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Abstract

Alzheimer’s disease (AD) is a firmly incurable and progressive disease. The pathology of AD 

usually evolves from cognitive normal (CN), to mild cognitive impairment (MCI), to AD. The aim 

of this paper is to develop a Bayesian semiparametric mixed hidden Markov modeling 

(BSMHM2) framework to characterize disease pathology, identify hidden states corresponding to 

the diagnosed stages of cognitive decline, and examine the dynamic changes of potential risk 

factors associated with the CN-MCI-AD transition. The BSMHM2 framework consists of two 

major components. The first one is a state-dependent semiparametric regression for delineating the 

complex associations between clinical outcomes of interest and a set of prognostic biomarkers 

across neurodegenerative states. The second one is a parametric transition model, while 

accounting for potential covariate effects on the cross-state transition. The inter-individual and 

inter-process differences are taken into account via correlated random effects in both components. 

Based on the Alzheimer’s Disease Neuroimaging Initiative dataset, we are able to identify four 

states of AD pathology, corresponding to common diagnosed cognitive decline stages, including 

CN, early MCI, late MCI, and AD and examine the effects of hippocampus, age, gender, and 

APOE-ε4 on degeneration of cognitive function across the four cognitive states.
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1 Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually starts slowly 

and worsens over time. The most common early symptom of AD is short-term memory loss, 

also referred to mild cognitive impairment (MCI). Patients at MCI state have high likelihood 
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to transit to dementia or AD within a few years (Albert et al., 2011). Despite an increasing 

attention to its growing public threat, the cause of AD remains poorly understood. Thus, it is 

great interest to discovering or validating prognostic biomarkers that may identify subjects at 

great risk for future cognitive decline and investigating the functional effects of various 

biomarkers on the conversion from NC to AD.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study began in 2004 and it 

collected imaging, generic, clinical, and cognitive data from subjects under cognitive normal 

(CN) controls and subjects with MCI or AD in order to delineate the complex associations 

among various characteristics of the clinical spectrum of AD. The ADNI-1 recruited 

approximately 800 subjects according to its initial aim and has been extended by three 

follow-up studies, namely, ADNI-GO, ADNI-2, and ADNI-3. ANDI-1 subjects had an 

option to refuse follow-up monitoring in subsequent studies. More information on ADNI can 

be obtained in the official website (www.adni-info.org). Functional assessment questionnaire 

(FAQ), an assessment of abilities to function independently in daily life, is widely used to 

monitor the decline of cognitive ability over time. The FAQ scores of each subject were 

obtained at baseline and then every 6 months across 9 years multiple study phases. For this 

longitudinal study, several central questions are naturally raised as follows:

• (i) How many hidden pathophysiological states exist in the progression of AD?

• (ii) Which factors should contribute to the neuro-degenerative pathology from 

one state (e.g., MCI) to another (e.g., AD)?

• (iii) Whether the identified risk factors are equally good predictors of cognitive 

decline at each state?

Given these questions, there is a particular need for the development of statistical models 

that delineate cognitive decline in terms of the pathophysiological states of AD.

Hidden Markov models (HMM) are well suited to the characterization of longitudinal data 

in terms of a set of hidden states (Cappé et al., 2005; Maruotti, 2011; Bartolucci et al., 

2013). HMMs consist of two components: a transition model to describe the dynamic 

transition of hidden states and a conditional regression model to examine state-specific 

covariate effects on responses. Owing to their ability to simultaneously reveal the 

longitudinal association structure and dynamic heterogeneity of the observed process, 

HMMs and their variants have attracted significant attention from the medical, behavioral, 

social, environmental, and psychological sciences (Vermunt et al., 1999; Scott et al., 2005; 

Schmittmann et al., 2005; Bartolucci and Farcomeni, 2009; Bartolucci et al., 2013; Chow et 

al., 2013). In particular, HMMs have previously been applied to investigate diseases 

progression to identify latent pathophysiological states. For instance, Albert et al. (1994) 

used HMMs to analyze multiple sclerosis disease across relapse and remission states (see 

also Altman and Petkau, 2005; Altman, 2007). Ip et al. (2013) identified ten disable states on 

the basis of a 10-year follow-up study of late-life disability in elder adults, and examined the 

patterns and risk factors for transition among disable states. Song et al. (2016) revealed the 

dynamic change of treatment effectiveness in preventing cocaine use across three cocaine 

addiction states.
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Despite the rapid development and wide applications of HMMs, existing literature has 

mainly focused on parametric HMMs, in which the forms of covariate effects on responses 

and on transition probabilities are pre-specified. One problem of parametric models is that 

they may be too restrictive to reflect correctly the reality because the complex relationships 

among variables are seldom known a priori, and a pre-specified parametric form tends to 

overlook the subtle pattern of a function. A more comprehensive analysis can be performed 

by incorporating nonparametric functions into HMMs so that the functional effects of 

interest can be discovered. To the best of our knowledge, however, such nonparametric 

modeling has not been introduced into the HMM framework.

In this study, we propose a Bayesian mixed semiparametric hidden Markov modeling 

(BMSHM2) framework to analyze the ADNI-I dataset. Similar to conventional HMMs, the 

proposed model consists of two major components. The first component is a state-dependent 

semiparametric regression to investigate the linear and nonlinear effects of covariates, such 

as hippocampus, age, gender, and APOE-ε4, on the clinical outcome of cognitive decline 

(e.g., FAQ score). The second component is a mixed continuation-ratio logit transition 

model to examine various covariate effects on the probabilities of transitioning among 

neurodenerative states. We introduce a random effect in both models in order to account for 

inter-individual differences and allow the random effects to be dependent by assigning a 

joint distribution for them. Such joint random effects enable the model to accommodate the 

situation where some omitted factors influence both the observed process and the hidden 

transition process (Wulfsohn and Tsiatis, 1997; Chi and Ibrahim, 2006). We develop a full 

Bayesian approach, along with Bayesian P-splines procedure and Markov chain Monte 

Carlo (MCMC) methods, for statistical inference. As far as we know, no previous study has 

ever been conducted either on the proposed BMSHM2 or on Bayesian HMMs. Also, this 

paper is the first to investigate the neurodegenerative pathology of AD.

