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Periodic fluctuations in past biodiversity, speciation, and extinc-
tion have been proposed, with extremely long periods ranging
from 26 to 62 million years, although forcing mechanisms remain
speculative. In contrast, well-understood periodic Milankovitch
climate forcing represents a viable driver for macroevolutionary
fluctuations, although little evidence for such fluctuation exists
except during the Late Cenozoic. The reality, magnitude, and
drivers of periodic fluctuations in macroevolutionary rates are of
interest given long-standing debate surrounding the relative roles
of intrinsic biotic interactions vs. extrinsic environmental factors as
drivers of biodiversity change. Here, we show that, over a time
span of 60 million years, between 9 and 16% of the variance in
biological turnover (i.e., speciation probability plus species extinc-
tion probability) in a major Early Paleozoic zooplankton group, the
graptoloids, can be explained by long-period astronomical cycles
(Milankovitch “grand cycles”) associated with Earth’s orbital ec-
centricity (2.6 million years) and obliquity (1.3 million years). These
grand cycles modulate climate variability, alternating times of rel-
ative stability in the environment with times of maximum volatil-
ity. We infer that these cycles influenced graptolite speciation and
extinction through climate-driven changes to oceanic circulation
and structure. Our results confirm the existence of Milankovitch
grand cycles in the Early Paleozoic Era and show that known pro-
cesses related to the mechanics of the Solar System were shaping
marine macroevolutionary rates comparatively early in the history
of complex life. We present an application of hiddenMarkovmodels
to macroevolutionary time series and protocols for the evaluation of
statistical significance in spectral analysis.
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The relative roles of intrinsic biotic interactions vs. extrinsic
environmental factors as drivers of biodiversity change have

been much debated and are still uncertain (1, 2). One facet of this
debate concerns the reality and causes of putative periodic fluctu-
ations in diversity, speciation rate, and extinction rate. In particular,
quasiregular fluctuations with extremely long periods ranging from
26 (3) to 62 (4) My have been proposed, although the forcing
mechanisms have remained speculative (5). With the exception of
the Late Cenozoic (6), no studies have shown the role of well-
understood astronomical cycles on rates of evolution or extinction
or quantified the proportion of variance in macroevolutionary
time series that can be explained by these cycles. Here, we show
that long-period astronomical cycles, Milankovitch “grand cycles,”
played a significant role in pacing species turnover in a major Early
Paleozoic zooplankton group, the graptoloids.
Milankovitch grand cycles (7) are astronomical rhythms as-

sociated with the amplitude modulation of Earth’s climatic
precession cycle and axial obliquity cycle. During the Late
Cenozoic, the amplitude modulation of precession by eccen-
tricity results in a 2.4-My cycle in addition to the well-known
cycles of 405,000 and ∼100,000 y; the long-period obliquity
amplitude modulation is ∼1.2 My (Fig. 1) (8, 9). These relate to

g4-g3, the orbital perihelion precession rates of Mars and Earth,
and s4-s3, the orbital inclination rates of Mars and Earth, re-
spectively. These grand cycles have been implicated as controls
on Late Cenozoic ice sheet history (10) and sea-level variability
into the Mesozoic (11). The environmental impact of the grand
cycles is to produce long-term “nodes” of stability (e.g., little dif-
ference in climate between maximum and minimum of obliquity)
that alternate with times of maximum volatility (e.g., strong cli-
matic differences between maximum and minimum of obliquity).
Whereas this multimillion year control on environmental stability
has obvious implications for biological evolution, its presence has
not been clearly detected in evolutionary rate data, except in the
case of the Neogene mammalian record (6). A major obstacle in
this regard has been the availability of records of appropriate
duration and sampling frequency to permit a robust evaluation.
Graptoloids (order Graptoloidea) are an extinct group of co-

