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ABSTRACT For many years, curve-fitting software has been heavily utilized to fit simple models to various types of biophysical
data. Although such software packages are easy to use for simple functions, they are often expensive and present substantial
impediments to applying more complex models or for the analysis of large data sets. One field that is reliant on such data anal-
ysis is the thermodynamics and kinetics of protein folding. Over the past decade, increasingly sophisticated analytical models
have been generated, but without simple tools to enable routine analysis. Consequently, users have needed to generate their
own tools or otherwise find willing collaborators. Here we present PyFolding, a free, open-source, and extensible Python
framework for graphing, analysis, and simulation of the biophysical properties of proteins. To demonstrate the utility of
PyFolding, we have used it to analyze and model experimental protein folding and thermodynamic data. Examples
include: 1) multiphase kinetic folding fitted to linked equations, 2) global fitting of multiple data sets, and 3) analysis of repeat
protein thermodynamics with Ising model variants. Moreover, we demonstrate how PyFolding is easily extensible to novel
functionality beyond applications in protein folding via the addition of new models. Example scripts to perform these and other
operations are supplied with the software, and we encourage users to contribute notebooks and models to create a community
resource. Finally, we show that PyFolding can be used in conjunction with Jupyter notebooks as an easy way to share methods
and analysis for publication and among research teams.
INTRODUCTION
The past decade has seen a shift in the analysis of experi-
mental protein folding and thermodynamic stability data
from the fitting of individual data sets using simple models
to increasingly complex models using global optimization
over multiple large data sets [examples include (1–21)].
This shift in focus has required moving from user-friendly,
but expensive software packages to bespoke solutions devel-
oped in computing environments such as MATLAB and
Mathematica or by using in-house solutions [examples
include (3,6,12,21,22)]. However, as these methods of anal-
ysis have become more essential, simple curve-fitting soft-
ware no longer provides sufficient flexibility to implement
the models. Thus, there is an increasing need for substan-
tially more computational expertise than previously
required. In this respect, the protein folding field contrasts
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with other fields, for example x-ray crystallography, where
free or inexpensive and user-friendly interfaces and analysis
packages have been developed (23).

Here, we present PyFolding, a free, open-source, and
extensible framework for graphing, analysis, and simula-
tion. At present, it is customized for the analysis and
modeling of protein folding kinetics and thermodynamic
stability. To demonstrate these and other functions, we pre-
sent a number of examples as Jupyter notebooks. The soft-
ware, coupled with the supplied models/Jupyter (iPython)
notebooks, can be used by researchers with less program-
ming expertise to access more complex models/analyses
and share their work with others. Moreover, PyFolding
also enables researchers to automate the time-consuming
process of combinatorial calculations, fitting data to multi-
ple models or multiple models to specific data. This enables
novice users to simply replace the filenames of the data sets
with their own and execute the same calculations for their
systems. For more advanced users, new models and
functionality can be added with ease by utilizing the tem-
plate models. The Jupyter notebooks provided also show
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how PyFolding provides an easy way to share analysis for
publication and among research teams.
MATERIALS AND METHODS

PyFolding was developed using Python 2.7 and additional libraries NumPy,

SciPy, and Matplotlib. Analyses were performed on either an i5 Macbook

Pro with 8 Gb RAM running macOS Sierra, a Dell Precision

T3600 Workstation running Ubuntu 16.04LTS with 64 Gb RAM and an

NVIDIA GTX1080 GPU, or a virtual PC running Windows 10 (64 bit) in

VirtualBox on an i7 Macbook Air. Example data for the associated note-

books were taken from existing publications or extracted from original pub-

lications using engauge digitizer (https://github.com/markummitchell/

engauge-digitizer). The PyFolding software, notebooks, and example data

are distributed through github at https://github.com/quantumjot/PyFolding.
RESULTS AND DISCUSSION

PyFolding is implemented in Python and is distributed as a
lightweight, open-source library through github and can be
downloaded with instructions for installation from the
authors’ site (https://github.com/quantumjot/PyFolding).
PyFolding has several dependencies, requiring Numpy,
SciPy, and Matplotlib. These are now conveniently pack-
aged in several Python frameworks, enabling easy installa-
tion of PyFolding even for those who have never used
Python before (described in the ‘‘SETUP.md’’ file of
PyFolding and as a series of instructional videos to demon-
strate the installation and use of PyFolding; https://github.
com/quantumjot/PyFolding/wiki). As part of PyFolding,
we have provided many commonly used folding models
as standard, such as two- and three-state equilibrium folding
and various equivalent kinetic variations (Supporting
Material, Jupyter notebooks 1–4 and 8). Functions and
models themselves are open source and are thus available
for inspection or modification by both reviewers and
authors. Moreover, due to the open-source nature, users
can introduce new functionality by adding new models
into the library, building upon the template classes provided.
We encourage users to contribute notebooks and models to
create a community resource.
Fitting and evaluation of typical folding models
within PyFolding