Section 2 defines BMSHM2 and discusses the related identifiability issues. Section 3 

introduces the Bayesian inference procedure. Section 4 illustrates the use of BMSHM2 in 

the analysis of the ADNI dataset. Section 5 demonstrates the empirical performance of the 

proposed methodology through a simulation study. Section 6 discusses the findings obtained 

from the analysis of the ADNI dataset. Technical details are provided in the Appendix.

2 Model description

2.1 Questions of Interest for ADNI-1

Data used in this article were obtained from the ADNI-1 database launched in 2003. A total 

of n = 633 patients at baseline, 6 months, 12 months, and 24 months (t = 1, …, 4) were 

considered in the analysis. We use the score of FAQ, denoted by yit, to characterize the 

cognitive function of subject i at occasion t. Moreover, we observe a r × 1 vector of discrete 

covariates, denoted by bit = (bit,1, …, bit,r)T, and a q × 1 vector of continuous covariates, 

denoted by xit = (xit,1, …, xit,q)T. The covariates of interest include gender (1 = male; 0 = 

female), apolipoprotein E-ε4 (APOE-ε4), hippocampus, and age at baseline, in which 

APOE-ε4 is a known genetic risk factor for AD and is coded as 0, 1, and 2, denoting the 

number of APOE-ε4 alleles, and hippocampal volume is divided by whole brain volume to 

account for the confounding effect of brain size. Thus, APOE-ε4 (=1, bit,1), APOE-ε4 (=2, 
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bit,2), and gender (bit,3) are discrete, whereas hippocampus (xit,1) and age at baseline (xit,2) 

are continuous.

Several kinds of dependencies/heterogeneities are worthy of investigation. The first one is 

the dynamic heterogeneity across different groups. Figure 1 plots the individual trajectories 

of FAQ scores for 20 randomly selected samples, who were initially diagnosed as CN, MCI, 

and AD, respectively, at baseline. The cognitive decline patterns are apparently distinct over 

the groups, suggesting at least three (and probably more) distinct neurodegenerative states 

existent underlying the observations of FAQ score. The second one is the dependency of 

FAQ score on potential covariates, such as hippocampus, age at baseline, APOE-ε4, and 

gender. The third one is the serial dependency of the longitudinal observations, owing to 

relative persistence of neurodegenerative states. The last one is the heterogeneity caused by 

the existence of some omitted clinical or genetic indicators that influence both cognitive 

decline and its underlying transition. The BMSHM2 described below perfectly 

accommodates all these features.

2.2 Model Setup

The BMSHM2 consists of two major components, including a conditional seminparametric 

regression model and a continuation-ratio logit transition model, as detailed below.

2.2.1 Conditional semiparametric regression model—Let yit with subject i = 1, …, 

n at t = 1, …, T be the observation process. The hidden state process, Zit, which takes values 

in {1, …, S}, is assumed to follow a first-order Markov chain. Given the hidden state Zit = s, 

the conditional semiparametric regression model is defined as follows:

[yit |Zit = s] = μs + γs
Tbit + ∑

j = 1

q
f sj(xit, j) + wi1 + δit, (1)

where μs is a state-specific intercept, γs = (γ1, …, γr) is a state-specific vector of fixed effect 

of discrete covariates, fsj(·)s are state-specific unknown smoothing functions, bit = (bit,1, …, 

bit,r)T and xit = (xit,1, …, xit,q)T are r × 1 vector of discrete covariates and q × 1 vector of 

continuous covariates respectively, wi1 is a subject-specific random effect, δit is a random 

residual independent of yit, and [δit|Zit = s] ~ N[0, ψs].

The conditional model defined by (1) extends the parametric regression to allow the additive 

nonparametric functions of covariates, so that the functional effects of interest can be 

discovered. Such nonparametric modeling provides great flexibility in fitting nonlinear 

effects whose forms need not be specified a priori. When used as an exploratory tool, the 

proposed model is able to help users to visually examine and interpret the functional effects 

of potential predictors on the response of interest. Moreover, the subject-specific random 

effect wi1 permits additional dependencies elicited from other sources and thus avoids a 

large number of hidden states caused by possible residual correlation among responses.

Kang et al. Page 4

Stat Methods Med Res. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2.2 Continuation-ratio logit transition model—Let pitus denote the transition 

probability from state Zi,t−1 = u at occasion t − 1 to state Zit = s at occasion t for individual i. 
Based on the assumption of the first-order Markov chain, we have

pitus = P(Zit = s |Zi1, Zi2, …, Zi, t − 1 = u) = P(Zit = s |Zi, t − 1 = u) . (2)

The initial distribution of Zi1 is assumed to be a multinomial with probabilities (τ1, …, τS)T 

such that τs ≥ 0 and ∑s = 1
S τs = 1. The distribution of {Zit}t = 1

T  is then fully determined by 

the transition probabilities and the distribution of the initial state.

In the study of disease progression, the hidden states can often be naturally ranked (e.g., CN, 

MCI, and AD can be ranked from the best to the worst cognitive condition). Thus, we 

assume that the hidden states {1, …, S} are ordered and ϑitus = P(Zit = s|Zit ≥ s, Zi,t−1 = u). 

