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Abstract

Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine
palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells
and regulates numerous biological pathways, such as membrane trafficking, protein secretion,
signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation,
including descriptions of proteins known to be modified and the functions of the modifications, the
enzymes that control them, and the tools and technologies developed to study them. We also
highlight key questions about protein lipidation that remain to be answered, the challenges
associated with answering such questions, and possible solutions to overcome these challenges.

Graphical Abstract

CysS o ° HN-Gly
o‘!"@i\"’\ %%%s
Q'a\
o
Seno’t/ Protein U5 Jf\/*
seine |\ [ipidation s

fatty-acylation fatty-acylation

%22% o@“‘" o oI

"Correspondence should be addressed to Hening Lin, hI379@cornell.edu.
These authors contributed equally to this work.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jiang et al. Page 2

1. Introduction

Lipids are essential molecules that compose cellular membranes, which provide the barriers
and boundaries needed for cells to survive and proliferate. This confinement of cellular
materials by cellular membrane structures necessitates cellular communication (i.e., cell
signaling and membrane trafficking) with the extracellular environment and among cellular
membrane organelles. Cell signaling and membrane trafficking rely on proteins that are
secreted into the environment, embedded in cellular membranes, and reversibly associated
with membranes. Not surprisingly, nature also uses lipids to control and regulate membrane—
protein interactions. These functions are achieved through two strategies. Certain proteins
have evolved to bind specifically to certain lipid molecules. For example, some pleckstrin
homology domains recognize specific phosphoinositides,! and blood clotting factors
recognize phosphatidylserine, which is found only in the inner leaflet of the plasma
membrane.2 Another widely observed interaction strategy is the covalent modification of
proteins by lipid molecules. These modifications are the focus of this review.

Lipidation occurs on numerous proteins and regulates many aspects of physiology. The
effects of protein lipidation on cellular function are achieved by regulating protein—
membrane interactions, and perhaps somewhat surprising, protein—protein interactions,
protein stability, and enzymatic activities. The lipid moieties added to proteins can be either
fatty acyl or polyisoprenyl groups, and the modifications typically occur on the nucleophilic
side chains of proteins (e.g., cysteine, serine, and lysine) and the NH, group at the N-termini
of proteins (Figure 1). Two lipid modifications occur at the C-termini of certain
extracellular-membrane-associated proteins: cholesterol esterification and
glycosylphosphatidylinositol anchoring (see Figure 1). This review focuses on the direct
modification of protein nucleophilic residues by lipid molecules.
Glycosylphosphatidylinositol anchors, which are attached to proteins with a carbohydrate
moiety via multiple enzymatic steps, are not discussed herein, but excellent books and
reviews are available.3-5

The review is organized by the type of lipid modification that occurs on various nucleophilic
groups. For each modification, we discuss the enzymes that control the modification, the
modified proteins, the functions of the modification, and the tools or technologies that have
been developed to study the modifications. Each section is independent; however, certain
modifications, such as cysteine palmitoylation, depend on other modifications (cysteine
prenylation or N-terminal glycine myristoylation). Therefore, the sections are ordered so that
that the occurrence and functions of various modifications are easy to understand.

2. Protein Prenylation

Prenylation is the addition of multiple isoprene units to cysteine residues near the C-termini
of proteins. Up to 2% of the total cellular proteins in mammalian cells are prenylated.® There
are two types of prenylation—farnesylation and geranylgeranylation—which involve three
and four isoprene units, respectively (Figure 2). The processes through which these
modifications take place are also referred to in the literature as isoprenylation or
polyisoprenylation. Technically, the most appropriate description is polyisoprenylation, but
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the simpler term prenylation is more popular and is therefore adopted here. The majority of
prenylated proteins are geranylgeranylated proteins.6 The linkage between farnesyl or
geranylgeranyl groups and cysteine residues is a thioether bond, which is more stable than
ester and thioester bonds. The general belief is that this modification is irreversible, and no
enzyme that reverses this modification in intact proteins has been identified. However, a
prenylcysteine lyase is thought to be present in lysosomes’-8 and cleave the thioether bond
of prenylcysteines in the degradation of prenylated proteins.

In 1989, several studies reported that Ras proteins and lamin B are farnesylated at cysteine
residues.®10 These studies showed that farnesylation occurs on a C-terminal CaaX sequence
motif (C: cysteine, a: an aliphatic amino acid, X: any amino acid), which provided the initial
paradigm with which to predict whether a protein will be prenylated. Soon thereafter, protein
geranylgeranylation was discovered in HeLa cells and Chinese hamster ovary cells.11:12
Later, the C-terminal aaX was reported to be further cleaved by an endoplasmic reticulum
(ER) protease, Ras-converting enzyme 1, or a-factor converting enzyme 1 after prenylation
in the cytoplasm.13 The prenylated cysteine residue is then carboxylmethylated by another
ER enzyme, isoprenylcysteine carboxylmethyltransferase (ICMT; see Figure 2).14

2.1. Protein Prenyltransferases

Three members of the protein prenyltransferase family are present in eukaryotes. Farnesyl
transferase (FT) transfers the 15-carbon farnesyl group from farnesyl diphosphate (FPP) to
substrate proteins. Geranylgeranyl transferase (GGT-1) catalyzes a similar reaction
comprising the transfer of a 20-carbon geranylgeranyl group from geranylgeranyl
diphosphate (GGPP). The substrate proteins of both FT and GGT-1 have typical C-terminal
CaaX motifs for prenylation. Another protein prenyltransferase, Rab geranylgeranyl
transferase (RGGT or GGT-2; see Figure 2), usually transfers two geranylgeranyl groups
from GGPP to the C-terminal double-cysteine motif (CC or CXC) of Rab proteins.

2.1.1. FT and GGT-1—The first protein FT was isolated from rat brain in 1990.15 FPP,
generated from mevalonate as an intermediate in the cholesterol biosynthetic pathway, was
later shown to be the co-substrate of FT for p21Ras modification in vitro. Protein GGT-1
was also first identified from rat brain tissue as a modifier of Ras proteins.1® This study
showed that GGT-1 has distinct selectivity for substrate proteins with C-terminal Caal
motifs rather than those with CaaM or CaaS motifs, which are preferred by FT. The authors
also revealed that both FT and GGT-1 are heterodimers sharing a common a subunit with
different  subunits. Further studies with recombinant rat FT and GGT-1 confirmed that the
enzymes have the same a subunit of 48 kD and homologous B subunits of 46 kD and 43 kD,
respectively.17-19

Crystal structures of rat FT and GGT-1 were solved in 1997 and 2003, respectively (Figure
3A)20.21 and showed that the major secondary structures of the a and B subunits are a.-
helices. In the a subunit, 14 of 15 a-helices are folded into seven successive helical hairpins
and arranged in a double-layer super helix as a crescent-shaped domain that wraps around a
portion of the B subunits. The B subunits of FT and GGT-1 share 25% sequence identity and
have similar overall structures (Figure 3B) consisting of 14 and 13 a-helices, respectively.
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Twelve a-helices of the B subunits are folded into an unusual a-a barrel. Six parallel helices
form the core of the barrel, and the other six form the outside of barrel, which is antiparallel
to the inner core helices. One end of the barrel is blocked by the C-terminal loop of the
subunits, and the other end is open to the solvent and forms a deep hydrophobic pocket in
the center of the barrel. This pocket has conserved aromatic residues that bind hydrophaobic
isoprene units of FPP and GGPP (Figure 3G).

The structures also reveal the location of the Zn2* required for the enzymatic activities of FT
and GGT-1.2223 One zinc ion binds to the B subunit near the subunit interface (Figure 3E)
and is coordinated by three conserved residues of the B subunit, Asp297p/Cys299p/His3623
in FT and Asp269p/Cys271p/His321 in GGT-1 (Figure 3F).2%-21 Ternary complex
structures of FT or GGT-1 with peptide substrates and FPP or GGPP analogues show that
the zinc ion is also coordinated with the cysteine thiol group in the C-terminal CaaX motif
of the peptide substrates (Figure 3F),21:24 which is essential for the binding of CaaX
peptides.

How do FT and GGT-1 achieve selectivity for FPP or GGPP? Binary complexes of FT with
FPP and GGT-1 with GGPP provide clues about the mechanism for lipid length
differentiation (Figure 3G).21:25 The diphosphate portion binds to a positively charged
region at the top of the hydrophobic pocket near the subunit interface. The farnesyl portion
of FPP binds in an extended conformation along one side of the hydrophobic pocket of the
a-a barrel in the FT B subunit. The first three isoprene units of GGPP bind in a similar
conformation within the GGT-1 B subunit, but the fourth isoprene unit is turned ~90° relative
to the rest of the molecule. This positioning of the fourth isoprene unit indicates that Thr49p
in GGT-1 is critical for lipid length discrimination because the corresponding position in FT
is a bulky residue, Trp102p (Figure 3H). Phe324 in GGT-1 is also positioned near the
fourth isoprene unit, whereas the corresponding residue in FT is Tyr361p. The hydroxyl
group from Tyr361p might also help discriminate against GGPP in FT. Thus, steric
hindrance in FT determines its preferential binding to FPP. A single mutation in FT,
Trpl02Thr, switches the co-substrate preference.2

The structures of GGT-1 in complex with the prenylated product reveal that GGPP rotates
around the second isoprene unit to approach the thiol group of the cysteine in the CaaX
peptide to generate the geranylgeranylated product while the other portion of isoprenoid
retains its substrate binding position (Figure 3C). Product release from the GGT-1 active site
requires the binding of fresh GGPP to displace the geranylgeranyl-peptide product (Figure
3D).2! The binding affinity of FPP for GGT-1 is much weaker and thus, FPP cannot
efficiently displace the complex of GGT-1 and the geranylgeranylated product. This feature
contributes to the isoprenoid substrate selectivity of GGT-1 for GGPP over FPP. However,
RhoB is reportedly farnesylated and geranylgeranylated efficiently by GGT-1,26 which
indicates that GGT-1 has the capability to transfer both farnesyl and geranylgeranyl groups,
and the choice of prenylation may depend on the nature of the substrate proteins and relative
concentrations of FPP and GGPP. The FPP and GGPP concentrations measured are similar
in several human cancer cell lines (about 0.1 pmol/108 cells in K562 cells and 2.0 pmol/10°
cells in MCF-7 cells).2” Notably, treating the cancer cells with a small molecule, zoledronic
acid, dramatically increases the FPP concentration with minimal effects on GGPP
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concentration.2’ The levels of FPP (0.9-3.7 ng/mg protein) and GGPP (3.7-27.8 ng/mg
protein) in human brain tissue have also been determined and showed a significantly higher
concentration of GGPP.28:29 Thus, certain conditions or biological environments may affect
the ratio of farnesylation to geranylgeranylation.