PyFolding uses a hierarchical representation of data
internally. Proteins exist as objects that can have metadata
as well as multiple sets of kinetic and thermodynamic data
associated with them. Input data such as chevron plots or
equilibrium denaturation curves can be supplied as comma
separated value files (CSV). Once loaded, each data set is
represented in PyFolding as an object, associating the data
with numerous common calculations. Models are repre-
sented as functions that can be associated with the data
objects you wish to fit. As such, data sets can have
multiple models and vice versa enabling automated fitting
and evaluation (Supporting Material, Jupyter notebooks
1–3). Parameter estimation for simple (non-Ising) models
is performed using the Levenberg-Marquardt nonlinear
least-mean-squares optimization algorithm to optimize the
appropriate objective function [as implemented in SciPy
(24)]. The output variables (with SE) and fit of the model
to the data set (with R2 coefficient of determination and
95% confidence levels) can be viewed within PyFolding
and/or the fit function and parameters written out as a
CSV file for plotting in your software of choice (Supporting
Material, Jupyter notebooks 1–3). Importantly, by represent-
ing proteins as objects, containing both kinetic and
equilibrium data sets, PyFolding enables users to perform
and automate higher-level calculations such as F-value
analysis (25,26), which can be tedious and time-consuming
to perform otherwise (Supporting Material, Jupyter
notebook 3). Moreover, users can define their own calcula-
tions so that more complex data analysis can be performed.
For example, multiple kinetic phases of a chevron plot (fast
and slow rate constants of folding) can be fitted to two
linked equations describing the slow and fast phases of a
three-state folding regime (Fig. 1; Supporting Material,
Jupyter notebook 4). We believe that this type of fitting is
extremely difficult to achieve with the commercial curve-
fitting software commonly employed for analyzing these
data, owing to the complexity of parameter sharing among
different models and data sets.
More complex fitting, evaluation, and simulations
using the Ising model

Ising models are statistical, thermodynamic, nearest-
neighbor models that were initially developed for ferromag-
netism (27,28). Subsequently, they have been used with
great success in both biological and nonbiological systems
to describe order-disorder transitions (12). Within the field
of protein folding and design, they have been used in a
number of instances to model phenomena such as helix-
to-coil transitions, b-hairpin formation, prediction of protein
folding rates/thermodynamics, and with regards to the
postulation of downhill folding (6,12,20,29–34). Most
recently, two types of one-dimensional (1-D) variants have
been used to probe the equilibrium and kinetic un/folding
of repeat proteins (3,12,17,21,22,35,36). The most com-
monly used, and mathematically less complex, has been
the 1-D homopolymer model (also called a homozipper).
Here, each arrayed element of a protein is treated as an
identical, equivalent, independently folding unit, with inter-
actions between units via their interfaces. Analytical parti-
tion functions describing the statistical properties of this
system can be written. By globally fitting this model to,
for example, chemical denaturation curves for a series of
proteins that differ only by their number of identical units,
the intrinsic energy of a repeated unit and the interaction
energy between the folded units can be delineated.
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FIGURE 1 Work flow example of the fitting linked equations in

PyFolding. (A) Unfolding and folding kinetics (chevron plots) showing

the distinct fast and slow phases for the three-state folding thermophilic

AR protein (tANK) identified in the archaeon Thermoplasma (2) are loaded

into PyFolding as chevron objects. (B) Two linked models (functions) are

associated with the chevron data. These describe the fast (model 1) and

slow phases (model 2) of the chevrons. Certain rate constants and their

associated m-values are shared between the two models. The other param-

eters are ‘‘free’’ and associated and fitted only in the slow-phase model. (C)

Global optimization within PyFolding enables simultaneous fitting of the

two models with shared parameters to the two respective phases. The

resultant fits for the fast (blue dotted line) and slow phases (red solid

line) are shown overlaid on the observed data. The residuals show the

difference between the slow-phase observations and fit. These calculations

can be found in Supporting Material, Jupyter notebook 4. GdmHCl,

guanidinium chloride. To see this figure in color, go online.
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However, this simplified model cannot describe the majority
of naturally occurring proteins where subunits differ in their
stabilities, and varying topologies and/or noncanonical
interfaces exist. In these cases, a more sophisticated and
mathematically more complex heteropolymer Ising model
must be used. Here, the partition functions required to fit
the data are dependent on the topology of interacting units
and thus are unique for each analysis.