Then, the transition across the ordered states can be described by continuation logits as 

follows: For t = 2, …, T, s = 1, …, S − 1, and u = 1, …, S,

log 
P(Zit = s |Zi, t − 1 = u)
P(Zit > s |Zi, t − 1 = u) = log 

pitus
pitu, s + 1 + … + pituS

= logit(ϑitus) . (3)

The parameterization in (3) is intended to facilitate the interpretation of transition to a state 

rather than to a better one. To examine the effects of potential predictors on the transition 

probabilities, we consider a continuation-ratio logit transition model as follows:

logit(ϑitus) = ζus + αTdit + wi2, (4)

where ζus is a state-specific intercept, dit = (xit
T, bit

T)T is the vector of covariates defined in 

(1), α is a (q + r) × 1 vector of regression coefficients that can be interpreted as conditional 

log odds ratios in a logistic regression, wi2 is a subject-specific random effect that is distinct 

from but correlated with wi1, and wi = (wi1, wi2)T is assumed to follow a multivariate normal 

distribution N(0, Φ). Similar to the proportional assumption in a cumulative logit model, α 
in (4) is assumed to be independent of u and s in order to maintain the order of the hidden 

states and avoid a tedious transition model, in which every transition elicits a set of 

parameters for all possible states of origination and destination. This outcome, in turn, 

greatly reduces the complexity and enhances the interpretability of the transition model.

Notably, random effects wi1 and wi2 play different roles in the conditional and transition 

models. While wi1 in conditional model (1) relaxes the assumption that observations {yit; i = 

1, …, n, t = 1, …, T} are conditionally independent given the hidden state Zit = s, wi2 in 

transitional model (4) releases the assumption that hidden process Zit is Markovian. Unlike 

the existing literature that usually treats wi1 and wi2 separately, we accommodate their 

possible correlation by assigning a joint distribution for wi = (wi1, wi2)T. Consequently, the 
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possible correlation between the heterogeneities existent within the two stochastic processes 

can be appropriately addressed and examined through the covariance matrix Φ.

2.3 Model identification

The proposed model is not identifiable because of the following two model indeterminacies. 

The first is caused by the additive nonparametric functions involved in (1), in which each 

unknown function is not identifiable up to a constant. To address this problem, we need to 

impose constraints on the unknown functions to enforce their integrations in the ranges of 

predictors to zero (Panagiotelis and Smith, 2008; Song and Lu, 2010) as follows:

𝒳 j
f sj(x)dx = 0,    for   s = 1, …, S, j = 1, …, q, (5)

where j is the support of xj. The other model determinacy is the label switching problem 

elicited by the invariance of the likelihood function to a random permutation of the state 

labels, which results in a multi-modal posterior under a symmetric prior specification. We 

follow Frühwirth-Schnatter (2001) to conduct a permutation sampler to address this issue.

3 Bayesian Inference

3.1 Nonparametric modeling

The first critical issue in the Bayesian analysis of the proposed model is to estimate the 

nonparametric functions involved in (1). We consider the use of Bayesian P-splines (Berry et 

al., 2002; Lang and Brezger, 2004; Fahrmeir and Raach, 2007). The basic idea is to estimate 

the unknown smoothing functions through a sum of B-splines basis functions (De Boor, 

2001) given a large number of knots in the domains of predictors. Specifically, fsj(xit,j), the 

functional effect of the jth covariate at state s for subject i at time t, can be approximated as 

follows:

f sj(xit, j) = ∑
l = 1

L
βsj, lBl(xit, j) = βsj

TB(xit, j), (6)

where L is the number of splines determined by the number of knots, βsj = (βsj,1, …, βsj,L)T 

is the vector of the unknown parameters, B(·)s’ are cubic B-splines basis functions, and 

B(xit,j) = (B1(xit,j), …, BL(xit,j))T. Usually, L taking a value from 10 to 30 provides sufficient 

flexibility in fitting most smooth functions.

One problem of applying (6) to approximate an unknown smooth function is the over-fitting 

caused by the use of a large number of knots. Eilers and Marx (1996) suggested the 

penalization of the coefficients of adjacent B-splines basis functions to prevent the 

overfitting. Such penalization can be implemented in the Bayesian framework by applying 

random walk priors to βsj (Lang and Brezger, 2004; Fahrmeir and Raach, 2007; Song and 

Lu, 2010).
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3.2 Prior distributions

We assign a truncated Gaussian priors for βsj as follows:

p(βsj |νsj) = 1
2πνsj

Lsj/2

 exp  − 1
2νsj

βsj
TKsjβsj I(1ns

T Bsjβsj = 0), (7)

where νsj is a smoothing parameter for controlling the amount of penalty, Ksj is a penalty 

matrix derived according to the random walk penalties proposed, Lsj is the rank of Ksj, 1ns is 

an ns × 1 vector with all elements equal to 1, ns is the sample size at state s, Bsj is the sub-

matrix of Bj = [Bl(xit,j)]nT×L without the rows where Zit ≠ s, and the truncation term 

incorporates the identifiability constraint (5) into the splines approximation (6).

For the smoothing parameters νsj, we assign a highly dispersed but proper inverse gamma 

prior as follows:

p(νsj
−1) =D Gamma[ν1, ν2], (8)

where ν1 and ν2 are hyperparameters whose values are pre-specified. A common choice for 

these hyperparameters is ν1 = 1 and ν2 is small (Fahrmeir and Raach, 2007; Song and Lu, 

2010). We set ν1 = 1 and ν2 = 0.005 in the present study.

For the parameters involved in conditional model (1), conjugate-type priors are assigned as 

follows: for s = 1, …, S,

p(μs) =D N[μs0, σμs0
2 ], p(γs) =D N[γs0, ∑s0 ], (9)

p(Φ−1) =D Wishart[R0, ρ0], p(ψs
−1) =D Gamma[α∼s0, β

∼
s0],

where μs0, σμs0
2 , γs0, Σs0, α̃

s0, β̃s0, R0, and ρ0 are hyperparameters with preassigned values.

