concentration of young adults in adjacent areas. The bottom section 

of the table describes the spatial aspects of the model. The conditionally autoregressive 

(CAR) spatial random effect explained 25% of block-group variance in total crash rates as 

well as 79% and 30% of the relative likelihood that those crashes are HBD and SVN, 

respectively. The CAR random effects within these three analyses all exhibited high degrees 

of spatial autocorrelation, with Moran I statistics between 0.73 and 0.82.

While the detailed covariate estimates in Table 2 accurately reflect the structure of the 

statistical models, they are not particularly helpful for predicting the effect of specific policy 

changes on rates of alcohol-involved crashes. For example, the estimated effect of raising 

bar densities by 10% in all block groups would depend on the combined effects of nine 

variables: the overall outlet density as well as the proportions that are bars or restaurants, 

each estimated at three geographic levels (locally, in adjacent block groups, and city-wide). 

In Table 3 we use the MCMC posteriors to estimate the combined effects of four 

hypothetical increases in outlet-density on crash rates within an average block group, with 

well-supported estimates shown in bold. Part A hypothesizes a 10% increase in all outlet 

types within each block group. This would raise local, adjacent and city-level outlet densities 

by an equal proportion, but would have no effect on the shares of outlets that are bars or 

restaurants. For an average block group, this 10% increase in outlet densities is associated 

with a 2.8% increase in total crashes and 2.5% more HBD events but no well-supported 

effect on SVN crashes.

Part B of Table 3 assumes that the density of only one outlet type is increased by 10%, while 

the others are unchanged. This leads to smaller increases in overall outlet density as well as 

shifts in the proportions of outlets by type. A 10% rise in bars alone is associated with a 

1.4% rise in total crashes, but related to considerably higher increases in alcohol involved 

events (4.3% for HBD, 10.3% for SVN). Conversely, a 10% increase in restaurants or off-

premise outlets is generally associated with smaller negative changes in alcohol-involved 

crashes

Part C of Table 3 presents each geographic covariate’s contribution to the “bars only” row of 

Part B. This indicates that over two-thirds of the predicted rise in total crashes is generated 

by the city-level change in the proportion of bars, and this fraction is even larger for the 

predicted increases in HBD and SVN crashes. The remaining association for total crashes is 

due primarily to the resulting increases in overall outlet density across the three geographic 

levels.
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Figure 1 illustrates how CBG, adjacent CBG and city-level bar- and population-density 

effects predict the geographic distribution of HBD MVCs in the city of Fresno. The left map 

shows HBD relative rates associated with spatial contributions of bar density, reflecting the 

combined parameters of the outlet-density and proportion of outlets that are bars across both 

the injury crash and HBD analyses. Elevated risks, indicated by darker shading, can be seen 

both in block groups containing bars (whose locations are displayed as circles for reference) 

and in neighboring areas. The color scale identifies quintiles of risk among these Fresno 

block groups, with the highest quintile of bar density contributing at least 14% more HBD 

risk than seen in the lowest-risk quintile (1.67/1.46). The right map shows the combined 

effects of the three population covariates (local density, plus adjacent and city-wide levels). 

This map’s quintile scale suggests that, ignoring differences in other covariates, these 

population variables alone suggest HBD crash risks at least 89% higher in the darkest 

shaded block groups on the city’s periphery than in the densely populated areas near the city 

center (0.89/0.47). The relative rates shown in these maps represent the combined effect of 

population or bar densities on HBD crash rates across the three geographic levels in the 

analyses. These summary effects represent the best posterior estimates from the Bayesian 

analyses.

DISCUSSION

Across a sample of 50 mid-size California cities we found that injury crashes were positively 

related to detailed quantitative measures of retail alcohol availability in general and 

specifically related to the density of bars. Our statistical approach allowed for outlet effects 

to be multi-scale, and the results suggest that crash risks within any given block group are 

associated not only with local outlet density but also with alcohol availability measured 

across neighboring block groups and whole cities. We also distinguished the association of 

alcohol availability with population risks for injury crashes from relationships of these crash 

exposures to alcohol involved injury crashes using both officers’ assessments of whether 

drivers had been drinking (HBD) and a traditional alcohol surrogate, single vehicle night 

time crashes (SVN). This empirical approach whereby multiple correlates of population and 

outlet effects are described and elucidated is well demonstrated by the result that bar density 

was positively related to the likelihood that a crash was present in each of these alcohol-

involved categories, and that these effects were primarily due to the proportion of bars at the 

city level.

Previous research is divided regarding the relationship between alcohol outlet densities and 

alcohol-involved traffic crashes. The lack of agreement may arise in part because a high 

density of alcohol outlets could imply both increased alcohol consumption and reduced 

driving distances, resulting in indeterminate predictions for risk of alcohol-involved crashes. 