At present, there is no freely available software that can
globally fit multiple folding data sets to a heteropolymer
Ising model, and only a few that can adequately implement
a homopolymer Ising model. Therefore, most research
groups have had to develop bespoke solutions to enable
analysis of their data (3,21,22,35,36). Significantly, in
PyFolding we have implemented methods to enable users
to easily fit data sets of proteins with different topologies
to both the homozipper and heteropolymer Ising models.
To achieve this goal, PyFolding presents a flexible frame-
work for defining any nondegenerate 1-D protein topology
using a series of primitive protein folding ‘‘domains/
modules’’ (Fig. 2). Users define their proteins’ 1-D topology
from these domains (Supporting Material, Jupyter note-
books 5–6). PyFolding will then automatically calculate
the correct partition function for the defined topology, using
the matrix formulation of the model [as previously
described (12)], and globally fit the equations to the data
as required (Supporting Material, Jupyter notebooks 5–6).
The same framework also enables users to simulate the
effect of changing the topology, a feature that is of great
interest to those engaged in rational protein design (Support-
ing Material, Jupyter notebook 7).

To determine a globally optimal set of parameters that
minimizes the difference between the experimental data
sets and the simulated unfolding curves, PyFolding uses
the stochastic differential evolution optimization algorithm
(37) implemented in SciPy (24). In practice, experimental
data sets may not adequately constrain parameters during
optimization of the objective function, despite yielding an
adequate curve fit to the data. It is therefore essential to
carefully assess the output of the model to verify the validity
of any topologies and the resultant parameters. A descrip-
tion of how PyFolding provides the error estimates and
determines how constrained parameters are is given in the
error analysis section below. As with the simpler models,
PyFolding can be used to visualize the global minimum
output variables (with SEs) and the fit of the model to the
data set (with R2 coefficient of determination) (Supporting
Material, Jupyter notebooks 5–6). The output can also be
exported as a CSV file for plotting in your software of
choice. In addition, PyFolding outputs a graphical represen-
tation of the topology used to fit the data and a graph of the
denaturant dependence of each subunit used (Fig. 2).
Thus, PyFolding enables nonexperts to create and analyze
protein folding data sets with either a homopolymer or
heteropolymer Ising model for any reasonable 1-D protein



FIGURE 2 Work flow example of global optimization of a heteropoly-

mer Ising model in PyFolding. (A) Guanidinium chloride (GdmHCl)-

induced equilibrium denaturations of a series of single-helix deletion

CTPRn proteins are loaded into PyFolding as EquilibriumDenaturation
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topology. Moreover, once the 1-D topology of your protein
has been defined, PyFolding can also be used to simulate
and thereby predict folding behavior of both the whole
protein and the subunits that it is composed of (Supporting
Material, Jupyter notebook 7). In principle, this type of
approach could be extended to higher dimensional topol-
ogies, thus providing a framework to enable rational protein
design.
Error analysis

We calculate various metrics to assess the quality of the
output from PyFolding. All independent nonconstant
variables are reported with a SE of each parameter, i:

SEðiÞ ¼ covði; iÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP �

yfit � yobs
�2

d

s
; (1)

where cov is the covariance matrix (where covði; iÞ repre-
sents the variance of parameter i), yfit are the y-values of
the fit at the observed x-values, yobs are the observed
y-values of the data, and d represents the degrees of freedom
(the number of data points minus the number of free
variables). From these values, we can also calculate the
confidence interval (nominally at 95%), where the confi-
dence interval for parameter i is

CIðiÞ ¼ Pi 5 tð95%; dÞ � SEðiÞ ; (2)

where Pi is the value of parameter i and tð95%; dÞ is the
t-distribution at 95% with d degrees of freedom. Finally,
we report the coefficient of determination (R2) as a statistical
measure of the error between the data and the fitted model:

R2 ¼ 1�
P�

yfit � yobs
�2

P�
yfit � yobs

�2
; (3)

where yobs represents the mean of the observed data.
objects. In the figure, we schematically represent these as individual protein

structures corresponding to the smallest in the series (CTPR2-A) up to

(dots) the largest (CTPR3) (3). The figures were made with Pymol and in-

dividual helices are colored by the user-defined topology used by the Ising

model: helix (blue), repeat (black), a mutant repeat (green), or a cap (red).

