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A B S T R A C T

No disease modifying therapies for Parkinson's disease (PD) have been found effective to date. To properly power
clinical trials for discovery of such therapies, the ability to predict outcome in PD is critical, and there is a
significant need for discovery of prognostic biomarkers of PD. Dopamine transporter (DAT) SPECT imaging is
widely used for diagnostic purposes in PD. In the present work, we aimed to evaluate whether longitudinal DAT
SPECT imaging can significantly improve prediction of outcome in PD patients. In particular, we investigated
whether radiomics analysis of DAT SPECT images, in addition to use of conventional non-imaging and imaging
measures, could be used to predict motor severity at year 4 in PD subjects. We selected 64 PD subjects (38 male,
26 female; age at baseline (year 0): 61.9 ± 7.3, range [46,78]) from the Parkinson's Progressive Marker
Initiative (PPMI) database. Inclusion criteria included (i) having had at least 2 SPECT scans at years 0 and 1
acquired on a similar scanner, (ii) having undergone a high-resolution 3 T MRI scan, and (iii) having motor
assessment (MDS-UPDRS-III) available in year 4 used as outcome measure. Image analysis included automatic
region-of-interest (ROI) extraction on MRI images, registration of SPECT images onto the corresponding MRI
images, and extraction of radiomic features. Non-imaging predictors included demographics, disease duration as
well as motor and non-motor clinical measures in years 0 and 1. The image predictors included 92 radiomic
features extracted from the caudate, putamen, and ventral striatum of DAT SPECT images at years 0 and 1 to
quantify heterogeneity and texture in uptake. Random forest (RF) analysis with 5000 trees was used to combine
both non-imaging and imaging variables to predict motor outcome (UPDRS-III: 27.3 ± 14.7, range [3,77]). The
RF prediction was evaluated using leave-one-out cross-validation. Our results demonstrated that addition of
radiomic features to conventional measures significantly improved (p < 0.001) prediction of outcome, reducing
the absolute error of predicting MDS-UPDRS-III from 9.00 ± 0.88 to 4.12 ± 0.43. This shows that radiomics
analysis of DAT SPECT images has a significant potential towards development of effective prognostic bio-
markers in PD.

1. Introduction

Parkinson's disease (PD) is a progressive, degenerative movement
disorder, characterized by neuronal loss in the substantia nigra with the
loss of dopaminergic terminals in the basal ganglia (Brooks et al., 1990;
Garnett et al., 1987; Stoessl et al., 2011). Given the absence of proven
disease modifying therapies for PD, there is a critical need to establish

biomarkers of disease progression (Marek et al., 2008); e.g. an aim of
the Parkinson's Progressive Marker Initiative (PPMI) (Parkinson
Progression Marker Initiative, 2011). Furthermore, there is significant
interest in prognostication of disease outcome, to properly adapt and
power clinical trial studies, as applied to appropriate patients. Strati-
fication of PD based on expected prognosis would allow better designs
of disease modifying trials, with greater power to ascertain efficacy.
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Imaging of the dopaminergic system with 123I-ioflupane-dopamine
transporter (DAT) SPECT is now widely used (Catafau and Tolosa,
2004; Grachev et al., 2012; Kupsch et al., 2012). DAT SPECT images are
commonly assessed visually. However, there are increasing efforts to
quantify uptake in regions-of-interest (ROIs) in order to provide more
objective measures of disease severity (Badiavas et al., 2011; Koch
et al., 2005). Quantitative imaging biomarkers also have the potential
for earlier detection of disease. A significant way in which DAT SPECT
imaging has been helpful is to identify a subgroup of PD patients who
are symptomatic without evidence of dopamine deficit (SWEDDs).
These patients have a significantly better prognosis. What remains of
critical importance, is to discover further subsets in the PD population
of different outcomes, to enable significantly improved targeted clinical
trials for the assessment of novel therapies for PD.