Finally, for the parameters involved in transition model (4), we consider the following 

Gaussian priors:

p(ζus) =D N[ζus0, σζ0
2 ], p(α) =D N[α0, Hα0], p(τs) =D N[τs0, στ0

2 ], (10)

where ζus0, σζ0
2 , α0, Hα0, τs0, and στ0

2  are hyperparameters with preassigned values.
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3.3 Posterior computation

Let yi = (yi1, …, yiT)T, Y = (y1, …, yN), D = (d11, …, dNT), Zi = (Zi1, …, ZiT)T, Z = (Z1, 

…, ZN), W = (w1, …, wN), and θ be the vector that includes all the unknown parameters in 

the proposed model. The complete-data log-likelihood function that is used to derive the 

posterior distributions and compute the model selection criterion is given by

log p(Y, D, W, Z |θ) = ∑
i = 1

n
[log p(yi |di, wi, Zi, θ) + log p(Zi |di, wi, θ) + log p(wi |θ)]

= ∑
i = 1

n
∑
t = 1

T
log p(yit |dit, wi1, Zit = s, θ) + ∑

i = 1

n
∑
t = 2

T
log p(Zit = s |Zi, t − 1 = u, dit, wi2, θ)

+ ∑
i = 1

n
log p(Zi1 = s |θ) + ∑

i = 1

n
log p(wi |θ) = − 1

2 ∑
i = 1

n
∑
t = 1

T
[log(2πψs)

+ (yit − μs − γs
Tbit − ∑

j = 1

q
βsj

TB(xit, j) − wi1)
2
/ψs] + ∑

i = 1

n
∑
t = 2

T
log(pitus)

+ ∑
i = 1

n
log(pi10s) − 1

2 ∑
i = 1

n
[log(4π2 |Φ | ) + wi

TΦ−1wi],

(11)

where

pitu1 =
exp{aitu1}

1 + exp{aitu1}, pi1uS = ∏
j = 1

S − 1 1
1 + exp{aituj}

,

pitus =
exp{aitus}

1 + exp{aitus}
∏
j = 1

s − 1 1
1 + exp{aituj}

, s = 2, …, S − 1, (12)

pi10s = τs, s = 1, …, S,

with aitus = ζus + αTdit + wi2.

The Bayesian estimate of θ is obtained by drawing samples from p(θ|Y), which is 

intractable because of the existence of latent states and random effects. We instead work on 

p(θ, Z, W|Y) and use a Gibbs sampler to implement the posterior simulation. Owing to the 

nonlinearity of the continuation-logit transition model and the existence of the 

nonparametric functions in the conditional regression, some full conditional distributions, 

especially those related to the transition model, have complex forms. MCMC methods, such 

as the forward filtering and backward sampling algorithm (Cappé et al., 2005) and the 

Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970), are 

employed to sample from them. The details are provided in the Appendix.
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With the use of posterior samples, the hidden states can be estimated as follows:

Z it = arg  max
s ∈ {1, …, S}

P(Zit = s |yi, θ) ≈ arg  max
s ∈ {1, …, S}

1
M ∑

m = 1

M
I(Zit

(m) = s), (13)

where Zit
(m) denotes the latent allocation of yit at the mth iteration, and 1

M ∑m = 1
M I(Zit

(m) = s) is 

the posterior mean of the latent allocations of yit drawn from the MCMC iterations.

3.4 Determination of the number of hidden states

In the applications of BMSHM2 to the ADNI dataset, the states of the Markov chain can 

often naturally be interpreted as proxies for the neurodegenerative states, although a one-to-

one correspondence between nominal HMM states and the clinical cognitive stages 

diagnosed by doctors is unnecessary. In this regard, a relevant question is how to determine 

the number of hidden states in the analysis of ADNI data. We propose the use of a modified 

deviance information criteria (DIC) to determine the number of hidden states and choose a 

plausible model for the ADNI data analysis.

The modified DIC, which was developed by Celeux et al. (2006) for model comparison in 

the presence of incomplete data, is defined as follows:

DIC = − 4Eθ, W, Z{log p(Y, W, Z |θ) |Y} + 2EW, Z{log p(Y, W, Z |Eθ[θ |Y, W, Z]) |Y} . (14)

where log p(Y, W, Z|θ) is the complete-data log-likelihood function shown in (11). The 

expectations involved in (14) can be approximated using the posterior samples collected 

through MCMC methods (Celeux et al., 2006). In model selection, the model with the 

smallest value of DIC is selected.

4 Alzheimer’s Disease Neuroimaging Initiative Data Analysis

4.1 Data description

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies and nonprofit organizations, as a 

$60 million, 5-year public private partnership. The initial goal of ADNI was to recruit 800 

adults, aged 55 to 90, to participate in the research – approximately 200 cognitively normal 

older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, 

and 200 people with early AD to be followed for 2 years.

We focused on 633 subjects who were all followed up at baseline, 6 months, 12 months, and 

24 months. For each subject, we included his/her clinical, genetic, and imaging variables at 

the four time points. The clinical characteristics include gender (0 = male; 1 = female), age 

at baseline, and FAQ score. The FAQ score is an assessment of abilities to function 

independently in daily life and is widely used to monitor the decline of cognitive ability over 
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time. The genetic variables include APOE gene because mutations in APOE raise the risk of 

progression from amnestic MCI to AD (Petersen et al., 2005). The APOE SNPs, rs429358 

and rs7412 were separately genotyped in ADNI-1. These two SNPs together define a 3-

allele haplotype, namely, the ε2, ε3, and ε4 variants. Among these variants, APOE-ε4 has 

been identified as a risk factor for early onset of AD (e.g., Okuizumi et al., 1994). Thus, we 

considered the presence of APOE-ε4 as a covariate in this analysis. APOE-ε4 is coded as 0, 