Further, because individuals may drive long distances to visit an alcohol outlet (Levine, 

2015), a high density of outlets may affect crash risks both locally and more distally at the 

same time. What must be considered is the granularity and comprehensiveness of the spatial 

context and the theoretical underpinnings for any particular spatial unit (or combination of 

units) chosen for analysis. A very local approach may be desirable to locate hot spots where 

specific causes can subsequently be identified. A broader city-wide approach may be 
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desirable to identify broad city-level correlates that may indicate causally important 

components of crash risks (e.g., population size and composition, transportation patterns).

The local, adjacent-unit and city outlet density effects shown in Table 2 suggest that the 

spatial influence of some correlates of MVCs extend far beyond the size of a typical CBG. 

Thus, the combined effects related to outlet densities at these three geographic levels are 

considerably larger than predicted by a model that does not allow for lagged or city outlet 

effects. For example, Table 3 shows that a 10% increase in total outlet densities across all 

block groups would be expected to raise all injury crash rates by 1.4%, and Table 2 suggests 

that this is due to a large positive effect at the city level bolstered by additional well-

supported positive effects of local and adjacent-area densities. This indicates that predictions 

regarding motor vehicle crashes can be quite sensitive to the scale of geographic units (local, 

adjacent/neighboring, city wide) as well as to whether models allow for spatially-lagged 

outlet density effects. Such sensitivity strongly suggests that multi-scale hierarchical 

analyses may be a preferred method for addressing some of the aggregation bias, change of 

support and modifiable area unit problems confronted by spatial ecological research into 

crash risks (Cressie and Wikle, 2011).

As shown in Figure 1, there is a clear signal indicating differences in correlates of crash 

outcomes across areas of the 50 cities examined in this study. The left map shows that block 

group variations in outlet density effects range at least 14% between highest and lowest 

quintiles. Within-city variations in bar concentrations appear to have substantial effects on 

crash risks, even as large effects are also observed between cities (Table 3); these risks 

appear to be concentrated, reasonably enough, around areas where most outlets, and bars in 

particular, are located. The right map shows that local and adjacent population contributions 

to HBD risk vary by at least 89% between highest and lowest quintiles. Within city 

variations in population size also have substantial effects on crash risks; these effects are, 

also reasonably enough, around residential areas where populations are most concentrated. It 

is tempting to conclude that crashes in these different areas are related to different processes; 

perhaps drinking drivers are both more likely to crash in areas where traffic is greatest (e.g., 

areas where outlets are most concentrated) and in areas where trips home are concentrated; 

or perhaps place-of-last-drink for many drivers who crash are at the homes of friends and 

relatives in these areas. Future research may address these points.

Limitations and Future Directions. This study has several important limitations. (1) 

Estimated outlet density effects could be biased by the lack of important transportation and 

land use variables which were not available in the block-group level data across the eight 

years studied (Keay and Simmonds, 2005; Ahmed et al., 2011). Further, there may be other 

transportation measures such as more detailed roadway segments that may also help future 

spatial crash modeling research related to alcohol outlets (Levin, 2017). (2) The spatial units 

of analysis do not necessarily match the scale of the underlying activity. Block groups tend 

to be physically compact in urban areas but can be much larger at the edges of cities; 

obviously, scale matters in assessments of alcohol use behaviors and the type and 

concentration of outlets. (3) The measure of spatial connections between units may be 

inappropriate. The current study uses simple adjacency to calculate spatial-lagged effects. 

An alternative approach might use inverse weighted distances or travel times to-and-from 
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geographic units. (4) The large spatial autocorrelations that remain observed after 

consideration of covariate effects continue to suggest that the characteristic scale of outlet-

crash relationships may be larger on average than CBGs. (5) The combination of local and 

spatially-lagged outlet density effects with strongly-positive spatial autoregressive effects 

would suggest that the effects of alcohol outlets may be much greater than has been 

estimated here (LeSage and Pace, 2009). (6) Although spatial lag effects were examined, 

temporal lag effects were not. Nevertheless, within the panel framework of the current study, 

estimates represent correlated effects within areas across time.

In summary, the current results suggest considerable complexity in the relationship between 

alcohol availability and alcohol-involved traffic crashes. Our estimated density effects differ 

by types of outlets, with bars typically having larger associations than restaurants and off-

premise outlets. Our results also indicate that no one geographic scale can capture the full 

extent of this relationship, suggesting the importance of multi-scale approaches in future 

research. Lastly, the current findings indicate that availability may have different 

associations with total crashes than with the chances that each crash is alcohol involved, 

suggesting the value of detailed quantitative metrics allowing for such distinctions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated contributions of bar densities and population variables to relative rates of had-

been drinking (HBD) crashes in Fresno, CA 2008

Note: Each map represents the contribution of the specified community characteristic to the 

relative risk of HBD crashes within each block group. This combines the characteristics’ 

impact on the rate of overall injury crashes with their effect on the odds that a crash will be 

HBD in that area. The left map estimates the combined risk contributions of overall outlet 

density and proportion bars across three geographic levels (local black group adjacent areas, 

and ctty-wide). The right map estimates the combined risk contributions of the local 

populatron density and the adjacent a city-level populations. The color scale for each map 

identifies quintiles of relative risk within these Fresno block groups. Locations of bars and 

pubs are shown for reference.
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Table 1