Advanced radiographic metrics that quantify heterogeneity in shape and
uptake have been explored, primarily in the field of oncology, in order to
improve diagnosis as well as prediction of treatment response and survival
outcome in different cancers (Eary et al., 2008; El Naqa et al., 2009; Hatt
et al., 2015; Rahmim et al., 2016b; Soufi et al., 2017; Tixier et al., 2014;
Tixier et al., 2011; van Velden et al., 2011; Vriens et al., 2012). Overall, the
field of radiomics aims to extract a large number of quantitative features
from radiological images, aiming to uncover correlates of disease char-
acteristics that are ordinarily not visually observed or quantitatively mea-
sured (Aerts et al., 2014; Asselin et al., 2012; Chicklore et al., 2013; Kumar
et al., 2012; Lambin et al., 2012). In a previous work, we assessed whether
radiomics analysis improved correlations with clinical assessments
(Rahmim et al., 2016a). The present work investigates whether radiomics
analysis significantly adds to the ability of non-imaging and conventional
measures to predict outcome. This is plausible since pathophysiologic stu-
dies have demonstrated very heterogeneous patterns of dopamine loss in the
basal ganglia (Kish et al., 1988). As such, we hypothesize that radiomics
analysis has the potential to significantly improve prediction of outcome in
Parkinson's disease patients.

2. Methods and materials

2.1. Longitudinal patient data

Longitudinal data were extracted from the PPMI database (www.
ppmi-info.org/data) (Parkinson Progression Marker Initiative, 2011).
The movement disorder society – unified Parkinson's disease rating scale
(MDS-UPDRS) – part III (motor) in year 4 was used as outcome (referred
to as UPDRS-III from here on). Predictors included demographics (age,
sex), as well as baseline (year 0) and year 1 DAT SPECT images and
clinical measures. Clinical measures included: disease duration (DD)
taken with respect to (a) time of diagnosis (DD-diag.) as well as (b) time
of appearance of symptoms (DD-sympt.). This also included (c) the motor
measure, UPDRS-III, and (d) the non-motor cognitive measure, Montreal
Cognitive Assessment (MoCA), for both baseline (year 0) and year 1. For
consistency, we only included patients with SPECT data acquired on si-
milar kinds of scanner (Siemens, 2-headed ECAM or Symbia systems),
and subjects who underwent high-resolution 3 T MRI. These selection
criteria resulted in 64 PD subjects (38 male, 26 female; age at year 0:
61.9 ± 7.3, range [46,78]), with widely distributed year 4 outcome
UPDRS-III: 27.3 ± 14.7; range [3,77].

Imaging was performed 4 ± 0.5 h following injection of DAT
SPECT (123I-Ioflupane; 111–185 MBq). Thyroid update was blocked via
pre-treatment of subjects with saturated iodine solution (10 drops in
water) or perchlorate (1000 mg) prior to injection. Data acquisition
consisted of 128 × 128 raw SPECT projection data acquired every 3
degrees, 120 projections, 20% symmetric photopeak windows centered
on 159 keV and 122 keV, and a total scan duration of ~30–45 min. A
HERMES system (Hermes Medical Solutions, Stockholm, Sweden) was
used to perform iterative OSEM reconstruction on the input raw SPECT
projection data, for all studies to ensure consistency.

Subsequently, PMOD (PMOD Technologies, Zurich, Switzerland)

was used for attenuation correction. Ellipses where drawn on the
images and Chang 0 attenuation correction was applied invoking a site-
specific mu as empirically derived from phantom data (as acquired in
site initiation for the trial). Following this, standard 3D Gaussian post-
smoothing (6.0 mm FWHM) was applied.