Based on kinetic studies'®:30-34 and structures of FT in complex with substrates (FPP or its
analogue and K-Ras4B C-terminal peptide) or products,20:24.25:35 an ordered sequential
kinetic mechanism of farnesylation has been proposed (Figure 4). At the start of the
reaction, a binary enzyme—-substrate complex forms when FPP binds to the FT p subunit.
Then, a ternary complex forms with the binding of the CaaX substrate. At the completion of
the reaction, the farnesylated product remains in the active site until a new FPP displaces it;
this step is the rate-limiting step.32:36.37 The resulting binary FT-FPP complex then enters
the next round of the reaction. Geranylgeranylation catalyzed by GGT-1 is thought to follow
the same reaction pathway, but detailed rate constants have not been reported.3® The results
of a number of mechanistic studies that include stereochemical data and kinetic isotope
effects data suggest that the transition states of FT- and GGT-catalyzed reactions have
associative characteristics involving both the thiolate nucleophile and the diphosphate
leaving group.39-42

2.1.2. RGGT—RGGT (also called GGT-2) transfers two geranylgeranyl groups from
GGPP to the C-terminal CC or CXC motifs in Rab proteins. RGGT has two subunits, a 60
kD a subunit and a 38 kD B subunit.#® Studies have shown that RGGT requires Rab escort
proteins (REPS) to recruit substrate proteins for the geranylgeranylation reaction.43-4
Unlike FT and GGT-1, RGGT cannot catalyze reactions with short peptides containing a
Rab C-terminal prenylation motif or recognize Rab proteins alone. Mammals have two REP
proteins, REP-1 and REP-2. REP-1 is encoded on the X chromosome, and REP-1 mutations
cause X-linked retinal degeneration (choroideremia). The substrate specificities of the REP
proteins are essentially unknown, but Rab27a, a protein that accumulates in an unmodified
form in choroideremia, cannot be efficiently modified with REP-2.46:47 Except in the retina,
the presence of functional REP-2 largely compensates for the loss of REP-1 in
choroideremia patients, which suggests that REP-1 and REP-2 have significantly
overlapping functions. The first crystal structure of RGGT demonstrated that there are three
domains in its a subunit (Figure 3A): a helical domain, an immunoglobulin (1g)-like
domain, and a leucine-rich repeat domain.*® RGGTa and FTa or GGT-1a have only 22%
sequence identity according to structure-based alignment. The helical domain of RGGTa is
structurally similar to the a subunit of FT and GGT-1 and forms a crescent-shaped super
helix with 15 a-helices. The other domains, leucine-rich repeat domain and Ig-like domain,
are unique in RGGTa, and their functions remain unknown.

Twelve a-helices in the § subunit of RGGT create an a-a barrel, which resembles the a-a
barrels in FTB and GTT-1p (Figure 3B). In the central pocket of the RGGT a-a barrel,
Ser48p has the same functional role as Thr49p has in GGT-1 to accommodate GGPP,
whereas Trp102p at the same position in FT prevents GGPP binding (Figure 3G and 3H).4°

As shown by the structure of the RGGT-REP-1 complex (Figure 31),%9 REP-1 has two
domains: a large domain consisting of four p—sheets and six a-helices, and a small domain
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with five a-helices. The interface between RGGT and REP-1 comprises two a-helices from
the REP small domain and three a-helices from RGGTa. The interaction between RGGT
and REP-1 is regulated by GGPP. Kinetics studies have demonstrated that REP-1 binds to
RGGT with a Kyof 10 nM in the presence of GGPP,>! which is 100 times tighter than
without GGPP.

The structure of monogeranylgeranylated Rab7 in complex with REP reveals that Rab7
binds to the Rab-binding platform (RBP) on the side of REP large domain, and the REP C-
terminal binding region (CBR) associates with the Rab7 CBR-interacting motif (CIM) to
form the binary complex (Figure 3J).47 Additional modeling experiments have shown that
the prenylated C-terminus of Rab7 is harbored in the hydrophobic tunnel in the REP small
domain to solubilize prenylated Rab7.47

Figure 5 shows the reaction pathway of Rab digeranylgeranylation by RGGT based on
structural, computational, and biochemical studies.4”4%-55 Rab and REP first form the
binary complex, after which a high-affinity ternary complex of Rab-REP-RGGT is
assembled via the interaction between the REP small domain and the RGGT a subunit. In
this way, REP brings the Rab C-terminus to the active site of RGGT. Because RGGT does
not bind its substrate peptide directly at the active site, the reaction is driven by
concentration, and any cysteine presented by REP at the active site can be prenylated. This
mechanism allows RGGT to modify more than 60 Rab proteins with unrelated C-terminal
sequences. After the transfer of the first prenyl group from GGPP, a new GGPP molecule
binds to the active site and displaces the substrate-conjugated isoprenoid. The mono-
prenylated substrate is then conjugated with the second isoprenoid, and the resulting double-
prenylated product is displaced by another new GGPP binding at the active site. The double-
prenylated Rab C-terminus associates with the REP lipid-binding pocket and induces the
conformational change in the REP small domain. Then REP dissociates from RGGT and
translocates into the cell membrane.

2.2. Protein Substrates of Prenyltransferases

Prenylation has been found only in eukaryatic cells, and most of the identified prenylated
proteins are eukaryotic proteins. However, certain proteins from pathogenic bacteria can be
prenylated by their hosts. Farnesylated proteins (substrates of FT) include Ras, Hdj2, nuclear
lamins, and Rheb proteins.>® GGT-1 catalyzes the geranylgeranylation of Rac, RhoA,
Cdc42, and the -y subunit of heterotrimeric G proteins.>’ Most Rab proteins, with the
exception of Rab8 and Rab13, are doubly geranylgeranylated by RGGT.%8:5% Some proteins,
such as K-Ras, N-Ras, and RhoB, are substrates of both FT and GGT-1.60.61 prenylation
Prediction Suite (http://mendel.imp.ac.at/PrePS/) is a Web-based tool that predicts whether a
protein will be prenylated.

The originally discovered farnesylated and geranylgeranylated proteins provided the
paradigm with which to identify protein substrates of prenylation. This paradigm is the C-
terminal CaaX motif. Later studies with short peptides and FT or GGT-1 showed that a
protein substrate is farnesylated by FT if the terminal “X” is serine, methionine, or
glutamine, whereas the substrate is geranylgeranylated by GGT-1 if X is leucine.62:63 | ater
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studies showed that this motif cannot fully describe the prenylated proteins or predict the
prenylated substrates of FT or GGT-1.56.64

The screening of a CaaL peptide library for FT substrates revealed that FT can farnesylate a
number of Caal peptides,54 which is contrary to the CaaX paradigm describing CaaL as the
canonical GGT-1 substrate sequence. Further screening with a large peptide library based on
the human proteome identified two classes of FT substrates,>6 one of which is farnesylated
under multiple-turnover conditions and the other under single-turnover conditions. After the
single-turnover substrate is modified by FT, the resulting product dissociates extremely
slowly from the enzyme. Multiple-turnover substrates typically have CaaX sequences with
phenylalanine, methionine, and glutamine at the X position, whereas the sequences of
single-turnover substrates are more diverse. Computational techniques have also been
applied to predict potential FT substrates®®:66 and identified a novel substrate class with
members that contain an acidic C-terminal residue (CaaD and CaaE).56 CVXX and CCXX
peptide libraries were used to further probe the substrate specificity of rat FT and found
several new sequences (e.g., CVIA, CVCS, CCIM, and CCVS) to be prenylation substrates.
67 These studies demonstrate that FT can farnesylate a wide range of peptide substrates.
Elucidating the physiological relevance of these findings will require additional research
efforts to validate the protein substrates corresponding to these peptide substrates in vivo.
Using a yeast-based screening system for FT, randomization of aaX residues in the CaaX
sequence motif showed that the second “a” strongly prefers small hydrophobic residues,
whereas the first a and X have relatively more relaxed specificities.58 This study further
expanded the list of prenylated substrates.

Bacterial effector proteins with C-terminal CaaX motifs were also found to be prenylated by
their host prenyltransferases. Sa/monella-induced filament A from Sal/monella typhimurium
is geranylgeranylated at the C-terminal CCFL by mammalian host GGT-1.5% The
farnesylation of Legionella pneumophila ankyrin B (ANKB) at the C-terminal of CVLC by
the host FT anchors ANKB to the Legionella-containing vacuole for the intravacuolar
proliferation of the bacterium.”® Additional effector proteins with CaaX motifs in L.
pneumaophila were later shown to be prenylated by the host to facilitate their targeting to host
organelle membranes in the process of intracellular infection.”%:72

Viral proteins containing the C-terminal CaaX motif can also be prenylated by host
prenyltransferases. One example of clinical relevance is the large antigen of the hepatitis
delta virus. The prenylation of the large antigen is key for virus assembly.”3:74 Most
important, prenylation inhibitors have been shown to depress viral particle formation,”® and
a phase 2A clinical trial showed that the prenylation inhibitor lonafarnib significantly
reduces hepatitis delta virus levels in humans.’®