1, and 2, denoting the number of APOE-ε4 alleles. Furthermore, the logarithm of the ratio of 

hippocampal volume over whole brain volume was included as a covariate because 

published reports (Kesslak, Nalcioglu and Cotman, 1991; Jack et al., 1992; Dickerson and 

Wolk, 2013) revealed that the atrophy of the hippocampal formation was a significant 

diagnostic marker of clinical dementia. Table 1 summarizes the basic characteristics of the 

aforementioned variables for the samples under consideration. Males account for about 

56.2% in the samples. Mean values of patients’ age (in year), adjusted hippocampal volume, 

and corresponding FAQ score are 73.0, −5.0, and 4.1, respectively. 34.6% patients carry one 

APOE-ε4 allele while only 9.8% carry two APOE-ε4 alleles.

4.2 Data analysis

The aims of this ADNI data analysis are (I) to identify the hidden states of the 

neurodegenerative pathology on the basis of 633 patients enrolled in the ADNI-1, (II) to 

reveal a set of potential covariates that influence the between-states transition, and (III) to 

investigate the linear and/or functional covariate effects on cognitive decline across the 

hidden states of the AD progression.

We fitted BMSHM2 with the FAQ score as the response yit, the clinical and genetic 

variables, gender and APOE-ε4, as covariates in bit, and hippocampus and age at baseline as 

covariates in xit. Three continuous variables, FAQ score, hippocampus, and age, were 

standardized prior to analysis. We first determined the number of hidden states. We 

considered five competing models Mk, k = 1, …, 5, where Mk represents a BMSHM2 with k 
states. A total of 24 equidistant knots were used to construct cubic P-splines, and the second-

order random walk penalties were used for the Bayesian P-splines to estimate the unknown 

smooth functions. Given the lack of prior information, we assign the hyperparameters in (9) 

and (10) to reflect vague prior information as follows: μs0 = ζus0 = τs0 = 0, 

σμs0 = σζ0
2 = στ0

2 = 1, α̃
s0 = 9, β̃s0 = 4, ρ0 = 7, R0 = 4I2, α0 and γs0 is a vector with all 

elements being zero, Hα = I5 and Σs0 = I3 where Ir is a r-dimensional identity matrix. We 

used the random permutation sampler to search for a suitable identifiability constraint to 

solve the label switching problem. The MCMC algorithm converged within 2,000 iterations 

for all competing models. We collected a total of 10,000 observations after discarding 2,000 

burn-in iterations to calculate DIC. The DIC values corresponding to M1 to M5 were 20,175, 

1,823, 1,001, 950, and 1615, respectively. Thus, the four-state model M4 was selected.

To examine the necessity of the random effects in the proposed model, we considered 

another competing model MN: a four-state BMSHM2 without random effects. The DIC 

value for MN is 1,122, which suggests an evident advantage of the proposed mixed effect 

model in the presence of high dependency/heterogeneity in longitudinal observations. Thus, 
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M4 was selected for the subsequent analysis. The estimation results obtained under M4 are 

reported in Table 2 (parametric part) and Figure 2 (nonparametric part).

We have the following observations. First, μ1, μ2, μ3, and μ4 are ranked in an ascending 

order, indicating that patients in state 1 got the lowest score of FAQ, whereas those in state 4 

got the highest. That is, patients’ ability to function independently in daily life steadily 

deteriorated from state 1 to state 4. According to the existing literature (Kantarci et al., 

2013), state 1 to state 4 can be explained as cognitive normal (CN), early mild cognitive 

impairment (EMCI), late mild cognitive impairment (LMCI), and AD, respectively.

Second, the functional effect of hippocampus on FAQ exhibits a descending trend as 

hippocampus grows regardless of states. Specifically, in CN state, people with bigger 

hippocampus volume tend to have slightly better memory. This finding is in line with the 

common sense that hippocampus plays an important role in the consolidation of information 

from short-term memory to long-term memory. In EMCI and LMCI states, the descending 

trend of the functional effect of hippocampus on FAQ becomes much more pronounced. 

This result implies that atrophy in hippocampus increasingly impaires patients’ cognitive 

ability. The published reports (e.g., Dickerson and Wolk, 2013; Kesslak, Nalcioglu and 

Cotman, 1991; Jack et al., 1992) also indicate that the volume loss of the hippocampus is 

greatly associated with clinical dementia. In AD state, the effect of hippocampal volume on 

FAQ is not significant because patients’ cognitive ability and memory have already been 

damaged by serious hippocampus atrophy.

Third, the effect of age on FAQ is nonsignificant in CN and EMCI states, implying that for 

those who have cognitive normal function or undergo only EMCI, age may not be a decisive 

factor for the reduction of cognitive ability. On the contrary, age exhibits nonlinear effects on 

FAQ in LMCI and AD states. The age effect is nonsignificant for relatively young patients 

but becomes significantly positive for elderly patients (say, over 85 years old). The positive 

effect increases with age and gets an even sharper rise in AD state. Such age effect was also 

discovered by previous studies (e.g. Gao et al., 1998; Lindsay et al., 2002).

Fourth, as for the fixed effects of discrete variables, a significantly negative effect of gender 

on FAQ appears in state 4, which means that male AD patients are in a better condition than 

females in terms of independent abilities. The two APOE-ε4 alleles (bit,1 and bit,2) have 

significantly positive effects on FAQ in state 4 and bit,1 also has a slightly positive effect on 

FAQ in other states. This finding agrees with the newly published clinical research output 

that the presence of ε4 alleles in the APOE gene is the only genetic variant broadly accepted 

as increasing risk for late-onset AD dementia (Albert et al., 2011).