lonial, filter-feeding hemichordates that constituted the main
component of the Paleozoic macrozooplankton as preserved in
the fossil record (12, 13) from the beginning of the Ordovician
Period (486 Ma) to the Early Devonian (411 Ma) (14, 15). They
have a very short median species life span—1.27 and 0.69 My in
the Ordovician and Silurian, respectively (16)—meaning that
they provide a rich dataset for analysis of speciation and ex-
tinction rates (Fig. 2). For this reason and due to their abun-
dance and the resultant highly resolved record, they provide a
model clade to investigate million year-scale astronomical influ-
ence on macroevolution during the Paleozoic.
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Graptoloid colony size generally ranged from a few millime-
ters up to ∼200 mm in maximum dimension, although the indi-
vidual zooids measured less than 2 mm in length (20). The
colonies lived suspended in the ocean waters at a range of depth
zones and are inferred to have filtered out microphytoplankton,
bacterioplankton, and other particulate organic matter as their
principal food source (21–23). The graptoloids are, therefore,
inferred to have been primary consumers in the food chain and
consequently, would have been sensitive to environmental param-
eters that controlled their main trophic resource, namely nutrient
flux, ocean stratification and chemistry, redox profile, local and
global ocean circulation systems, and therefore, global marine cli-
mate (16, 21, 24, 25). In support of this environmental sensitivity,
positive excursions in the global δ13Ccarb isotope curve—interpreted
as reflecting carbon burial and associated global cooling (26–28)—
coincide with falling or minimal values in the graptoloid raw species
richness curve, although the causal linkage was complex and is not
fully understood (16). Furthermore, the transition in global climate
from greenhouse to icehouse in the Late Ordovician is marked by a
step change in the graptoloid species extinction rate (16, 17), a
change from background to episodic extinction, and a change in the
dependence of extinction risk on species age (17).
To evaluate periodic environmental pacing in the graptoloid

macroevolutionary record, it is necessary to have a long time series
of speciation and extinction observations and to minimize aliasing
of frequencies. These data should, therefore, be as highly resolved
as possible. Here, we use the high-resolution time series of grap-
toloid speciation and extinction probabilities derived from the
global composite that was developed using constrained optimiza-
tion (CONOP) (29) from 518 stratigraphic sections. The complete
composite spans the entire history of the clade from 491 to 411 Ma,
contains 2,041 species, has been calibrated directly by 23 integrated
radioisotopic dates, and is the basis of the Ordovician and Silurian
global geological timescales (14, 15). To reduce stochastic noise in
the signal while retaining maximum resolution, we fit discrete
time hidden Markov models (HMMs) (30) to the raw time series
of speciation and extinction probabilities at a temporal resolution
of 0.05 My (Materials and Methods).

Results
The time series of graptolite HMM species turnover (speciation
plus extinction HMM probabilities) reveals a strong 2.6-My
rhythm expressed in both the time frequency result (Figs. 2 C
and D and 3 and Figs. S3 and S5) and power spectrum for the
entire study interval (Fig. S2); this rhythm is close to that of the
modern day orbital eccentricity grand cycle. In contrast, a ∼1.3-My
rhythm that is weak in the total spectrum is dominant in the early
portion of the record, with a transition between the two in the
interval from 460 to 453 Ma (Figs. 2 C and D and 3 and Fig. S4).
This signal is close to that of the modern day obliquity grand cycle.
Together, these two cycles explain between 9 and 16% of the total
variance in the turnover signal (Fig. 3A). Both rhythms are sta-
tistically significant. The testing of statistical significance in time
series analysis is a complex issue that is addressed in detail in
Materials and Methods and Supporting Information.
Although the grand cycles are expected to have influenced

Paleozoic climate, the tempo of the Milankovitch cycles for this
distant time interval cannot be predicted reliably from theory (9).
This study suggests the existence of a 2:1 resonance of the grand
cycles as is observed in the Late Cenozoic. These 2.6- and 1.3-My
cycles emerge from time series derived from a single HMM (our
key result) (Figs. 2 C and D and 3 A and B and Fig. S5A) and from
averaging of many HMMs (Supporting Information and Fig. S5B).
They are evident in time series based on raw probabilities (Supporting
Information and Fig. S5C), and our conclusions are, therefore, not
dependent on the fitting of HMMs, although the signal is weakened
somewhat by noise in comparison with the HMM time series. Fur-
thermore, these cycles are also observed in the time series of HMM
speciation and extinction analyzed separately (Fig. S5 D and E),
although the 1.3-My cycle is weak in the result for speciation. Finally,
our conclusions are not affected if we allow for phyletic gradualism in
the graptoloid clade, even when modeled with unrealistically high
levels of pseudospeciation and pseudoextinction (Supporting Infor-
mation and Fig. S5F).