2.3. Chemical Probes for Protein Prenylation

Since the discovery of prenylated proteins, various analogues of isoprenoid diphosphates
have been synthesized and used to study the structures and reaction mechanisms of
prenyltransferases and to visualize and identify prenylated proteins and prenyltransferases
(Figure 6). Isotopic probes of FPP and GGPP including [1-3H]FPP and [1-3H]GGPP were
originally used to validate the enzymatic activities of FT, GGT-1, and RGGT and elucidate
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their selectivity for peptide substrates. The photo-affinity probes [°H]-DATFP-FPP, [3H]-
DATFP-GPP, [32P]DATFP-GPP, and benzophenone-GPP have also been applied to label FT
enzymes.’’~"® Methods using isotopic isoprenoid probes are usually not very sensitive and
require long exposure time (days) for detection. Furthermore, these probes lack affinity tags
for the isolation and identification of target proteins, which limits their applications.
However, the isotopic native molecules [1-3H]FPP and [1-3H]GGPP have proved useful for
validating whether the prenylated proteins identified in proteomics studies using other
affinity probes are true substrates of FT, GGT-1, or RGGT. This confirmation is particularly
critical because some studies have suggested that various farnesyl diphosphate analogues
may differ in terms of protein substrate specificity and reaction rates with FT.80

Fluorine,81 vinyl,82 cyclopropyl, and ter-butyl groups®3 have been incorporated into
isoprenoid diphosphate analogues to study the farnesylation mechanism. As an
immunogenic probe, an aniline-tagged isoprenoid diphosphate was shown to label several
FT protein substrates in mammalian cells, which could be detected by the specific antibody
raised against the aniline moiety.84 The corresponding aniline-tagged isoprenol, which is
converted into the diphosphate in cells,8° was used to label cellular proteins metabolically
before antibody-based detection.86

Fluorescent derivatives of isoprenoid diphosphate, such as didehydrogeranylgeranyl (AAGG)
diphosphate,87 7-nitro-benzo[1,2,5]oxadiazol-4-ylamino (NBD) FPP,88 and A-
methylanthraniloyl isoprenoid diphosphate,8 have been designed as efficient isoprenoid
donors for prenyltransferases and used in high-throughput fluorometric assays to screen
potential inhibitors of in vivo protein trafficking. To facilitate the labeling and enrichment of
prenylated proteins from biological samples, biotin-functionalized geranyl pyrophosphate
has been applied to identify and analyze prenylated mammalian proteins with engineered
prenyltransferases.% Such probes can help elucidate the mechanisms through which protein
prenylation is regulated and the therapeutic effects of various agents. Although fluorescent
and biotin probes are convenient for in-gel detection, high-throughput assays, or affinity
purification, their relative large and bulky conjugated functional groups may interfere with
recognition by prenyltransferases and perturb signaling pathways.

With click chemistry now being widely applied in biological systems, bioorthogonal
reporters of protein prenylation have been developed via the incorporation of small alkyne or
azide groups into isoprenoid diphosphates (Figure 6).91-95 These probes can be efficiently
incorporated into prenylated proteins in vitro and are easily conjugated to various functional
tags for fluorescence detection or affinity purification. Furthermore, alkyne- or azide-labeled
isoprenols are cell-permeable and can be used to label prenylated proteins metabolically in
live cells (Figure 6).91:95-100 Stydies using these probes indicated that the substrate
specificity of prenyltransferases may depend on the bioorthogonal probes used, and alkynyl-
isoprenoid probes are generally more sensitive than azido-isoprenoid probes.%7 Studies of
protein prenylation have historically focused on the Ras superfamily of G proteins.
Proteomics studies using clickable probes have led to the identification of other proteins
modified by prenylation, such as lamin B1, chaperonin DNAJAZ2, and zinc finger antiviral
protein (ZAP).91.98.99 Recently, both alkyne-tagged isoprenols and isoprenoid diphosphates
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have been used to identify prenylated proteins in the malaria parasite Plasmodium
falciparum 101,102

Notably, cross-reactivity is observed when prenyl probes are used to identify prenylomes in
cells. For example, known geranylgeranylated protein Cdc42 was identified by using an FPP
probe,®1 and alkynyl-farnesol is utilized by all three cellular prenyltransferases.®” However,
such cross-reactivity may also be physiologically relevant, as RhoB is reportedly
farnesylated and geranylgeranylated efficiently by GGT-1.26

2.4. Functions of Prenylation

2.4.1. Membrane Association—The prenyl group is hydrophobic and thus recruits
soluble proteins to cellular membranes. In this mechanism, it is important to distinguish the
plasma membrane from endomembranes (membranes of intracellular organelles such as the
ER, Golgi, endosomes, lysosomes, and nucleus). Ras proteins were found to associate with
the plasma membrane in a prenylation-dependent manner.2 Mutation of the prenylated
cysteine residues or the blocking of isoprenoid biosynthesis abolished the prenylation of Ras
proteins and their plasma membrane association. However, later studies suggested that
prenylation is mainly responsible for targeting proteins to endomembranes.193 Specifically,
the CaaX prenylation targets proteins to the ER and Golgi.103

The endomembrane targeting of prenylation explains why many prenylated proteins with
CaaX motifs require additional membrane targeting motifs for plasma membrane
localization, including cysteine palmitoylation (which provides greater hydrophobic affinity
to the membranes) and a polybasic domain (which interacts electrostatically with negatively
charged phospholipid head groups on the inner leaflet of plasma membranes; Figure 7).
These additional membrane-targeting motifs aid the translocation of these proteins from
endomembranes to the plasma membrane. For example, H-Ras and N-Ras undergo both
cysteine prenylation and cysteine palmitoylation at the C-terminus. Although 90% of wild-
type (WT) H-Ras is associated with the plasma membrane, only 8% of a non-palmitoylated
H-Ras mutant was found to do 50,104 which indicates that both modifications are required
for plasma membrane targeting. N-Ras has only one palmitoylated cysteine, but H-Ras
contains two. Compared with the single cysteine palmitoylation on N-Ras, the double-
cysteine palmitoylation on H-Ras reportedly promotes trans-Golgi localization.105

A similar model applies in the targeting of farnesylated proteins to other membrane
organelles: farnesylation targets proteins to endomembranes, and other signals help target
proteins to specific membrane organelles. For example, prelamin A requires both a C-
terminal CSIM farnesylation motif and a nuclear localization signal to accumulate in the
nuclear envelope for later endoproteolysis to generate mature lamin A.108 Another lamin
protein, lamin B, also requires farnesylation to assemble into lamina and associate with the
nuclear membrane during mitosis.107 Unlike lamin A, lamin B does not undergo
endoproteolysis, and thus, mature lamin B retains the farnesylation. Lamin B1 farnesylation,
but not lamin B2 farnesylation, is key for brain development and the formation of stable
nuclear lamina in mice; a nonfarnesylated lamin B1 mutation led to death soon after birth.
108 The farnesylation of the ZAP long isoform has been demonstrated to regulate the
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localization of the isoform to the lysosomes and late endosomes.%8 Presumably, another
signal is needed to target ZAP specifically to these organelles.

The process of protein prenylation with a CaaX motif typically requires three steps:
prenylation, proteolysis, and carboxylmethylation. In vitro studies of K-Ras showed that
only 20% of K-Ras is associated with membranes when K-Ras undergoes farnesylation
without proteolysis and carboxylmethylation, whereas up to 80% of K-Ras is associated
with membranes after the methylation step is completed.199 This result suggests that
carboxylmethylation greatly enhances the membrane association of the farnesylated protein
owing to the increase in hydrophobicity and the removal of the negative charge on the
carboxylate group. Further studies demonstrated that carboxylmethylation has a much
smaller effect on geranylgeranylated proteins.119111 Notably, the membrane localization of
Ras proteins is complicated and incompletely understood. For example, the small molecule
fendiline reportedly promotes the intracellular membrane localization of K-Ras, but the
mechanism remains unknown.112

Some Ras proteins have C-terminal CCaX motifs, including a brain-specific splice variant of
Cdc42 (CCIF), RalA (CCIL), and RalB (CCLL). A recent study demonstrated that these
proteins undergo prenylation on the first cysteine and palmitoylation on the second cysteine
for stable anchoring in the plasma membrane (Figure 7). This reaction differs from and
likely competes with the classical CaaX processing in which a sole prenylation is followed
by proteolysis and carboxylmethylation.113

One of the potential advantages of having multiple membrane targeting motifs for
membrane anchoring is the capacity for easy regulation of membrane associations. For
example, K-Ras4B has a polybasic region containing six lysine residues upstream of the
prenylation site (Figure 7). Alterations to this polybasic region significantly decrease the
plasma membrane association of K-Ras4B.104.114 phosphorylation on Ser181 within the
region changes the electrostatic status of the protein by partially neutralizing the positive
charge and thus destabilizes the electrostatic interaction between K-Ras4B and the plasma
membrane. This change promotes the dissociation of K-Ras4B from the plasma membrane.
115 1n vitro studies using K-Ras4B and nanodiscs confirmed the effect of Ser181
phosphorylation and further demonstrated that farnesylated K-Ras4B prefers disordered
lipid microdomains.116

Most Rab proteins have C-terminal CC or CXC motifs for digeranylgeranylation (Figure 7),
which is more hydrophobic. In terms of membrane targeting, digeranylgeranylation seems
only to target proteins to endomembranes, as most Rab proteins are targeted to specific
intracellular membrane organelles, not the plasma membrane. However, the effects of
digeranylgeranylation can differ from those of single geranylgeranylation. When the CC or
CXC motif is replaced with a mono cysteine motif, Rab5a and Rab27a are mistargeted to the
ER instead of to endosomes and melanosomes, respectively.11? Rab proteins with a CXC
motif undergo terminal carboxylmethylation on prenylcysteine, whereas those with a CC
motif do not.118 Although this methylation has no effect on the subcellular localization of
Rab proteins,119 it might indicate that Rab proteins with CXC motifs need to pass through
the ER for methylation by ICMT, whereas Rab proteins with CC motifs can be directly
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transferred to the target membrane without interacting with the ER. The localization of
digeranylgeranylated Rab proteins to specific membrane organelles also requires an
additional targeting signal in their protein sequences.196:120 |nitially, the hypervariable C-
terminal domains (HVDs) of Rab proteins'20 were thought to help determine the appropriate
subcellular localization of the proteins, but later experiments suggested that the situation is
more complicated. Studies using semisynthetic Rab proteins (Rabl, Rab5, Rab7, Rab35) in
which the HVDs were replaced with a polyethylene glycol linker have demonstrated that the
HVDs of Rab1 and Rab5 are not required for Golgi and early endosome localization,
respectively.121 By contrast, the HVD of Rab7 is key for late endosome and lysosome
localization because this domain interacts with Rab-interacting lysosomal protein, which is a
Rab7 effector. The HVD of Rab35 is also central to its plasma membrane localization owing
to the presence of a polybasic sequence.12! Another study showed that interactions between
Rab1A/Rab5A/Rab8A and their corresponding guanine nucleotide exchange factors (GEFs)
play important roles in targeting the proteins to the correct intracellular membranes.
Therefore, the correct targeting of Rab proteins is determined by prenylation; interactions
with GEFs, effectors, and possibly other proteins; and negative charges on the plasma
membrane.