Fifth, in the transition model, hippocampus positively affects the probability of transitioning 

from a state to a better one, indicating that controlling loss of hippocampal volume would be 

beneficial to prevent the deterioration of cognitive ability. Similar to previous studies (e.g., 

Lee et al., 2015), APOE-ε4 alleles have negative effects on the probability of transitioning 

from a state to a better one, reconfirming that APOE-ε4 alleles are important risk factors for 

the development of AD.
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Sixth, the variances of the two random effects are significant, reconfirming the necessity of 

the random effects proposed. However, the corvariance between the two random effects is 

nonsignificant, showing that some omitted clinical or genetic indicators influenced outcomes 

of the observation process or probabilities of the transition process but did not affect the two 

processes simultaneously.

Moreover, we estimated the hidden states of all patients at four time points based on 

Equation (13). Around 98% posterior transition patterns are from a state to a severer one, 

which is in line with the common knowledge of irreversibility of AD. Table 3 reports 

patients’ estimated hidden states and their diagnosed status by doctors. For CN, LMCI, and 

AD states, a majority of the estimated states are consistent with those diagnosed by doctors. 

For EMCI state, however, 835 (67%) EMCI patients diagnosed by doctors were classified 

into CN state by our procedure. Such vague demarcation between CN and EMCI was also 

found and discussed in the literature (e.g., Petersen, 2004).

5 Simulation Study

We conduct Monte Carlo simulations to assess the empirical performance of the proposed 

method in estimation of the nonparametric functions and model parameters.

5.1 Model setup

We consider a BMSHM2 with four hidden states (S = 4), a continuous response yit, three 

discrete covariates (r = 3), and two continuous covariates (q = 2) to mimic the scenario of the 

ADNI study. For i = 1, …, 700 and t = 1, …, 9, bit,1, bit,2, and bit,3 are all generated from the 

Bernoulli distribution with the probability of success 0.5, and xit,1 and xit,2 are generated 

from U (−1, 1) and N (0, 1), respectively. The conditional model is defined as

[yit |Zit = s] = μs + γs1bit, 1 + γs2bit, 2 + γs3bit, 3 + f s1(xit, 1) + f s2(xit, 2) + wi1 + δit, (15)

where f11(xit,1) = −1.305+exp(xit,1), f12(xit,2) = 0.55+sin(1.5xit,2)+xit,2, f21(xit,1) = 

0.06−log((1 + xit,1)/(1 − xit,1)), f 22(xit, 2) = 0.125 + xit, 2
3 , f31(xit,1) = −0.05 − 0.8xit,1, f32(xit,2) 

= −0.275 + cos(2xit,2) + 0.5xit,2, f 41(xit, 1) = − 0.13 − xit, 1
3  and f42(xit,2) = −0.85 + 1.5xit,2.

The transition model is defined as

logit(ϑitus) = ζus + α1xit, 1 + α2xit, 2 + α3bit, 1 + α4bit, 2 + α5bit, 3 + wi2 . (16)

The true population values of the unknown parameters are set as μ = (μ1, μ2, μ3, μ4) = (−5, 

−1, 3, 7), τ = (τ1, τ2, τ3, τ4) = (0.27, 0.27, 0.23, 0.23), ζ11 = ζ21 = ζ31 = ζ41 = −1, ζ12 = ζ22 

= ζ32 = ζ42 = −1/2, ζ13 = ζ23 = ζ33 = ζ43 = 1/2, γ1 = (γ11, γ12, γ13) = (−1, 0.5, 0.5), γ2 = 

(γ21, γ22, γ23) = (1, 1, 0.5), γ3 = (γ31, γ32, γ33) = (−0.5, −0.5, −0.5), γ4 = (γ41, γ42, γ43) = 

(0.5, −1, −1), α = (α1, α2, α3, α4, α5)T = (1, −1, −0.5, 0.5, 1), ψ = (ψ1, ψ2, ψ3, ψ4) = (1, 

Kang et al. Page 12

Stat Methods Med Res. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.64, 0.36, 0.25), and Φ is a correlation matrix with off diagonal elements −0.5. Based on 

the above setup, we simulate 100 datasets for analysis.

5.2 Simulation results

We used a total of 24 equidistant knots to construct the cubic B-splines of the covariates. 

Again, the second-order random walk penalties were used for the Bayesian P-splines to 

estimate the unknown smooth functions. The prior inputs in (9) and (10) were assigned as 

follows: μs0 = ζus0 = τs0 = 0, σμs0 = σζ0
2 = στ0

2 = 1, α̃
s0 = 9, β̃s0 = 4, ρ0 = 7, R0 = 4I2, α0 and 

γs0 are vectors with all elements being zero, Hα = I5 and Σs0 = I3, where Ir is a r × r identity 

matrix. We conducted a few test runs to decide the number of burn-in iterations required for 

convergence and found that the MCMC algorithm converged within 2,000 iterations. 

Therefore, we obtain Bayesian results using 5,000 observations after discarding 2,000 burn-

in iterations. The performance of the Bayesian estimates is assessed through the bias (BIAS) 

and the root mean square errors (RMSE) between the Bayesian estimates and the true 

population values of the parameters.

Table 4 summarizes the result of parameter estimation based on the 100 datasets. The BIAS 

and RMSE for most of the parameters are close to zero, indicating a satisfactory 

performance of Bayesian estimation regarding the parametric part. Figure 3 depicts the 

averages of the pointwise posterior means of the nonparametric functions, along with their 

2.5%- and 97.5%- pointwise quantiles. The posterior means of the nonparametric functions 

are close to their true curves and all the ranges of the two pointwise quantiles are relatively 

small, indicating that the estimated functions can correctly recover the true functional 

relationships between the response and covariates. In this simulation, the average of the 

correct classification rates calculated through Equation (13) based on the 100 datasets is 

91%. Considering the complexity of proposed model, this result is satisfactory.

