Skip to main content
. Author manuscript; available in PMC: 2020 Jan 1.
Published in final edited form as: Stat Methods Med Res. 2017 Dec 26;28(7):2112–2124. doi: 10.1177/0962280217748675

Table 4.

Bayesian estimates of the parameters in the simulation study.

Parameters in conditional regression model

State 1 State 2 State 3 State 4

Par. Bias RMSE Par. Bias RMSE Par. Bias RMSE Par. Bias RMSE

μ1 0.010 0.098 μ2 0.024 0.115 μ3 −0.046 0.195 μ4 −0.006 0.106
ψ1 −0.006 0.042 ψ2 0.011 0.047 ψ3 0.003 0.044 ψ4 0.016 0.028
γ11 −0.002 0.105 γ21 −0.045 0.188 γ31 0.025 0.147 γ41 −0.020 0.112
γ12 0.002 0.091 γ22 −0.022 0.126 γ32 0.030 0.168 γ42 0.018 0.089
γ13 −0.013 0.090 γ23 −0.013 0.098 γ33 0.026 0.126 γ43 0.002 0.093

Parameters in probability transition model

Par. Bias RMSE Par. Bias RMSE Par. Bias RMSE Par. Bias RMSE

τ1 0.008 0.137 τ2 −0.030 0.187 τ3 −0.048 0.236 α1 0.007 0.068
α2 0.010 0.064 α3 −0.024 0.103 α4 −0.011 0.122 α5 −0.029 0.112
ζ11 0.040 0.125 ζ21 0.042 0.132 ζ31 0.034 0.120 ζ41 0.035 0.131
ζ12 0.050 0.168 ζ22 0.031 0.156 ζ32 0.037 0.162 ζ42 0.034 0.167
ζ13 −0.034 0.197 ζ23 −0.032 0.195 ζ33 −0.027 0.186 ζ43 −0.032 0.197

Covariance matrix of random effects

Par. Bias RMSE Par. Bias RMSE Par. Bias RMSE

φ11 0.004 0.066 φ22 0.017 0.161 φ12 0.001 0.067