Discussion
The inferred transition from obliquity-dominated to eccentricity-
dominated grand cycles (Figs. 2 C and D and 3) in the Late
Darriwilian coincided with the peak of the Great Ordovician
Biodiversification Event—the greatest expansion of global biodiversity
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Fig. 1. Illustrations of Milankovitch grand cycles over the past 1–11 My generated from the astronomical solution in ref. 9. (A) Amplitude modulation of
precession by eccentricity. The black line is the climatic precession [= eccentricity × sin(precession angle)]; the red line is the amplitude modulation and reveals
cycles at ∼100,000 and ∼405,000 y and grand cycle nodes at ∼2.4 My. (B) Amplitude modulation of obliquity. The black line is the obliquity solution; the red
line is the amplitude modulation of the dominant 41,000-y obliquity cycle, with a conspicuous ∼1.2-My grand cycle.
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in the history of life—and the onset of the first cooling event in the
transition from greenhouse to icehouse climate (31). It also co-
incided with a major reorganization of the graptoloid clade. Before

this time, the families Dichograptidae, Sigmagraptidae, and
Isograptidae dominated (assemblage A in Fig. 2A); during the
Darriwilian, the families Dicranograptidae, Diplograptidae, and
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Fig. 2. Graptoloid diversity, turnover, and spectral analysis of turnover. (A) Standing species richness with main families shown (17). (B) Smoothed species
turnover rate per lineage million years (LMY) (18) shown as bootstrapped ±1 SE region. This was constructed as the sum of LMY rates for speciation and
extinction calculated using a 0.25-My moving window centered at each speciation and extinction event level in the CONOP composite; bootstrapping was
based on resampling species across the entire composite (1,000 iterations). (C) The 2.6-My (blue), 1.3-My (red), and summed (black; centered at two times
mean value for clarity) bandpass-filtered signals (19) from the time series of species turnover probability based on summed predicted-state probabilities for
HMMs of speciation (four state) and extinction (three state). Note that the time series used for spectral analysis is much more highly resolved than the
smoothed turnover history shown in B and too finely resolved to be shown in its entirety here (Materials and Methods). The bandpass filters are 3.1–2.1 and
1.47–1.18 My, respectively. (D) EPSA of turnover probability time series. Strong spectral power at periods of ∼1.3 and ∼2.6 My is indicated. EPSA utilizes three
2π prolate tapers, with a 20-My moving window; the maximum power in each window is normalized to unity.
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Normalograptidae originated and along with the Climacog-
raptidae and Glossograptidae, came to dominate during the
later Ordovician (assemblage B in Fig. 2A). The faunal transition
resulted in a change in general colony design from dominantly
multibranched, uniserial, and spreading colonies, giving a low
density of zooids per unit volume of water, to dominantly compact
colonies composed of two branches growing back to back, giving a
high density of zooids per unit volume of water. The ecological
and functional significance of this transition in gross colony form is
uncertain, although it would have affected feeding efficiency and
probably, life mode of the colony (22). The faunal transition co-
incides with the widespread change in the marine pelagic envi-
ronment resulting from global cooling and development of strong
latitudinal temperature gradients in the Late Ordovician (32, 33).
An even more dramatic reorganization of the graptoloid clade