Descriptive Statistics

Variable Description Mean SD Min Max

Block group population 1,706 1,333 0 29,778

Block group land area (square miles) 1.211 6.533 0.007 147.855

Counts of injury crashes

  Total 9.526 13.070 0.000 238.000

  Had Been Drinking (HBD) 1.013 1.625 0.000 21.000

  Single Vehicle Nighttime (SVN) 0.558 1.239 0.000 21.000

Alcohol outlet density (10s per square mile)

  In local block group 1.334 2.549 0.000 39.261

  Mean of adjacent block groups 1.363 1.413 0.000 18.897

  City-level average 0.577 0.630 0.047 3.424

Proportion of outlets that are bars or pubs

  In local block group 0.080 0.141 0.000 1.000

  Mean of adjacent block groups 0.080 0.088 0.000 1.000

  City-level average 0.088 0.026 0.000 0.165

Proportion of outlets that are restaurants

  In local block group 0.408 0.272 0.000 1.000

  Mean of adjacent block groups 0.446 0.205 0.000 1.000

  City-level average 0.499 0.084 0.311 0.773

Local population density (1000s / square mile) 7.241 6.064 0.000 75.673

Adjacent population (1000s) 11.370 6.236 0.588 67.852

City population (1000s) 209.128 160.955 58.987 550.139

Real income ($10,000s) 5.462 2.668 0.000 23.538

Adjacent real income ($10,000s) 5.447 2.141 0.956 20.479

Average household size 2.855 0.706 0.000 6.400

% Poverty 10.894 11.959 0.000 100.000

% Unemployment 7.256 8.079 0.000 153.333

Proportion age 20–24 0.072 0.029 0.000 0.612

Proportion age 20–24 in adjacent block groups 0.072 0.021 0.000 0.446

Proportion age 25–44 0.290 0.068 0.000 0.715

Proportion age 45–64 0.229 0.064 0.000 1.000

Proportion age 65+ 0.119 0.086 0.000 1.000

Proportion white 0.793 0.165 0.000 1.000

Proportion white in adjacent block groups 0.794 0.142 0.105 0.990

Proportion Black 0.062 0.094 0.000 0.894

Proportion Hispanic 0.308 0.235 0.000 1.200

Proportion male 0.494 0.040 0.000 1.000

Presence of any class 1–2 highway (dummy) 0.427 0.495 0.000 1.000

Notes: Descriptive statistics of model variables for 3870 Census block groups within 50 mid-sized California cities over the years 2001–2008 (total 
n = 30,960). Proportions of outlets that are bars or restaurants are undefined in areas with no outlets; in such cases the sample-wide average 
proportions were used.
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Table 3

Predicted increases in injury crash risks due to specified outlet density changes

Type of outlet density change: All injury
crashes

HBD injury
crashes

SVN injury
crashes

(A) 10% rise in all types of outlets: 2.82% 2.49% 0.43%

(2.30%, 3.34%) (1.66%, 3.31%) (−0.43%, 1.27%)

(B) 10% rise in a single outlet category:

  -- Bars only 1.40% 4.26% 10.30%

(0.48%, 3.10%) (1.36%, 15.56%) (2.18%, 76.78%)

  -- Restaurants only 1.18% −2.41% −5.95%

(−0.15%, 2.54%) (−7.36%, 1.12%) (−37.13%, −0.48%)

  -- Off-Premise only 0.48% 0.04% −3.37%

(−0.36%, 1.26%) (−4.80%, 1.95%) (−28.98%, 0.43%)

(C) Covariates’ contributions to “bars only” effects above:

  -- Overall density in local block group 0.03% 0.03% −0.01%

  -- Overall density in adjacent block groups 0.11% 0.08% −0.01%

  -- Overall density at city level 0.12% 0.13% 0.07%

  -- Proportion bars in local block group 0.01% 0.09% 0.00%

  -- Proportion bars in adjacent block groups 0.02% 0.24% 0.16%

  -- Proportion bars at city level 1.16% 3.53% 9.98%

  -- Proportion restaurants in local block group −0.01% 0.01% 0.01%

  -- Proportion restaurants in adjacent block groups −0.04% 0.05% 0.01%

  -- Proportion restaurants at city level 0.02% 0.09% 0.10%

Estimated effects calculated based on sample mean outlet densities. A 10% increase in all outlet types (part A) would not affect the proportions of 
those outlets that are bars or off-premise outlets. A 10% change in a given outlet category (part B) will raise total density by less than 10%, and will 
raise the proportion of outlets for the given category but reduce it for other outlet types. Part C demonstrates the contribution of individual outlet 
covariates to part B’s estimates of the effects of raising bars only by 10%; bold type indicates well-supported contributions based on calculations of 
sampled MCMC iterations across analyses. Credible intervals shown in parentheses in parts A and B.
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