2.4.2. Protein-Protein Interactions—Many studies of the Ras superfamily have
demonstrated that prenylation is critical for protein-protein interactions. The farnesylation of
yeast Ras2 increases the binding affinity to adenylyl cyclase 100-fold; however, the
subsequent palmitoylation of Ras2 has little effect despite its importance for Ras2 membrane
targeting.122 A recent study also showed that human Spindly, a mitotic checkpoint protein,
requires farnesylation to target kinetochores via protein—protein interactions.123

Guanine nucleotides bound to Ras proteins are controlled by GEFs. One GEF, human SOS
(hSOS1), forms a complex with farnesylated K-Ras4B, but not with unmodified K-Ras4B,
to regulate the binding ofguanine nucleotides and response to growth factor stimulation.124
The polybasic domain of K-Ras4B is not required for the interaction with hSOS1. Other
studies have emphasized that the prenylation of N-Ras is critical for the binding of N-Ras to
both the active and allosteric sites of hSOS1.125 Interestingly, oncogenic K-Ras reportedly
binds to the allosteric site of hNSOS1, which promotes the activation of WT H-Ras and N-
Ras.126 The farnesylation of Cdc42 is also central to the activation of Cdc42 by its GEF,
Dock7.127

In vitro studies have shown that the geranylgeranylation of RhoA is important for
interactions with the RhoA guanosine diphosphate (GDP) dissociation inhibitor (GDI) and
GDP dissociation stimulator (GDS) but not GTPase activating proteins (GAPs).128
Geranylgeranylation is also required for the interaction between RhoA and 1Q-motif-
containing GTPase activating protein IQGAPL1 to regulate RhoA functions in breast cancer
cell proliferation and migration.12% IQGAP1 is likely an effector protein of RhoA because it
functions downstream of RhoA 129

A short splice variant of small guanosine triphosphate (GTP)-binding protein guanine
nucleotide dissociation stimulator, SmgGDS-558, selectively binds prenylated Rap1A to
facilitate the trafficking of Rap1A to the plasma membrane, 130 whereas the long splice
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variant SmgGDS-607 associates with non-prenylated Rap1A to regulate RaplA entry into
the prenylation pathway. This provides a regulatory mechanism for the prenylation of small
GTPases.

In all the cases described above, it is unclear whether prenylation is involved in the protein-
protein interaction directly or via indirect mechanisms, such as those affecting subcellular
localization. By contrast, prenylation is directly involved in the protein-protein interactions
described below for GDI proteins. RabGDls specifically bind geranylgeranylated Rab
proteins in their GDP-bound forms (but not their GTP-bound forms) to retrieve them from
the target membranes after vesicular transport.13 This activity is central to the cellular
recycling of Rab proteins for normal functioning. Similarly, RhoGDIs bind to and stabilize
Rho proteins to regulate their cellular homeostasis.132

The structure of the Cdc42-RhoGDI complex demonstrates that a hydrophobic pocket exists
between the two opposing B-sheets of the Ig-like domain of RhoGDI. This pocket binds the
geranylgeranyl moiety of Cdc42 (Figure 8A),133 which changes the conformation of an a.-
helix (Rho insert) in Cdc42.134 The binding by RhoGDI also facilitates the extraction of
Cdc42 from the cellular membrane. Additional structures of GDI complexed with Ras
proteins further support the functional role of prenylation in the interaction between GDI
and Ras proteins (Figure 8B and 8C).135-138 A GDI-like solubilizing factor, PDE66, can
bind prenylated retinal PDES catalytic subunits,23° rhodopsin kinases, 140 prostacyclin
receptor,141 and Ras proteins.142 The C-terminal farnesyl moiety of Ras binds to a
hydrophobic pocket in the Ig-like domain of PDE6S, as demonstrated by crystal structures
of the PDE66-Rheb complex (Figure 8D)143 and KRas4b—PDE66 complex.144 Notably,
PDEB65 lacks the regulatory arm required to interact with the switch regions of Rheb or Ras,
which differs from the association of RhoGDI with Rho (compare Figure 8D to Figure 8A—
8C). By binding to and solubilizing prenylated Ras proteins, PDE66 may enhance the
diffusion of these proteins into the cytoplasm and facilitate more effective trapping of both
depalmitoylated Ras proteins at the Golgi and polycationic Ras proteins at the plasma
membrane.144 Similarly, by binding to farnesylated or geranylgeranylated INPP5E, PDE66
mediates the sorting of INPP5E into cilium.14°

By contrast, the RabGDIs have a completely different fold from that of the RhoGDls.
RabGDlIs have more than 440 amino acids and are larger than RhoGDIs, which have
approximately 200 amino acids. No significant sequence homology exists between RabGDIs
and RhoGDls. In the structures of the prenylated YPT1-RabGDI complex and the doubly
prenylated YPT1-RabGDI complex (Figure 8E and 8F), the Rab-binding platform and the
C-terminal binding region in domain | of RabGDI interact with the Switch I/l regions and
C-terminus of YPT1. Geranylgeranyl moieties are buried in the hydrophobic pocket formed
by the a-helices of RabGDI domain 1.

Quantitative analysis of the interaction between prenylated RhoA and RhoGDI has revealed
that the extraction of Rho GTPase from membranes by RhoGDI is a thermodynamically
favored passive process modulated by a series of progressively tighter complexes (Figure 9).
135 RhoGDlI initially binds RhoA to form a low-affinity complex. Then, the positively
charged C-terminus of RhoA binds to the negatively charged residues at the C-terminus of
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RhoGDI, increasing the complex affinity. This complexation positions the C-terminus of
RhoGDI near the membrane-buried geranylgeranyl moiety of RhoA and opens the lipid-
binding pocket at the C-terminus of RhoGDI. Next, the geranylgeranyl moiety is transferred
from the membrane to the lipid-binding pocket of RhoGDI, which forms a high-affinity
complex that spontaneously dissociates from the membrane. RabGDI uses a similar
mechanism to extract Rab proteins from membranes.146

2.5. Prenyltransferase Inhibitors

Because the oncogenic form of Ras requires farnesylation for activity, the inhibition of the
farnesylation process may be a strategy to treat cancer. Thus, FT inhibitors have attracted
attention,247” and many FT inhibitors have been reported (Figure 10). There are four types of
FT inhibitors: FPP analogues, CaaX peptides analogues, bisubstrate analogues, and non-
peptide inhibitors,148-152104 104 104103,147-151 Certain natural products have also been
identified as FT inhibitors.

Although FT inhibitors generally have low toxicity, they lack efficacy in clinical trials,1°3
perhaps because GGT-1 compensates for the inhibited FT and carries out the
geranylgeranylation of Ras proteins, thereby allowing the proliferation of cancer cells.14
Geranylgeranylated RalA transforms cells in several cancers,15° and geranylgeranylated
RhoC is essential for cancer metastasis.1>6:157 These findings suggest that GGT-1 is a
promising target for cancer treatment. Many specific GGT-1 inhibitors have been identified
and show therapeutic effects (Figure 11).198-166 Dyal inhibitors for FT and GGT-1167-169
and combination treatments using FT inhibitors with GGT-1 inhibitors or other
agents!3:170-174 have also been reported.

RGGT is overexpressed in several tumors and has an anti-apoptotic effect in some cancer
cell lines.17® Studies have also demonstrated that RGGT is involved in tumor survival.
Rab25, a substrate of RGGT, determines the aggressiveness of epithelial cancers.178 Other
Rab proteins have elevated expression in various human cancers.1’’ However, only a few

specific RGGT inhibitors (Figure 11) are available and they typically have low affinities.
160,178-185

Another application of FT inhibitors is the treatment of parasitic diseases, including malaria
(caused by Plasmodium falciparum),188-1%0 African sleeping sickness (caused by
Trypanosoma bruceil), 191192 Chagas disease (caused by 7rypanosoma cruzi),193-19 and
leishmaniasis (caused by Leishmania mexicana).1® The parasitic vectors of these diseases
are hypothesized to lack GGT-1; therefore, FT inhibitors are sufficient to inhibit their
growth. Antifungall?8-202 and antiviral’>203-207 activities of FT inhibitors and GGT-1
inhibitors have also been explored.

Among the most promising clinical applications of FT inhibitors are the treatment of
Hutchinson-Gilford progeria syndrome (HGPS) and hepatitis D. HGPS is a rare premature
aging disease caused by mutations in the LMNA gene that encodes prelamin A and prelamin
C.208 As described in section 2.4a, prelamin A is farnesylated and targeted to the nucleus,
where it is proteolyzed to remove the C-terminal farnesylated peptide. The mutations that
cause HGPS abolish the proteolysis step, which leads to premature aging. In one study,
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lonafarnib treatment increased body weight and lessened arterial stiffness in 25 children with
HGPS.209 |n another study, lonafarnib treatment increased mean survival by 1.6 years.210
Combining lonafarnib with pravastatin and zoledronic acid increased bone mineral density
in patients with HGPS but offered no benefits beyond those of lonafarnib treatment alone.?11

Hepatitis D is caused by the hepatitis delta virus, and no satisfactory treatment currently
exists. As mentioned in section 2.2, the prenylation of the hepatitis delta virus large antigen
is key for virus assembly,”3:74 and prenylation inhibitors have been shown to inhibit virus
particle formation.” A proof of concept, randomized, double-blind, placebo-controlled
phase 2A trial showed that lonafarnib significantly reduces hepatitis D viral load.”® Another
trial to test lonafarnib in combination with ritonavir or PEGylated interferon a. (PEG =
polyethylene glycol) is ongoing (NCT02430194).