2.2. Image processing and quantification

Image processing consisted of segmentation of MRI images and re-
gistration of SPECT images onto MRI images, followed by quantitative
feature extraction from SPECT images, as follows:

1) Segmentation: We focused on six ROIs, namely the caudate, putamen
and ventral striatum (VS) (both right and left) for analysis. The oc-
cipital cortex was also segmented, which is commonly used as a re-
ference region for normalization of counts (Badiavas et al., 2011;
Djang et al., 2012; Koch et al., 2005). Segmentation consisted of: 1)
affine registration of the T1-weighted MRI of the subject to the
MNI305 atlas (Evans et al., 1993); 2) initial volumetric labeling of the
registered MRI of the subject using the labels of the atlas; 3) correc-
tion of image inhomogeneity, i.e., variation of the image intensity due
to the B1 bias field, using the results of the previous stage; 4) non-
linear volumetric alignment of the subject's affine-registered and in-
homogeneity-corrected MRI to the MNI305 atlas; and 5) propagation
of the atlas labels to the MRI generated in the previous step and then,
mapping of the results back to the original MRI of the subject. The
classification of each point in the space to a given label was achieved
by finding the segmentation that maximized the probability of input
(image) given the prior probabilities from the training set (MNI305
atlas). Details of this framework are presented by Fischl et al., and an
implementation of the methods is available in FreeSurfer (Fischl
et al., 2002; Fischl et al., 2004a; Fischl et al., 2004b).

2) Registration: To register SPECT images of each subject to the MRI of
the subject, we employed a rigid, information-theory-based co-regis-
tration approach (Penny et al., 2011), implemented in two steps. The
algorithm uses the normalized mutual information as the objective
function along with a Gaussian smoothing kernel with a width of
7 mm. It also uses two separation levels, the average distance be-
tween sampled points of 4 and 2 mm, for the coarse to fine regis-
tration of the images, as elaborated by Collignon et al. (1995). Since
DAT SPECT images have lower spatial resolution (typically 10 mm)
compared to MRI (typically 1 mm), and depict centralized hyper in-
tense striatal uptake (with minimal uptake elsewhere), standard co-
registration commonly performs poorly. To tackle this, in the next
stage, we performed linear intensity normalization of the T1-w
images so that the average intensity of white matter equals 100.
Then, we set the intensity value of the caudate and VS to 4000 and
putamen to 1000. Finally, we employed the rigid co-registration al-
gorithm on the co-registered DAT SPECT images from the previous
stage and the manipulated T1-w images. In this way, the hyper in-
tensity regions in the SPECT image are forced to better align to the
regions around the favorable structures. In the end, we overlaid the
structures segmented in MRI on the co-registered SPECT images.
Furthermore, the more (m) vs. less (l) affected sides of the structures
were determined with reference to the SPECT uptake at the putamen.

3) Feature extraction: A total of 92 imaging features were extracted,
including 13 first-order intensity features, 22 morphological fea-
tures, and 57 second- and higher-order textural features, describing
the intensity and spatial distribution of radiotracer uptake. The
definitions of these features are elaborated in the supplement. Of the
92 features, 75 of them incorporated DAT SPECT uptake informa-
tion, while 17 of the morphological features were purely based on
the MRI-based ROIs (see supplement). This latter is justified given
findings of structural brain atrophy in PD patients (Brenneis et al.,
2003; Zeighami et al., 2015). Of the 92 features, 4 features were
conventional measures of SUVmax, SUVmean, SUVpeak and ROI-
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volume, though these were extracted for each of the 6 ROIs and on
both years of imaging (year 0 and 1).

2.3. Data analysis

Multivariate analysis was performed in three groups, involving: (1)
use of only non-imaging features (i.e. demographics and clinical mea-
sures), (2) additional use of conventional imaging features, and (3) ad-
ditional use of radiomic features. For each group of predictors, a single
regression tree was fitted to explore interactions among variables, fol-
lowed by random forest analysis (R package randomForest) to identify the
top predictors. Random forest analysis is an ensemble non-parametric
machine learning method. It can handle complicated interactions among
large number of variables and their non-linear effects efficiently. In fact,
it has shown favorable performance in comparison to other machine
learning methods in the context of radiomics analysis (Parmar et al.,
2015). An observation is that the prediction model cannot be visualized
using a single straightforward formula because the prediction is done
through a collection of trees, and each tree has its own formula, which is
also the case with artificial neural networks (ANNs).