accompanied the mass depletion in the Late Ordovician, during
which there was a 77% drop in graptolite species richness driven
largely by a drop in speciation rate in the Late Katian and a spike in
extinction rate in the Hirnantian [Hirnantian mass extinction
(HME)] (16, 17). At this time, just one group of three families
comprising the Neograptina survived to give rise to the Silurian
diversity, which expanded rapidly to reach species richness levels
comparable with those in the Ordovician (assemblage C in Fig. 2A).
Although the HME was selective for depth facies and taxonomic
groups (34) and species age (17), it was not selective with respect to
morphology (35). The range of colony designs in the Silurian in-
cludes several that mimic the Ordovician designs, but interpretation
of the largest group, the monograptids, is uncertain, as there are no
convincing ecological models for their feeding efficiency.
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Fig. 4. Segment of time series of graptoloid speciation, extinction, and
turnover rates and probabilities calculated in different ways to illustrate the
methods adopted here and relationships between the time series. Because
of the high resolution of our data, we do not illustrate the complete time
series, which can instead be retrieved with the Supporting Information.
(A and D) Speciation and species extinction rates per lineage million years
(LMY) (18) calculated using a 0.25-My moving window centered at each level
in the CONOP composite. (B and E) Raw speciation and species extinction
probabilities calculated at each pseudolevel as the number of speciations or
extinctions divided by the number of species extant. (C and F) Speciation and
species extinction probabilities derived from four-state and three-state HMMs
of speciation and extinction, respectively, and based on the time series shown
in B and E. (G) Species turnover rate per LMY calculated as the sum of speciation
and extinction rates shown in A and D. (H) Raw species turnover probability
calculated as the sum of time series shown in B and E. (I) Species turnover
probability calculated as the sum of the HMM probabilities shown in C and F.
This is part of the default HMM turnover probability series used for the analyses
in Fig. 2 C and D and other key results discussed throughout this study.
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It seems, therefore, that Darriwilian reorganization of the grap-
toloids might well have been adaptive and related directly or in-
directly to progressively changing global climatic conditions that
were themselves related in some way to the transition from obliquity-
to eccentricity-dominated grand cycles. In contrast, graptoloid
reorganization that accompanied the HME resulted from a mass
extinction associated with rapid environmental change, although
the role of Milankovitch cycles in forcing this rapid change remains
unclear. In addition to these major transitions, this analysis shows
that, throughout the entire lifespan of the graptoloid clade, species
turnover was driven in part by fluctuations in climatic volatility
related to the Milankovitch grand cycles.
During the Late Cenozoic, long-period mammalian turnover

pulses coincided with 1.2-My obliquity and 2.4-My eccentricity
nodes in the theoretical astronomical solution (6, 9) during times
of minimum variability in insolation that were associated with
global cooling and ice sheet expansion. We cannot determine the
phase relationship between the Paleozoic grand cycles in graptolite
turnover and astronomical forcing, since accurate astronomical
solutions are not available for the Ordovician and Silurian. Inte-
gration of the graptolite species turnover results with climate proxy
time series, however, would allow phase relationships between climate
volatility at the scale of the grand cycles and graptoloid turnover
to be determined.
We cannot say with certainty whether the observed cyclicity in

graptoloid species turnover is driven more by speciation or ex-
tinction. Correlations between both processes and turnover are
about the same, suggesting that they are equally important in
driving turnover, and speciation and extinction are themselves
significantly cross-correlated (Pearson correlation coefficients:
HMM speciation vs. turnover 0.854, P < 0.001; HMM extinction
vs. turnover 0.873, P < 0.001; HMM speciation vs. extinction
0.492, P < 0.001). That said, however, separate spectral analyses
of HMM speciation and extinction time series show that the
grand cycles consistently explain a higher proportion of the
spectral variance for extinction than origination (Fig. 3C and Fig.
S5 D and E). This may suggest that extinction in the graptoloids
was influenced more strongly by these astronomical cycles than
speciation, although further testing is required.