To reveal the sensitivity of the Bayesian estimates to the input of priors, we disturbed the 

prior inputs as follows: μs0 = ζus0 = τs0 = 2, σμs0 = σζ0
2 = στ0

2 = 2, α̃
s0 = 3, β̃s0 = 2, ρ0 = 4, R0 

= 2I2, α0 and γs0 are vectors with all elements being two, Hα = 2I5 and Σs0 = 2I3. The 

obtained results are similar and not reported.

6 Discussion

The BMSHM2 was developed and successfully applied to the ADNI data analysis. Although 

HMMs and their variants have already been extensively used for longitudinal data analysis, a 

majority of applications restrict analysis in a parametric framework. Nonetheless, examples 

of using HMMs to classify and characterise the neurodegenerative states of AD pathology 

are not prevalent, especially in a semiparametric context. In this study, we extended 

parametric HMMs to accommodate the functional effects of hippocampus and age on 

cognitive decline across four neurodegenerative states, namely, CN, EMCI, LMCI, and AD. 

The functional effect of hippocampus on cognitive function exhibited a descending trend as 

hippocampus grows regardless of states. This descending trend became more pronounced for 

EMCI and LMCI states than for CN and AD states, implying that atrophy in hippocampal 

volume had increasingly impaired patients’ cognitive ability, especially during the 
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progression from EMCI to LMCI. On the contrary, age affected cognitive function mainly in 

LMCI and AD states. Elderly LMCI or AD patients suffered from more increasing 

neurodegeneration than relatively young patients.

Our model incorporates correlated random effects to account for individual and/or 

contextual differences in the progression of cognitive decline and in between-state transition. 

Large inter-individual variability is a prominent feature of the ADNI dataset and many other 

longitudinal datasets. As we demonstrated in the ADNI study, accounting for such 

differences can dramatically improve model fit, as evidenced by an apparent improvement in 

DIC value between models with and without random effects. In addition, the correlation 

between the random effects enhances the model capability of accommodating the situation 

where some omitted covariates influence both the state-dependent observation process and 

the hidden-state transition process. Another appealing feature of this study is that it 

implements a full Bayesian analysis along with efficient MCMC methods. The sampling-

based Bayesian approach is not only applicable to the current parameter-rich BMSHM2 but 

also possesses potential to address highly complex problems with which huge challenges are 

confronted by ML-based procedures.

The present study can be extended in several directions: First, we considered the 

nonparametric modeling only in the conditional model. Generalizing the parametric 

transition model to a semiparametric or nonparametric one can further enhance model 

flexibility and analytic power. However, the statistical analysis of such comprehensive 

models can be challenging because the computational burden and sample size often limit the 

complexity of candidate models. Thus, the feasibility of this extension requires further 

investigation. Second, in the application to the ADNI dataset, a highly comprehensive 

characterization of cognitive function is to group the FAQ, Alzheimer’s Disease Assessment 

Scale, and Mini-Mental State Examination into an integrated latent construct through 

multivariate techniques such as factor analysis (e.g. Song et al., 2016). Finally, this study did 

not consider missing data. Given that missingness is very common in longitudinal settings, 

accommodation of missing responses and/or missing covariates in the context of BMSHM2s 

is both of scientific interest and of practical value. These advances certainly require 

substantial efforts for further investigation.
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Appendix

Full Conditional Distributions

(I) Full conditional distributions of Zit

We follow Baum et al. (1970) to adopt a recursive method to sample Zit from the full 

conditional distribution efficiently as follows:

Let yi = {yi1, …, yiT } and Di = {di1, …, diT}, then we have

p(Zit | · ) ∝ p(yi, Di, wi, Zit |θ) (A1)

= p(yi1, …, yit, di1, …, dit, wi, Zit |θ) × p(yit+1, …, yiT, dit+1, …, diT |wi, Zit, θ) (A2)

≐ qit(yi, Di, wi, Zit |θ) × qit(yi, Di |wi, Zit, θ) . (A3)

We first initialize qi1(yi, Di, wi, Zit|θ) = p(yi1, di1, wi, Zit|θ) = p(yi1, di1|Zi1, θ)p(Zi1|θ) and 

calculate qit(yi, Di, wi, Zit|θ) for t = 2, …, T, in a recursion manner as follows:

qit(yi, Di, wi, Zi1 |θ) = qit(yi1, …, yit, di1, …, diT, wi, Zi1 |θ)

= ∑
u = 1

S
p(yi1, …, yit, di1, …, diT, wi, Zit, Zi, t − 1 = u |θ)

= ∑
u = 1

S
p(yi1, …, yit, di1, …, diT, wi, Zi, t − 1 = u |θ) × p(Zit |Zi, t − 1 = u, wi2, θ) × p(yit, dit |Zit,

wi1, θ) = ∑
u = 1

S
qit(yi, t − 1, Di, wi, Zi, t − 1 = u |θ) × p(Zit |Zi, t − 1 = u, wi2, θ) × p(yit, dit |Zit,

wi1, θ) ,

(A4)

where p(Zit|Zi,t−1 = u, wi2, θ), p(yit, dit|Zit, wi1, θ) and p(wi|θ) can be calculated through 

Equation (11).
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Similarly, we initialize q̄iT (yi, Di|wi, ZiT, θ) = 1 and calculate q̄it(yi, Di|wi, Zit, θ) for t = T 
− 1, …, 1 as follows:

qit(yi, Di |wi, Zit, θ) = p(yit+1, …, yiT, xit+1, …, diT |wi, Zit, θ)

= ∑
u = 1

S
p(yit+1, …, yiT, dit+1, …, diT, Zit+1 = u |wi, Zit, θ)

(A5)

= ∑
u = 1

S
p(yit+1, …, yiT, dit+1, …, diT |Zit+1 = u, wi, θ) × p(Zit+1 = u |Zit, wi2, θ)

× p(yit+1, dit+1 |Zit+1 = u, wi1, θ)

(A6)

= ∑
u = 1

S
qit(yi, Di |wi, Zit+1 = u, θ) × p(Zit+1 = u |Zit, wi2, θ) × p(yit+1, dit+1|Zit+1 = u, wi1, θ) .