Year 4 UPDRS-III was used as the response variable in all these
analyses. Features with zero variance were removed before the analysis.
For each group of predictors, 5000 bootstrap samples were randomly

drawn from all patients. Each of these bootstrap samples included about
two-third of the total number of patients, and the remaining one-third
patients were called out-of-bag (OOB) for that bootstrap sample. A de-
cision tree was grown from each bootstrap sample and internally vali-
dated using the corresponding OOB sample. This procedure was repeated
for all bootstrap samples. The minimum node size was set to 5, and at
each node, 1/3 of candidate features were randomly selected to de-
termine how to split the node. To rank the importance of a predictor, all
values of this predictor were permuted among all individuals in the OOB,
and we put both permuted and non-permuted data down all trees to
obtain their predictions. The average absolute difference in prediction
between permuted and non-permuted OOB data was then used to mea-
sure the variable importance score and to select top predictors. Variables
with larger difference scores were considered more important.

Prediction accuracy of random forest analysis was assessed using
leave-one-out-cross-validation (LOOCV). Each time, one patient was
excluded from the random forest analysis. The developed random forest
algorithm was then applied to this excluded patient to obtain a pre-
diction of UPDRS-III score. We then calculated the absolute difference
between the predicted and observed UPDRS-III scores for the patient.
The process was repeated for all patients. The average difference Δ from
all patients was used to compare predictions using different groups of
predictors. In particular, we investigated added value of radiomics
features by comparing Δ from group 2 and group 3. For longitudinal
analysis, combined features from year 0, year 1, as well as their dif-
ferences were utilized. To assess performance when only baseline in-
formation was included, the abovementioned analysis was repeated
when data from only year 0 were used to predict outcome in year 4.

3. Results

Fig. 1 depicts 3D segmentation as performed on a typical study, as
well as transaxial, coronal and sagittal slices of the DAT SPECT image
overlaid with the segmentations.

Fig. 2 shows a single decision tree (left) and its performance (right).
Patients with baseline UPDRS-III greater than or equal to 36 had the
highest median year 4 UPDRS-III score. For patients with baseline
UPDRS-III < 36, there were interactions among different radiomic
features. However, it is seen that using a single decision tree results in a
limited number of outcomes, which is why a random forest of decision
trees is utilized to provide improved performance (next).

Fig. 3 depicts our main findings. Non-imaging features (specifically,
demographics and clinical motor and non-motor measures) are used in
all predictions. When only these measures are used, absolute error in

Fig. 1. 3D volume rendering of six segmentations (caudate, putamen and VS; both right
and left) for a typical study, as well as transaxial, coronal and sagittal slices through the
DAT SPECT image with superimposed segmentations.

Fig. 2. (left) A decision tree, with six leaves, for prediction of UPDRS-III motor outcome. (right) The performance of the tree on the data is shown, which is sub-optimal, given that only
one of six outcomes can be arrived at, at the leaves. Use of random forest of decision trees aims to improve this performance. Radiomic features, such as difference Entropy, SZHGE and
LZLGE as seen above, are elaborated in the supplement. (m) and (l) refer to the more and less affected sides, respectively (e.g. caudate(m) is the more affected caudate).
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prediction of outcome is 8.93 ± 0.91. It is seen that addition of only
conventional imaging features does not improve prediction perfor-
mance (9.00 ± 0.88). However, addition of radiomic features results
in an absolute error in outcome prediction of 4.12 ± 0.43. Given the
year 4 UPDRS-III distribution (27.3 ± 14.7), this represents a sig-
nificant (p-value < 0.001) average improvement of 18% in prediction
of outcome, and can be readily observed visually.