3. N-Terminal Glycine Myristoylation

N-glycine myristoylation refers to the co- or post-translational attachment of a saturated 14-
carbon fatty acyl group, myristoyl, to the N-terminal glycine of proteins via an amide bond
(Figure 12). The consensus sequence required for the co-translational modification after
removal of the first methionine residue by methionine aminopeptidase is Gly-XXX-Ser/Thr/
Cys.212 N-Glycine myristoylation has also been reported as a post-translational modification
for certain pro-apoptotic proteins.213 The cleavage of these proteins by caspases exposes an
internal glycine for myristoylation (Figure 12). N-Glycine myristoylation plays essential
roles in the targeting of proteins to desired subcellular localizations by mediating protein-
protein and protein-membrane interactions. Owing to the diversity of substrate proteins
modified, N-glycine myristoylation is critical for signal transduction, apoptosis, and virus-,
protozoa-, and fungi-induced pathological processes.?12:214 Therefore, this modification is a
promising target for the development of anti-parasitic and antifungal drugs.?1°

3.1. N-Myristoyltransferase

N-Glycine myristoylation is catalyzed by myristoyl-CoA: protein N-myristoyltransferase
(NMT), which belongs to the GCN5-related N-acetyltransferase superfamily.216 NMT has
been characterized extensively in many organisms, including mammals, insects, plants,
parasites, yeast, and fungi. Saccharomyces cerevisiae and Candida albicans contain a single
NMT, whereas Homo sapiens has two NMTs (NMT1 and NMT2).217 The X-ray crystal
structures of S. cerevisiae NMT show that NMT is folded into a saddle-shaped B-sheet
flanked by several a-helices (Figure 13A). Within this pseudo-two-fold symmetry, the N-
and C-terminal halves of NMT contribute to the myristoyl-CoA and protein substrate
binding sites, respectively.218:219

Kinetic and structural evidence suggests that NMT catalysis follows a sequential ordered Bi-
Bi mechanism.220 The myristoyl-CoA initially binds the apo-NMT and induces a
conformational change for peptide binding. After the formation of a ternary NMT -
myristoyl-CoA - peptide complex, acyl transfer occurs via the attack of the N-terminal
glycine at the thioester bond of myristoyl-CoA. Free CoA is then released, followed by the
myristoylated peptide product.220 Several structures of the ternary complex have been
reported??! and highlight several notable features. First, an oxyanion hole is formed by the
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main-chain amide bonds of Phe170 and Leul71 (Figure 13B). Second, the bent
conformation around the C5 and C6 of myristoyl-CoA positions the end of the acyl chain in
a deep pocket of the enzyme (Figure 13C). These features may provide the measurements of
acyl chain length that result in the specificity toward myristoyl-CoA.218 The highly abundant
palmitoyl-CoA is also capable of binding NMT; however, the catalytic efficiency is much
lower than that of myristoyl-CoA.222 Finally, the structures provide an explanation for the
peptide sequence selectivity of NMTs (Figure 13D). The amino group of the N-terminal
glycine must rotate to the left to attack the carbonyl of myristoyl-CoA. A larger side chain
group (if substituting glycine with other amino acids) may impede the rotation and thus the
myristoylation.221 The serine side chain at position 5 interacts with a small hydrophilic
pocket, which explains the preference for serine/threonine/cysteine at this position. By
contrast, positions 2—4 are either solvent-exposed or accommodated by large pockets, which
explains the lack of preference at these positions.

Several studies have shown that NMT is essential for the survival of mammals,223 fungi,
224,225 fljes 226 and parasites.22” In humans, NMT1 and NMT?2 share approximately 76%
sequence identity and have partially overlapping biological functions and substrate
selectivity.217:223 S. cerevisiae and human NMTs are predominantly localized in the cytosol.
228,229 The N-terminal region of human NMTs, which consists of polybasic amino acid
sequences (K-box), is reported to be crucial for targeting to the ribosomes, where co-
translational N-myristoylation modification occurs.230.231

NMT1, but not NMT2, is also critical for cell proliferation, whereas cell survival is likely
regulated by both NMT1 and NMT2.223 NMT1 is essential for embryonic development and
proper monocytic differentiation in mice,232:233 jn which thymus-specific knockouts of
NMT1 and NMT2 have been generated. NMT1 knockout significantly decreases T-cell
numbers and T-cell receptor signaling, whereas NMT2 knockout has only minor effects.234
T-cell apoptosis increases most dramatically when both NMT1 and NMT2 are knocked out,
but compared with NMT1 knockout, the knockout of NMT2 seems to have a stronger effect
on apoptosis.23* An increase in the activity of both NMT1 and NMT2 has been observed in
colonic and brain tumors.235

NMTSs have been demonstrated to be substrates for caspases during apoptosis.236 The
caspase cleavage of NMTs potentially regulates the localization of NMTs. The removal of a
lysine cluster from NMT1 by caspase-3 or caspase-8 promotes the translocation of NMT1
from the ribosomal and membrane fractions to the cytosol. However, the caspase-3 cleavage
of NMT?2 leads to the relocalization NMT2 from the cytosol to the membrane fraction.236
The reasons for NMT-specific localization change during apoptosis require further
investigation.

3.2. Proteins Modified by N-Glycine Myristoylation

Experimentally identified N-glycine myristoylated proteins can be classified into various
functional classes such as signaling proteins (GTP-binding proteins, Ca2*-binding EF-hand
proteins, and protein kinases), apoptotic proteins, and structural viral proteins. The modified
mammalian proteins are summarized in Table 1.237
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3.3. Functions of Glycine Myristoylation

3.3.1. Cellular Localization and Membrane Attachment—N-Glycine myristoylation
mediates the targeting of modified proteins to various membranous locations (e.g., the
plasma membrane, ER, Golgi complex, mitochondrial membranes, and nuclear envelope).
However, glycine myristoylation alone is insufficient for membrane targeting, and another
signal is typically required. This signal includes other proximate lipid modifications (e.g.,
cysteine palmitoylation or cysteine prenylation) and the presence of positively charged
amino acid clusters.237 This requirement allows myristoylation to act as a “myristoyl
switch” (Figure 14), in which the membrane association of myristoylated proteins is
regulated by phosphorylation or ligands such as GTP and Ca2*2%7 For example, the
phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and Src
stimulates membrane dissociation presumably by decreasing electrostatic interactions
between the protein and the phospholipid membrane.2% On the contrary, GTP and Ca2*
have been shown to promote the membrane binding of myristoylated ADP ribosylation
factors and recoverin, respectively.229-301 The binding of these ligands can induce
conformational changes within proteins and results in the exposure of the N-myristoy!|
moiety for membrane association.297-300

Proteolysis can also trigger a myristoyl switch.3%2 Human immunodeficiency virus (HIV)-1
Gag is initially synthesized in a 55 kDa precursor form (Pr55Gag), and the exposed
myristoyl group promotes membrane binding. Upon cleavage by HIV-1 protease, the
myristoyl moiety is sequestered and Gag is released from the membrane. The Gag myristoyl
switch may not be induced by conformational changes as observed in other myristoyl
switches, however.39 Instead, the synergistic interaction between Gag subdomains promotes
the exposure of the myristoyl group and regulates membrane binding while protease
cleavage of Gag decreases the cooperative effect and leads to the dissociation of Gag.

N-Glycine myristoylation also markedly increases the stability of hisactophilin, a
membrane-binding protein in Dictyostelium discoideum.3%* The modification also raises the
protein dynamic (the rate of global protein folding and unfolding), which might facilitate
conformational changes or myristoyl switching in hisactophilin.304

N-Glycine myristoylation functions not simply in membrane anchoring but also in the
specific localization of certain transmembrane proteins. For example, NADH-cytochrome b5
reductase (b5R), an integral membrane protein, is dually targeted to the outer mitochondrial
membrane and ER. The myristoylation of b5R is indispensable for targeting to the outer
mitochondrial membrane, whereas a non-myristoylated mutant is localized to the ER.290
Notably, further study demonstrated that the myristoylation of b5R interferes with the
recognition of the nascent peptide by the signal recognition particle, thereby preventing ER
targeting.30°

Another integral membrane protein that requires glycine myristoylation for localization is
dihydroceramide Delta4-desaturase 1, an enzyme in the last step of de novo ceramide
biosynthesis. In COS-7 cells, only the myristoyled form of this enzyme localizes to the
mitochondria, which results in an increase in ceramide production. The non-myristoylatable
mutant localizes primarily to the ER.288

Chem Rev. Author manuscript; available in PMC 2019 February 14.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jiang et al.

Page 17

The role of N-glycine myristoylation in controlling the cellular distribution of proteins has
also been observed in yeast.2%5 Kimura and colleagues demonstrated that the N-glycine
myristoylation of the Rpt2 subunit regulates the nuclear localization of the 26S proteasome,
and the non-myristoylatable mutant of Rpt2 shifted the 26S proteasome into the cytoplasm
without affecting its molecular assembly and peptidase activity.

3.3.2. Regulation of the Membrane Localization of Caspase Substrates in
Apoptosis—The N-glycine myristoylation of some proteins occurs post-translationally.
BID, a pro-apoptotic protein, was the first protein reported to undergo post-translational
myristoylation.?13 BID is cleaved by caspase-8 into a 7 kDa N-terminal fragment and a 15
kDa C-terminal fragment that remain associated as a complex. The exposed N-glycine of the
BID C-terminal fragment is myristoylated to promote mitochondrial outer membrane
targeting, thereby activating cytochrome C release and apoptosis, respectively.

Another caspase-cleaved protein, p21-activated kinase 2 (PAK2), is also post-translationally
myristoylated.278 The myristoylation and the polybasic region are sufficient to relocalize the
C-terminal of PAK2 (ctPAK2) from the cytosol to the plasma membrane and membrane
ruffles. The overexpression of ctPAK2 has been shown to induce cell death.3% To
investigate the role of myristoylation in apoptosis, the percentage of cell death was
compared between myristoylatable and non-myristoylatable ctPAK2, the latter of which
impaired the apoptotic effect. The non-myristoylatable mutant less efficiently activated Jun
N-terminal kinase phosphorylation and signaling, a pathway known to be involved in
apoptosis. To date, several caspase-cleaved proteins that undergo N-glycine myristoylation
have been identified,238:287.307 and these findings emphasize the biological function of N-
glycine myristoylation in the regulation of cell death.