Materials and Methods
Because graptoloid diversity is low at each end of the CONOP composite and
stochastic errors are, therefore, large, we restrict our analyses to the interval
481–419 Ma and ignore the intervals between 491–481 and 419–411 Ma.
We also remove 247 species that have been assigned a zero range in the
composite—those that have first appearance age equal to the last ap-
pearance age. These species are removed because we assume that they are
most likely to be rare and undersampled taxa; indeed, of the 247 zero-
range species, 210 are known from a single section only, and nearly all
of the rest are known from just two sections, where a section is an outcrop
or core from which species have been identified from one or more rock layers.
In contrast, the remaining species are found in an average of 5.5 sections each.
Our final composite contains 1,794 species with range ends that are resolved to
1,902 distinct levels (time horizons). The average spacing of CONOP levels in
time is 0.033 My, and the median is 0.012 My. Because uneven spacing of levels
hampers interpretation of extinction and speciation probabilities used here,
we move speciation and extinction events at each of the CONOP-derived levels
onto a series of 0.05-My-spaced “pseudolevels.”

To extract high-resolution macroevolutionary time series, we have used
discrete time HMMs (30) to identify a parsimonious set of discrete speciation
and extinction probability states in the data and to predict time series of those

states given the observations. “Raw” speciation and extinction probabilities
are calculated as the number of speciations or species extinctions at each
pseudolevel, respectively, divided by the number of species extant at each level
(Supporting Information). The use of HMMs reduces stochastic noise in the
signal and avoids loss of resolution that would result from use of coarser time
bins as required by standard macroevolutionary rate metrics or use of moving
window metrics and the resultant imposed autocorrelation. In particular, because
of the limited numbers of speciations and/or extinctions at each pseudolevel,
the raw probabilities are expected to be noisy; HMMs are an effective tool for
change point analysis and can be used to determine whether abrupt changes
in the time series exceed the noise and should be considered meaningful or
not. As implemented here, the HMMs assume that the observed process obeys
a binomial distribution, where the number of “successes” at each pseudolevel
is the number of speciations or extinctions and the number of Bernoulli trials is
the total number of species crossing that level. For the results presented here,
we have calculated species turnover as the sum of HMM speciation-state
probability and extinction-state probability at each pseudolevel. Relation-
ships between different rate and probability metrics, for a short segment of
our time series, are illustrated in Fig. 4, which shows the smoothed per lineage
million years rates (18), the raw speciation and extinction probabilities at each
pseudolevel, the HMM speciation and extinction probability states at each
pseudolevel, and the resulting turnover time series.

We test for candidate grand cycles in the resultant graptoloid HMM
turnover record using multitaper method (36) spectral techniques, which
permit a robust assessment of the variance in turnover that is associated
with the grand cycles. In addition, temporal evolution of potential grand
cycles is evaluated using Evolutive Power Spectral Analysis (EPSA) (37),
Evolutive Harmonic Analysis (EHA) (38), and Taner bandpass filtering (19).
EPSA and EHA utilize three 2π prolate tapers with a 20-My moving window,
and a linear trend is removed from each window before analysis. During
spectral analysis, we use Monte Carlo simulation of stochastic surrogates,
which have the same sampling characteristics and noise model parameters as
observed in the data, to assess the suitability of particular background noise
models (autoregressive lag-1 and power law models) in the estimation of
statistical significance. These tests use a range of standard spectral methods
and identify particular background estimation approaches that are optimal
for our data. At the same time, we apply several multiple statistical test
corrections to protect against inflated false-positive rates that result from the
simultaneous testing of many null hypotheses at different spectral frequencies.
Again, given dependence of false-positive rates on the noise model used, the
multiple test corrections are evaluated using surrogate simulations. During
estimation of statistical significance, we investigate specific frequency bands of
interest that are relevant to the grand cycles but also present “global” con-
fidence limits. Results of these tests will be specific to any given dataset: for
example, we use the age-scaled CONOP time series; in contrast, the use of
more normal depth-scaled data may require the investigator to prospect across
a wider range of frequencies than tested here. To facilitate broader applica-
tion of these approaches, we provide a series of functions in the open source
software used here for time series analysis (see below).

Significance levels of correlation coefficients between different time series
are evaluated using the phase randomized surrogate approach (39) for se-
rially correlated data.

All of these analyses were undertaken in the R language for statistical
computing (40). Details of data manipulation, HMM-fitting procedures, time
series analyses, and sensitivity analyses are presented in Supporting Information
along with the data and R code used to generate the analyses.
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