Thus, Zit can be directly generated from (A1) when all qit(·)s and q̄it(·)s defined in (A4) and 

(A5) are well calculated.

(II) Full conditional distributions of wi

p(wi | · ) ∝ p(yi, Di |wi, Zi1, …, ZiT, θ) × p(Zi1, …, ZiT |wi, θ) × p(wi |θ)

∝ exp  − 1
2 ∑

t = 1

T
(yit − μs − γ2

Tbit − ∑
j = 1

q
βsj

TBit, j − wi1)
2
I(Zit = s)/ψs +

∑
t = 2

T
log(pitus)I(Zi, t − 1 = u, Zit = s) − 1

2wi
TΦ−1wi ,

(A7)

where pitu0 and pitus can be calculated via Equation (12).

(III) Full conditional distributions of μs, γs, ψs, and Φ

[μs | · ] N[μs
∗, σμs

∗ ], [γs | · ] N[γs
∗, ∑s

∗ ],

[ψs
−1 | · ] Gamma[α∼s

∗, β
∼

s
∗], [Φ−1 | · ] Wishart[R∗, N + ρ0],

(A8)
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where R* = (R0 + WWT)−1, W = (w1
T, …, wN

T )T and

σμs
∗ = nsψs

−1 + σμs0
−1 −1, ∑s

∗ = ∑
i = 1

N
∑

t = 1

T
bitbit

Tψs
−1 + ∑s0

−1
−1

,

μs
∗ = σμs

∗ ψs
−1 ∑

i = 1

n
∑

t = 1

T
I(Zit = s)(yit − γs

Tbit − ∑
j = 1

q
βsj
TBit, j − wi1) + σμs0

−1 μs0 ,

γs
∗ = ∑s

∗ ψs
−1 ∑

i = 1

n
∑

t = 1

T
I(Zit = s)bit(yit − μs − ∑

j = 1

q
βsj
TBit, j − wi1) + ∑s0

−1γs0 ,

α∼s
∗ = ns/2 + α∼s0, β

∼
s
∗ = β

∼
s0 + 1

2 ∑
i = 1

n
∑

t = 1

T
I(Zit = s)(yit − μs − γs

Tbit − ∑
j = 1

q
βsj
TBit, j − wi1)

2
.

(IV) Full conditional distributions of βsj and θsj

[βsj | · ] N[βsj
∗ , Hsj]I(1ns

T Bsjβsj = 0), (A9)

where Hsj = (ψs
−1Bsj

TBsj + νsj
−1Ksj)

−1, βsj
∗ = ψs

−1HsjBsj
Tys

∗, and ys
∗ = {yit, s

∗ } is an ns × 1 vector 

with

yit, s
∗ = yit − μs − γs

Tbit − ∑
l ≠ j, l = 1

q
βsl
TBit, l − wi1,     for  Zit = s .

According to Panagiotelis and Smith (2008), sampling an observation βsj from truncated 

normal (A9) is equivalent to sampling an observation βsj
(temp) from N[βsj

∗ , Hsj] and then 

transforming βsj
(temp) to βsj by

βsj = βsj
(temp) − HsjQsj

T(QsjHsjQsj
T)−1Qsjβsj

(temp), (A10)

where Qsj = 1ns
T Bsj. Moreover,
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[νsj
−1 | · ] Gamma  ν1 + L

2 , ν2 + 1
2 βsj

TKsjβsj . (A11)

(V) Full conditional distributions of τs, ζus, and α

p(τs | · ) ∝ exp  ∑
u = s

S
∑

i = 1

n
log(pi10u) × I(Zi1 = u) −

(τs − τs0)2

2στ0
2 ,

p(ζus | · ) ∝ exp  ∑
υ = s

S
∑
i = 1

n
∑
t = 2

T
log(pituυ) × I(Zit = υ, Zi, t − 1 = u) −

(ζus − ζus0)2

2σζ0
2 , (A12)

p(α | · ) ∝ exp  ∑
i = 1

n
∑

t = 2

T
log(pitus) × I(Zit = s, Zi, t − 1 = u) − 1

2(α − α0)THα0
−1(α − α0) ,

where pitu0 and pitus can be calculated via Equation (12).
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Figure 1. 
ADNI-1 data analysis results: individual trajectories of FAQ scores for 20 randomly 

selective samples whose baseline states are CN, MCI, and AD, respectively.
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Figure 2. 
ADNI-1 data analysis results: estimates of the unknown smooth functions. The solid curves 

represent the pointwise mean curves, and the dashed curves represent the 2.5%-and 97.5%- 

pointwise quantiles. line y = 0 has been shown on each picture by red dot-dash to illustrate 

the range of significant effect for each variable.
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Figure 3. 
Estimates of the unknown smooth functions in the simulation study: The solid curves 

represent the true curves, and the dashed curves represent the estimated posterior means and 

the 2.5%- and 97.5%- pointwise quantiles based on 100 replications, respectively.
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Table 1

Characteristics of the study samples in the ADNI-1 dataset

Mean Age (in years) 73.0(6.9)

Gender (Male percentage) 56.2%

Mean log(hippocampus/whole brain volume) −5.0(0.2)

Mean FAQ score 4.1(6.5)

One APOE-ε4 allele carriers 34.6%

Two APOE-ε4 alleles carriers 9.8%

The numbers in parentheses are standard deviations.
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