3.3.3. Regulation of Protein-Protein Interaction—In addition to mediating protein
localization and membrane targeting, N-glycine myristoylation plays a role in protein-
protein interaction. Some of the examples described below are accompanied by structural
evidence of this role. In examples that lack structural support, the effects on protein-protein
interaction may be indirect.

CAP-23/NAP-22 is a brain-specific protein kinase C substrate involved in synaptic plasticity.
The phosphorylation of CAP-23/NAP-22 by protein kinase C is regulated by calmodulin
binding in a Ca2*-dependent manner. The myristoyl group and at least nine basic amino
acids at the N-terminus are necessary for efficient interaction with calmodulin.292 A crystal
structure of calmodulin in complex with the myristoylated CAP-23/NAP-22 N-terminal
peptide shows that the myristoyl group is directly involved in calmodulin binding.3% The
interaction between myristoylated alanine-rich C kinase substrate and calmodulin is also
dependent on N-terminal myristoylation.3%° However, the interaction between calmodulin
and the HIV-1 Gag protein seems to occur independent of N-terminal myristoylation.310
Furthermore, the binding of calmodulin is thought to expose the N-terminal myristoyl group
on Gag for membrane interaction.319 Notably, calmodulin also binds to farnesylated K-
Ras4b in a nucleotide-independent manner. This interaction can occur even in the presence
of negatively charged membranes, which suggests that calmodulin is able to extract K-Ras4b
from membranes.31! By contrast, the PDE66—K-Ras4b interaction is less stable in the
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presence of negatively charged membranes, and thus it is unlikely that PDE66 extracts K-
Ras4b from membranes.312

Compared with the myristoylated form of the G, protein, the non-myristoylated form
shows decreased affinity for By subunits.313 The y subunit of this protein is prenylated, and
thus the increased binding affinity between a and fy may be due to the targeting of both a
and py to the membrane.

A role for N-glycine myristoylation in transcription has also been reported.2%3 The
interaction of myristoylated CAP-23/NAP-22 (also called brain acid soluble protein 1 or
BASP1) with PIP-2 is essential for the transcriptional corepression activity of Wilms’ tumor
1 (WTL), a transcriptional regulator involved in cell development. BASP1 binds to WT1 and
mediates its transcriptional repression function. Notably, compared with WT BASP1, non-
myristoylatable BASP1 shows significantly decreased transcriptional repression. The exact
function of BASP1 myristoylation is unknown. However, non-myristoylatable BASP1 fails
to recruit histone deacetylase (HDAC) 1 to the promoters of WT1 target genes and exhibits
increased histone H3K9 acetylation,2%3 which suggests that myristoylation may regulate
protein-protein interaction.

N-glycine myristoylation also regulates the Golgi membrane tethering process mediated by
Golgi reassembly stacking protein (GRASP), which is required for the ribbon-like network
of Golgi. GRASP undergoes myristoylation, and this modification is key to maintaining the
structure of the Golgi network. The myristoylation of GRASP is thought to affect GRASP
orientation and thus promote the trans interaction between GRASP proteins (a GRASP
protein in one Golgi membrane interacting with a GRASP protein in a neighboring Golgi
membrane) and prevent the cis interaction in the same membrane (Figure 15).314315 A
similar situation may explain the function of the myristoylation of Lunapark, a double-
spanning integral membrane protein involved in ER network formation. The myristoylation
of Lunapark is not required for specific membrane localization. Instead, the modification
changes ER morphology by inducing polygonal tubular ER formation when the protein is
overexpressed. This change is not observed for a non-myristoylated Lunapark mutant.239

N-Glycine myristoylation has also been shown to mediate protein sorting into cilium. This
process is mediated by two proteins, Uncoordinated 119a (Unc119a) and Unc119b.316 These
proteins are homologous to PDEG6, which binds to prenylated proteins (see section 2.4b).
Notably, Unc119a and Unc119b recognize only myristoylated proteins, whereas PDE6&
recognizes only prenylated proteins.317 The structures of Unc119a and Unc119b in complex
with the acylated peptides revealed that the recognition of myristoylated peptides by these
proteins resembles that of prenylated peptides by PDE66.318:319 Notably, ADP ribosylation
factor-like 2 and 3 release the bound prenylated and myristoylated proteins from PDE66 and
Unc119a and Unc119b, respectively, in a GTP-dependent manner.316:319

3.3.4. Regulation of Protein Stability—N-Glycine myristoylated calcineurin B
homologous protein isoform 3 (CHP3) is a Ca2* binding protein that plays a role in
intracellular pH homeostasis by interacting with Na*/H* exchanger (NHE1). CHP3
enhances the expression and stability of NHEL at the cell surface through an unknown
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mechanism. N-myristoylation and the Ca2* binding domain of CHP3 are not essential for
interaction with NHE1.295 However, Gly2Ala and Ca2* binding site CHP3 mutants
decreased NHE1 half-life and exchange activity, which suggests that they are required for
the stabilization of NHE1 at the plasma membrane and enhancement of Na*/H* exchanger
activity. Nevertheless, the underlying mechanism of this stabilizing effect by N-glycine
myristoylation remains unknown and requires further investigation.2%°

3.3.5. Regulation of Enzymatic Activity—The best understood example of the
regulation of enzymatic activity by myristoylation is the myristoyl switch that negatively
regulates c-Abl tyrosine kinase activity. c-Abl is a member of the Src family of protein
tyrosine kinases, which typically exist in an inactive state under resting conditions until
activated through signaling.320 In addition to having a kinase domain, c-Src also has an SH2
and an SH3 domain. The SH2 domain binds to a phosphorylated tyrosine residue (pTyr527)
and maintains c-Src in an inactive conformation. The SH3 domain binds a proline-rich
sequence of c-Src and further locks c-Src in the inactive conformation. The activation of c-
Src requires the binding of the SH2 domain to other phosphotyrosine residues, which
unlocks the inactive conformation.320

The c-Abl protein also has an SH2 and an SH3 domain N-terminal to the kinase domain.
However, there is no pTyr corresponding to pTyr527 in c-Src. Thus, the mechanism through
which c-Abl is maintained in an inactivate state is interesting: myristoylation of the N-
terminal glycine plays a central role in maintaining this inactive form. Compared with the
myristoylated form, unmyristoylated c-Abl is much more active.321 An X-ray crystal
structure of a truncated c-Abl (containing the SH2, SH3, and kinase domains) with and
without bound myristoyl peptide provides key insights on the regulation of c-Abl activity by
myristoylation (Figure 16).322 The myristoyl group binds to a hydrophobic pocket in the C-
lobe of the kinase domain, which triggers a conformational change in the C-terminal of the
kinase domain. In the structure of c-Abl without bound myristoyl, an extended a-helix (al,
colored grey in Figure 16) prevents the binding of the SH2 domain to the kinase domain. In
the myristoyl-bound state, the al is separated into two short a-helices, al (magenta in
Figure 16) and al” (blue in Figure 16). The al” helix makes an abrupt turn to bind to the
myristoyl group. These conformational changes lead to the docking of the SH2 domain onto
the kinase domain and subsequent autoinhibition.322

The Tyr kinase c-Src itself is also myristoylated. However, different from the regulation of c-
Abl, myristoylation positively regulates c-Src kinase activity.214 The enhanced kinase
activity of N-glycine-myristoylated c-Src is presumably due to a membrane attachment that
orients c-Src favorably for kinase activity. The myristoylation of c-Src can also affect protein
stability by regulating membrane association and facilitating ubiquitination and degradation
mediated by the E3 ligase Cbl.214

3.4. Tools for the Study of Glycine Myristoylation

3.4.1. N-Myristoylation Predictive Tools—N-Glycine myristoylation predictive tools
are bioinformatics methods that can predict potentially N-glycine myristoylated proteins.
Three such tools are now available. The MYR Predictor (http://mendel.imp.univie.ac.at/
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myristate/) was first developed by Maurer-Stroh and co-workers.323 Based on known
substrate sequences, crystal structures, and biochemical data of NMT, the motif for N-
terminal myristoylation is 17 amino acids identified in three regions that (1) fit into the
binding pocket, (2) interact with the NMT surface, and (3) form a hydrophilic linker. The
second predictive tool, the Myristoylator (http://web.expasy.org/myristoylator/), predicts the
N-terminal myristoylation of targets with neural network models trained to distinguish
myristoylated and non-myristoylated proteins.324 The Myristoylator and MYR Predictor
have similar error rates. Another software program, Terminator3 (http://www.isv.cnrs-gif.fr/
terminator3/index.html), makes predictions based on pattern scanning.32> These predictive
software tools require improvement in terms of sensitivity and accuracy.326

3.4.2. Chemical Tools for Detecting N-Myristoylation—Several approaches have
been developed to detect N-glycine myristoylation in vivo and in vitro. The classic method
uses radioactive-labeled fatty acids such as [3H]-myristic acid and [1251]-myristic acid,
which are incorporated into cellular proteins, followed by the immunoprecipitation of target
proteins and film exposure. This technique is typically time-consuming and insensitive. An
alternative non-radioactive method has gained considerable attention since its development.
This method uses w-azido or w-alkynyl myristate analogues as bioorthogonal probes to
identify myristoylated proteins.327-32% These probes can be incorporated into proteins after
addition into cultured cells, and the probe-modified proteins are then conjugated to
fluorophores or biotin via the Staudinger ligation (for w-azido probes) and the Huisgen
cycloaddition reaction (for w-alkynyl probes). The fluorophore- or biotin-conjugated
myristoylated proteins can be detected via in-gel fluorescence after separation with sodium
dodecyl sulfate polyacrylamide gel electrophoresis or western blot analysis.330