Fig. 4 depicts the findings when data from only year 0 (baseline) are
used to predict outcome. It is generally seen that predictions are poorer.
What is more, in comparison to use of non-imaging features
(10.77 ± 1.10), outcome prediction it not improved when adding

conventional features (10.63 ± 1.07) or even by further addition of
radiomic feature (9.93 ± 1.10). Overall, it is seen that longitudinal
images (acquired at year 0 and year 1) are required to enable sig-
nificantly improved prediction of motor outcome in year 4.

Fig. 5 plots relative contribution of different predictors via a metric
%IncMSE: incremental percent change in mean square error (MSE) by
exclusion of a single feature. It is seen that UPDRS-III (motor) from year
1 and then from year 0 are the most important predictors. At the same
time, it is seen that radiomics features were among the top 10 most
important predictors. The critical observation, from Fig. 3, is that it is
through the combination of conventional measures with radiomic fea-
tures that one is able to significantly improve prediction of outcome.

4. Discussion

There exist two intertwined challenges in PD biomarker discovery.
One is to identify biomarkers that track PD progression, and the other is
to predict outcome (Marek et al., 2008). Both are very important
clinically and in the discovery of disease modifying therapies. PD pro-
gression biomarkers are needed to assess efficacy of such therapies,
while better prediction of outcome is needed in order to discover PD
sub-types so as to more effectively design clinical trials in the first place.

In the present work, we utilized motor assessment (UPDRS-III) in
year 4 as the outcome measure being predicted. We plan to extend our
work to prediction of other outcomes, including cognitive assessment
(MoCA) and time to initiation of symptomatic therapy (TIST). In fact, it
is plausible that use of a single clinical metric may not be sufficient to
truly track PD progression. As a result, it is meaningful to use a com-
bination of metrics, or global statistical tests for assessment of disease
progression in clinical trials (Huang et al., 2009), which we plan to
utilize in future efforts involving prediction of outcome in PD.

There exist considerable difficulties and uncertainties with PD dis-
ease metrics. Disease duration is a particularly problematic metric,
given the subtle and often nonspecific nature of early symptoms. The
patients' abilities to detect the first symptoms is highly variable, and is
impacted by a number of factors such as personality, education level
and professional background, and the type of initial symptom (e.g.
tremor vs. bradykinesia). This somewhat subjective nature of UPDRS
evaluation makes the disease duration metric prone to inter-rater
variability. UPDRS-III motor assessment itself is a highly variable

Fig. 3. Plots of outcome prediction, when using (top) only demographics and clinical
measures, (middle) addition of conventional features as extracted from DAT SPECT
images, and (top) addition of radiomics features as extracted from the images. Data from
years 0 and 1 are both utilized to predict motor performance in year 4.

Fig. 4. Plots of outcome prediction, when using (top) only demographics and clinical
measures, (middle) addition of conventional features as extracted from DAT SPECT
images, and (top) addition of radiomics features as extracted from the images. Data from
only year 0 (baseline) are utilized to predict motor performance in year 4.

Fig. 5. Relative contribution of different predictors. %IncMSE is incremental % change in
mean square error (MSE) by exclusion of a single feature. Top two predictors are the
clinical motor measures (UPDRS-III) in years 1 and 0. But as seen in fig. 3, additional use
of the radiomic features is necessarily to significantly improve prediction of outcome. (m)
and (l) refer to the more and less affected sides of a structure: putamen, caudate or VS
(ventral striatum). The radiomic features are elaborated in the supplement.
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measure (Horne et al., 2016; Mentzel et al., 2016), involving both pa-
tient- and rater-dependent variabilities. To reduce such variability, we
averaged motor measures, if additionally performed up to 6 months
before or after the visit. For instance, for year 4 outcome prediction, if a
patient had a visit at 3.5 years and/or 4.5 years post-enrollment, the
measures would be utilized and averaged with year 4 measures.