(B) Using PyFolding’s built-in primitive protein folding ‘‘domains/

modules,’’ one can define topologies for each protein in the series. Each

primitive is a container for several thermodynamic parameters to describe

the intrinsic and interfacial stability terms. (C) Using the topologies defined

in (B), PyFolding will automatically generate the appropriate partition

functions (q) for each protein in the series using a matrix formulation,

and share parameters between other proteins in the series. (D) A final global

fitting step finds the optimal set of parameters to describe the series. (E)

The optimal parameters (and their estimated errors/confidence intervals)

for each domain primitive are recovered and output for the user. These

calculations can be found in Supporting Material, Jupyter notebook 6. To

see this figure in color, go online.
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In all models other than the heteropolymer Ising
model, we utilize a gradient optimizer such as the Leven-
berg-Marquardt algorithm that yields a covariance matrix
of the fitted parameters. However, since we must utilize a
different optimization method (the differential evolution
optimizer) for the global fitting of heteropolymer Ising
models, we calculate the errors in a slightly different
way. The optimizer does not yield a covariance matrix
as default, so we calculate a numerical approximation
based on the Jacobian matrix (here, a matrix of numerical
approximations of all the partial differentials of all vari-
ables) as follows:

cov ¼ �
JT J

��1 � MSE; (4)

where J is the Jacobian matrix, and MSE is the mean
squared error of the fit.

In PyFolding, we have provided estimates of the standard
error and confidence intervals for each parameter (calcu-
lated as described above) using this numerical approxima-
tion of the covariance matrix. In general, estimating errors
for the parameters or the uniqueness of the solution in
heteropolymer models is a complex problem, owing to the
method of optimization used. Interestingly, Aksel and
Barrick (12) used Bootstrap analysis to evaluate parameter
confidence intervals. However, many of the published
studies either do not describe how error margins were deter-
mined or simply list the error between the data and curve fit.
Here, when confronted with ill-posed data sets or poorly
chosen topologies, which can produce an adequate curve
fit to the data (as measured by R2), PyFolding’s numerical
error approximation becomes unstable, leading to large er-
rors. Thus, in evaluating the determinant of the Jacobian
as well as the estimated errors, it is possible to assess the
quality of the model and the validity of the solution: large
errors show that the model parameters are not properly
constrained. In such cases, PyFolding raises the appropriate
warnings to enable the user to quickly interpret the results
and adjust the topologies and members of a data set
appropriately.
CONCLUSIONS

Here we have shown that PyFolding, in conjunction with
Jupyter notebooks, enables researchers with minimal pro-
gramming expertise the ability to fit both typical and com-
plex models to their thermodynamic and kinetic protein
folding data. The software is free and can be used to both
analyze and simulate data with models and analyses that
expensive commercial user-friendly options cannot. In
particular, we have incorporated the ability to fit and simu-
late equilibrium unfolding experiments with user defined
protein topologies, using a matrix formulation of the 1-D
heteropolymer Ising model. This aspect of PyFolding will
be of particular interest to groups working on protein folds
520 Biophysical Journal 114, 516–521, February 6, 2018
composed of repetitive motifs such as Ankyrin repeats and
tetratricopeptide repeats, given that these proteins are
increasingly being used as novel antibody therapeutics
(38–41) and biomaterials (42–47). Further, as analysis can
be performed in Jupyter notebooks, it enables novice re-
searchers to easily use the software and for groups to share
data and methods. We have provided a number of example
notebooks and accompanying video tutorials as a resource
accompanying this manuscript, enabling other users to
recreate our data analysis and modify parameters. Finally,
due to PyFolding’s extensible framework, it is straightfor-
ward to extend, thus enabling fitting and modeling of other
systems or phenomena such as protein-protein and other
protein-binding interactions. Such extensions can be rapidly
and seamlessly deployed as a community resource, thus
broadening the functionality of the software.
SUPPORTING MATERIAL

Supporting Materials and Methods are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(17)35041-5.
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30. Muñoz, V., P. A. Thompson, ., W. A. Eaton. 1997. Folding dynamics
and mechanism of beta-hairpin formation. Nature. 390:196–199.
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