Several proteomics studies using bioorthogonal probes have been carried out to identify N-
myristoylated proteins in various species, including 7. brucei33t L eishmania donovani;332
immortalized retinal pigment epithelial cells with and without herpes simplex virus (HSV)
infection,333 CEMx174 cells with and without HIV infection,33* and HeLa cells with and
without apoptosis.33® The study in HeLa cells is particularly notable because it uses NMT
inhibitors in proteomics experiments to ensure that the identified proteins are indeed
substrates of NMT. Furthermore, it compares the proteomics results with results predicted
with the bioinformatics tools. This comparison shows that although the predication tools
give largely correct predictions, some of the results are inconsistent with the proteomics
results.33% The largest data set of experimentally validated human proteins myristoylated by
NMT in living cells was obtained using a multifunctional enrichment reagent and NMT
inhibitors.336

3.5. N-Glycine Myristoylation and Disease

3.5.1. NMT as a Target for Treating Fungal Infections and Parasitic Diseases—
Several studies have shown that NMT is a potential target for antifungal2> and anti-
parasite227:337.338 drugs because it is indispensable for the growth and viability of fungal
and parasitic organisms. Moreover, compared with the myristoyl-CoA binding site, the
peptide binding pocket of NMT is less well-conserved across species.33 The pocket can
therefore be targeted for the development of selective NMT inhibitors. Several series of
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inhibitors (Figure 17) from high-throughput screening have been reported for NMTSs in
humans,340 parasites (P falciparum, Leishmania sp., T brucei),338:341-344 and fungi.345-347

Several peptidomimetic inhibitors were designed and synthesized to target Candida albicans
NMT.348-350 These efforts lead to the development of an imidazole-substituted dipeptide
that inhibits C. albicans NMT potently and selectively.348 RO-09-4879 and FTR1335, which
are benzofuran346 and benzothiazole351:352 NMT inhibitors, respectively, were subsequently
developed with high selectivity and promising properties as antifungal agents (Figure 17).

7. brucei NMT inhibitors have also been screened and developed.343 These pyrazole
sulfonamide derived compounds strongly inhibit 7. brucei NMT with selectivity over human
NMT. Binding to the peptide substrate pocket of the enzyme, the inhibitor (DDD85646,
Figure 17) kills 7. brucei and cures trypanosomiasis in a mouse model of acute illness.
These highly potent inhibitors thus pave the way for the development of therapeutic drugs
for African sleeping sickness. These NMT inhibitors have also been used in proteomics
studies to identify NMT substrate proteins in 7. brucer3t and L. donovani.33?

P, falciparum, a malaria parasite, contains a single NMT, and the inhibition of N-glycine
myristoylation leads to the disruption of subcellular structure and cell death.338 Using
bioorthogonal chemical probes and proteomics profiling of N-glycine myristoylated
proteins, several P, falciparum NMT candidate substrates were identified with diverse
biological functions, many of which are essential for parasite survival. Notably, enzyme
inhibition using DDD85646, a compound originally developed for the 7. brucei NMT, and a
benzothiophene-containing compound (see Figure 17) results in the loss of inner membrane
complex proteins required for parasite development and red blood cell invasion.338 NMT is
therefore a promising target for the development of anti-malaria drugs.

3.5.2. NMT Inhibitors as Potential Cancer Treatments—NMT inhibitors have also
been developed for cancer treatment. Myristoylated proteins are involved in cell signaling
pathways and the apoptotic process (see the section 3.3 on the function of glycine
myristoylation). Abnormalities in these proteins can lead to tumorigenesis. For example, N-
glycine-myristoylated c-Src tyrosine kinase is activated in colon carcinoma.3%3 As
mentioned in section 3.3e, N-glycine myristoylation can positively regulate c-Src kinase
activity.21% Moreover, NMT expression and activity are increased in early stage rat and
human colonic carcinogenesis.3>* These results suggest that NMT might be a potential
biomarker or target for colon cancer.3%° Similarly, several studies have demonstrated that
NMT expression is elevated in oral squamous cell carcinoma,3>8 gallbladder carcinoma,3>’
and brain tumors.23%> Moreover, a cyclohexyl-octahydropyrrolo[1,2-a]pyrazine based NMT1
inhibitor, COPP-24 (Figure 17), has been shown to inhibit the proliferation of some tumor
cancer cell lines.340 Another study showed that NMT inhibitors induce stress and an
unfolded protein response in the ER, which led to apoptosis in several cancer cell lines.3%8

3.5.3. Viral and Microbial Utilization of Host Protein N-Glycine Myristoylation—
Many viruses and bacteria exploit host N-glycine myristoylation systems for successful
colonization. Several studies have shown that the N-myristoylation of certain viral proteins
by host cell NMTs is critical for viral particle formation.3°9-361 The myristoylation of Gag,
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an HIV-1 structural protein, is crucial for viral replication and assembly.361 Also, the
myristoylation of Nef (a virulence factor of lentiviruses) by NMT-1 facilitates viral
replication.362 NMT1 and NMT2 have different specificities for the N-myristoylation of Gag
and Nef.363 Therefore, NMTs have also been considered targets for antiviral drug
development.

A study identified the novel demyristoylation activity of invasion plasmid antigen J (IpaJ)
from the bacterial pathogen Shigella flexneri, which causes Golgi disruption in host cells.364
Ipal is a cysteine protease that specifically recognizes and cleaves the amide bond after the
N-myristoylated glycine residue. Several N-myristoylated proteins central in cell signaling
and growth may be substrates for this enzyme. This discovery also suggests a new bacterial
pathogenic mechanism that targets the N-glycine myristoylation of host cells.364

4. Cysteine Palmitoylation

Cysteine palmitoylation is the addition of a 16-carbon palmitoyl group via thioester bonds
on protein cysteine residues (also known as S-palmitoylation; Figure 18). This reaction is
highly reversible depending on the presence of enzymatic or non-enzymatic hydrolysis.
Unlike other protein lipidations such as glycine N-myristoylation and cysteine prenylation,
S-palmitoylation lacks a specific sequence motif. Thus, it is difficult to predict with
precision which proteins will undergo the reaction. However, S-palmitoylation typically
occurs on cysteines near or within a transmembrane domain or near a membrane-targeting
PTM, such as prenylated cysteine or N-terminal myristoylated glycine.

4.1. Palmitoyltransferases

4.1.1. Identification of the Cysteine Protein Acyltransferases—The covalent
attachment of fatty acids to proteins was first observed in the early 1970s on a major
structural protein found in bovine brain myelin.365366 A [ater discovery that viral
glycoproteins from the Sindbis virus contained a covalently linked palmitic acid on the side
chain of an amino acid suggested that protein fatty acylation is prevalent.367 Additional
protein substrates modified with palmitoyl groups were identified just a few years later,
including G-protein-coupled receptors (GPCRs)368 and Ras proteins.36% The mechanism
through which palmitoyl is attached to these protein substrates was not elucidated until 30
years after the first observation of the PTM. It is now known that the majority of protein
palmitoylations are enzymatic events catalyzed by an evolutionarily conserved family of
protein acyltransferases (PATSs). These enzymes, which catalyze the attachment of a
palmitoyl group to cysteine residues, were discovered in the early 2000s. Erf2—Erf4 were
identified as an essential enzyme complex for the palmitoylation of Ras2 in S. cerevisiae.3"°
Erf2 or Erf4 alone cannot palmitoylate Ras2. The catalytic activity resides solely on Erf2,
whereas Erf4 is required for the stable expression of Erf2. At the same time, Akrl was
identified as a PAT with activity against the yeast casein kinase Yck2.371 Erf2 and Akrl
share homology in a single domain, an aspartic acid-histidine-histidine-cysteine (DHHC)
cysteine-rich domain (CRD), which is characteristic of palmitoyltransferases.

In 2004, the first mammalian protein with cysteine palmitoyltransferase activity was
reported.372 The Golgi-apparatus-specific protein with the DHHC zinc finger domain
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(GODZ, also known as DHHC3) has PAT activity toward the y-aminobutyric acid A
receptor -y2 subunit and increases palmitoylation upon co-expression. DHHC3 palmitoylates
the cytoplasmic loop domain of the -y2 subunit, which suggests that PAT activity functions in
a cytosolic environment. Through a database search of the mouse and human genomes, 23
proteins were identified that have homology with the DHHC domain of DHHC3 (Table 2).
Various members of this family have PAT activity.3’3 When transfected into COS7 cells,
several DHHC enzymes increase the incorporation of 3H-palmitate into PSD-95, which
suggests that the DHHC proteins are, in general, palmitoyltransferases.

4.1.2. Topology of Palmitoyltransferases—DHHC proteins are predicted to have a
common topology comprising several trans-membrane domains (TMDs) and a conserved
DHHC CRD active site on the cytosolic face (Figure 19). The number of TMDs ranges
between four (DHHC1, DHHC?2) and six (DHHC13, DHHC17). This conserved DHHC
CRD is generally located in the middle of the enzyme on the cytoplasmic loop between
TMD2 and TMD3. At the C- and N-terminal cytosolic domains, there is less homology
among the family members. The variable domains include a predicted SH3 domain in
DHHCS6 and ankyrin repeats in DHHC13 and DHHC17. These variable domains and
sequences at the N- and C-termini mediate protein—protein interactions, a key mechanism
for the interaction of substrates and PATs. For example, DHHC17 and huntingtin interact
through the ankyrin repeats on DHHC17.39 DHHC5 and DHHCS interact with glutamate
receptor-interacting protein 1b (GRIP1b) through the PDZ domains at the C-terminal end of
DHHC5 and DHH(C8.381.393.400 DHHCS also interacts with cardiac phosphoprotein
phospholemman via the C-terminal domain.401

Additionally, the DHHC family has long been annotated as zinc finger proteins and newer
experimental evidence has demonstrated that DHHCSs bind zinc ions. Zinc binds to the CRD
of DHHCs and is crucial for enzyme stability. Generally, the DHHC CRD can be considered
a stable core that is conserved among the family members, whereas the N- and C-termini are
more disordered to allow for variable protein-protein interactions.*01 These features are
discussed in section 4.1c below. The lack of crystal structures of the catalytic domain
currently limits our understanding of these enzymes.

4.1.3. Substrate Specificity of DHHCs—Many factors, such as potential protein
interacting domains, the amino acid composition of the modification site, and cellular
localization, determine the substrate specificity of PATs. These factors are discussed here.