In our past efforts, we investigated use of advanced texture analysis
in quantitative brain PET imaging, in studies of PD (Gonzalez et al.,
2013; Klyuzhin et al., 2016; Sossi et al., 2012) and Neuroinflammation
(Rahmim et al., 2012). Furthermore, we found strong evidence that
such measures retain their information even as one transitions from the
higher resolution domain of PET images to the lower resolution domain
of SPECT images by significant post-reconstruction blurring of PET
images (e.g. up to 1 cm) (Blinder et al., 2014). In a subsequent DAT
SPECT study (Rahmim et al., 2016a), we also demonstrated sig-
nificantly improved correlation of radiomic features with clinical as-
sessment. This prompted the present study, for the challenging task of
predicting clinical outcome, making use of radiomic features involving
DAT SPECT images. It is also worth noting that a potential of radiomic
features is to move beyond conventional measures that require access to
a good reference region for normalization, enabling more subtle de-
tection and assessment of disease (Campbell and Shokouhi, 2017).

The large number of features used in radiomics analysis is a concern in
the context of the curse of dimensionality, and there exist increasing scrutiny
(Chalkidou et al., 2015) and efforts (Kumar et al., 2012) to avoid problems
of overfitting and false discovery. One approach is to pre-eliminate a
number of features as shown in independent studies to depict poor repeat-
ability (test-retest) or poor reproducibility to variations in image re-
construction and processing parameters (Ashrafinia et al., 2017; Doumou
et al., 2015; Galavis et al., 2010; Grkovski et al., 2015; Hatt et al., 2013;
Leijenaar et al., 2013; Lu et al., 2016; Lv et al., 2017; Shiri et al., 2017; Tixier
et al., 2012; van Velden et al., 2016). An alternative approach, which we
have pursued in this work, is to perform feature selection within the training
dataset itself, using unsupervised methods (Bartenhagen et al., 2010; Dy,
2008; Mitra et al., 2002), to reduce the dimensionality of the data. This
involved elimination of features that have very low dynamic range or those
that are very highly correlated with other features (redundancy).

Among predictors used in this work, we also included genomics
profiling. In particular, we used a reduced list of 8 alpha-synuclein
(SNCA) single nucleotide polymorphisms (SNPs), given previous find-
ings on their association with increased risk of PD onset (Guella et al.,
2016). However, no significant genomic interactions were found for
progression. Our ongoing efforts include correlation of the SNPs with
imaging phenotypes to boost statistical power, and analysis of a wider
array of SNPs. We plan on performing extensive analysis on a larger
patient dataset, including a larger training set as well as separate va-
lidation set, in order to assess reproducibility of our findings of sig-
nificantly improved prognosis with inclusion of radiomic features.

We finally note that there is increasing recognition for the critical role
of standardization and reproducible research for effective progress in the
hunt for and established utility of biomarkers (Collins and Tabak, 2014;
Economist, 2013; Poste, 2011). This is equally a concern in the field of
radiomics which involves complicated imaging feature definitions and
analyses (Hatt et al., 2017). To this end, there are now significant efforts
underway for standardization of imaging biomarkers (Zwanenburg et al.,
2016), which are critically needed for reproducible application of
radiomics features and their successful translation to clinical practice.

5. Conclusion

This work has shown that use of longitudinal data (year 0 and year 1),
combined with radiomics analysis, can result in significant improvements in
prediction of outcome. Our results demonstrated that addition of radiomic
features to conventional measures significantly improved (p < 0.001)
prediction of outcome (namely that of year 4 motor performance as assessed
using MDS-UPDRS-III), reducing the absolute error of prediction from

9.00 ± 0.88 to 4.12 ± 0.43 (MDS-UPDRS-III distribution: 27.3 ± 14.7).
Radiomics analysis of DAT SPECT images holds significant potential to-
wards development of effective biomarkers for prognostication of PD, with
implications in design of clinical trials.
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