In general, DHHCs have substrate specificity with some redundancies. When certain PATs
are inactivated, a loss of modification occurs on specific proteins in yeast.*4 Yeast Erf2p
can palmitoylate substrates other than yeast Ras. However, the level of palmitoylation is
weak (~5% of Ras palmitoylation). These results suggest that PATs can show strong
preferences for specific substrates. In mammalian cells, co-expression studies confirm that
specific DHHCs modify specific substrates: the palmitoylation of Lck, a tyrosine kinase, is
increased upon overexpression of DHHC17 and DHHC18, that of SNAP-25b and Ga4 by
the overexpression of DHHC3 and DHHC7, Ras by DHHC18 and DHHC9, PSD-95 and
GAP-43 by DHHC2 and DHHC15, and paralemmin by DHHC8.373:393412 DHHC17 can
also palmitoylate huntingtin, SNAP-25, PSD-95, GAD-46, and synaptotagmin 1,42° and
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DHHC3 can palmitoylate endothelial nitric oxide synthase (NOS), GIuR receptors, and
GAP-43.382448 GRIP1b palmitoylation is incompletely abolished when DHHC5 or DHHC8
is individually knocked down with short hairpin RNA, but double knockdown completely
abolishes palmitoylation.#%0 In general, a palmitoylated substrate may be modified by more
than one DHHC. Notably, although some DHHCs may appear to have highly specific
substrate targets, such as DHHC19 and its only substrate R-Ras,*4° the vast majority of
palmitoylation events have yet to be assigned to the enzymatic activity of a specific DHHC.
The closely related DHHC3 and DHHC7 have broad substrate specificities that allow for
redundancies to be built into the regulation of protein palmitoylation. These redundancies
may serve to ensure proper palmitoylation in the event that one DHHC is compromised.

The co-localization of a DHHC with its substrate ensures that the correct palmitoylation
event occurs. DHHCs have distinct cellular localizations including the plasma membrane,
ER, Golgi, and endosomal membranes. The exact mechanism through which DHHCs are
properly sorted is unknown. However, several studies have advanced understanding of
DHHC sorting and localization. The C-terminal portion of DHHC2 and DHHC15 regulate
the localization of these two distinctly localized PATs.#%0 Swapping the C-terminal region of
DHHC2 to DHHC15 altered the localization of the chimeric DHHC15 to regions similar to
those of WT DHHC2. DHHC4 and DHHC6 were later found to sort to the ER through a
canonical dilysine motif that interacts with coat protein complex 1. The five C-terminal
amino acids containing the dilysine motif of DHHC4 or DHHCS are also sufficient to
relocalize the Golgi-specific DHHC3 to the ER.41

External stimuli may alter the localization of DHHC enzymes.380 In dendritic cells,
palmitoylated PSD-95 localizes to the dendritic spine and, upon depalmitoylation,
translocates to the shaft where it can be repalmitoylated by DHHC2-containing vesicles for
shuttling back to the spine. When synaptic activity is blocked, DHHC2 relocalizes to the
spine to increase PSD-95 palmitoylation levels to upregulate 2-amino-3-(hydroxy-5-
methyl-4-isoxazole) propionic acid type glutamate receptor activity to maintain homeostasis.
However, localization alone is insufficient to confer substrate specificity. For example, in
human embryonic kidney 293T cells, up to 11 DHHCs are associated with the Golgi
complex upon expression.416

The method through which DHHC substrate pairs have been identified has usually relied on
what is known as the Fukata screen, in which individual DHHCs are ectopically
overexpressed with a potential substrate. This process generates a panel of DHHCs capable
of increasing the palmitoylation levels of the substrate. Next, the DHHCs are knocked down,
and decreased palmitoylation after knockdown verifies the substrate—enzyme pair. However,
the knockdown of a DHHC that can increase palmitoylation levels does not always result in
complete or decreased palmitoylation. This phenomenon is likely attributable to the
redundancies of the DHHCs. On the contrary, the overexpression of a DHHC could disrupt
the fine localization of the enzyme.452 It was reported that decreased PSD-95 palmitoylation
levels were not observed in DHHC3 knockout mice, whereas the ectopic expression of
DHHC3 with PSD-95 increased palmitoylation levels in cells. Endogenous DHHC3
predominately localizes to the cis Golgi membranes, and the overexpression of DHHC3
disrupts the localization of endogenous DHHC3.452 Mislocalized enzymes that retain their
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activity could easily acylate substrates other than their natural substrates (false positives).
This study highlighted that downside to the use of the Fukata screen for the identification of
enzyme—-substrate pairs, which is further complicated by the fact that single knockdown/
knockout experiments do not always completely abolish substrate palmitoylation. Although
there are robust examples of DHHC-substrate pairs, other substrates may be palmitoylated
by several DHHCs. One example is N-Ras, in which palmitoylation decreases but persists at
low levels in vivo when DHHC9 is knocked out.#>3 This divergence from a single enzyme -
single substrate system highlights the complexity of protein palmitoylation and the
challenges in elucidating the mechanism of palmitoylation regulation.

The variable N- and C- terminal domains of DHHCs play key roles in substrate specificity,
whereas the conserved catalytic core contributes little.381 A chimeric DHHC15 construct
containing the DHHC CRD of DHHC3 (DHHC15/3) failed to palmitoylate SNAP23, a
substrate modified by WT DHHC3 but not WT DHHC15. This outcome suggests that the
DHHC CRD of DHHC3 is insufficient to confer substrate specificity to SNAP23. DHHC17,
also known as huntingtin-interacting protein 14 (HIP14), contains an ankyrin repeat domain
that interacts with an N-terminal fragment of huntingtin.#26 Although DHHC3 cannot
interact with huntingtin, when the ankyrin repeat domain of DHHC17 is fused to DHHCS3,
the chimeric protein interacts with huntingtin and redistributes it to the perinuclear region
through palmitoylation-dependent vesicular trafficking.39 This result and the DHHC15/3
chimera data suggest that substrate specificity is determined by the N- and C-termini of the
enzyme. Additionally, DHHC23, also called neuronal NOS-interacting DHHC domain-
containing protein, interacts with the PDZ domain on neuronal NOS through its PDZ-
interacting EDIV motif.#14 Several DHHCs contain PDZ-interacting domains that allow for
enzyme-substrate interactions, which indicates that these DHHCs use such interactions to
mediate substrate specificity.396:400 The interactions between a PAT and its substrate can be
weak and transient, but increasing evidence suggests that stronger interactions exist, such as
those between the ankyrin repeat of DHHC17 and huntingtin, DHHC3 and the -y-
aminobutyric acid A receptor y2 subunit,*>4 and DHHC8 and paralemmin.393

Crystal structures of DHHC—substrate complexes would shed invaluable insight on these
interactions. Challenges inherent to the crystallization of membrane-bound proteins impede
progress; however, several non-catalytic domains of DHHCs have been crystalized. The
interaction of DHHC5 with its substrate, phosphoprotein phospholemman, has been studied
and the binding site has been mapped to the disordered C-terminal tail of DHHC5.401
Another study 4°° identified a unique ¥ BXXQP motif in the substrates of DHHC17. This
motif centers on glutamine and proline (QP) residues, whereas the other four residues are
more variable. The motif is found in multiple DHHC17 and DHHC13 substrates and
interacts with the ankyrin repeat domains found in these DHHCs. Crystal structures 46 of
the ankyrin repeat domain of DHHC17 and a truncated form of Snap25b have elucidated the
nature of the interaction, attributing it primarily to hydrogen bondings and hydrophobic
interactions involving the QP motif of Snap25b. This QP dipeptide motif is present in all of
the DHHC17 substrates, including Htt, and the loss of the QP motif in Htt disrupts DHHC17
binding.
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The amino acid sequence in the vicinity of the palmitoylation site on the substrate is also
important for PAT substrate recognition. The palmitoylation of PSD-95 has been shown to
depend on the first 13 amino acids, MDCLCIVTTKKYR. The two modified cysteines are
surrounded by hydrophobic residues (Leu4, 1le6, and Val7), and mutations of these amino
acids to a hydrophilic serine residue result in mislocalization and much weaker
palmitoylation, whereas mutations of the hydrophilic residues Asp2, Thr8, or Thr9 to
alanine do not alter localization.#>” SNAP23, which is not a substrate for DHHC15, can be
acylated by DHHC15 when Cys79 (a residue close to the cysteine residue to be
palmitoylated) is mutated to phenylalanine, because the resulting Cys79Phe mutant is highly
similar to SNAP25b (a substrate for DHHC15) in terms of the number and configuration of
cysteines in its CRD.381 Additional work further highlighted the importance of the
secondary structure near the palmitoylation site.4>8 A 21 amino acid sequence enriched in
aromatic amino acids, predicted to be an amphiphatic a-helix, near the Cys739
palmitoylation site of the sodium—calcium exchanger (NCX) is essential for NCX acylation.
The most surprising discovery was the capability of this sequence to convert non-
palmitoylated cysteines to bona fide modification sites when introduced adjacently, which
demonstrates that fine structural elements exist to ensure that the correct cysteine is modified
by the relatively promiscuous enzymatic activity of DHHCs. Thus, not only the amino acid
sequences surrounding the palmitoylation site but also high-order structural elements on the
substrate are critical.

There is limited evidence supporting the hypothesis that various DHHCs prefer particular
types of substrates. For example the S. cerevisiae PAT Swfl targets transmembrane proteins
with juxtamembrane cysteine residues, whereas the substrates for Akrl are mainly soluble
proteins.*4’ The differential bias may be due simply to the small number of substrates
identified for Akrl and Swfl, however, and there is insufficient evidence for a definitive
conclusion. Mammalian DHHCs may also be biased toward certain substrate types. Not
surprisingly, substrates of the promiscuous DHHC3 and DHHC?2 include both cytoplasmic
and integral membrane proteins with various numbers of transmembrane domains (Table 2).
In contrast to the involvement of DHHC2 and DHHC3 in many pathways, both DHHC15
and DHHC21 are less promiscuous and prefer cytosolic proteins in developmental singaling
pathways as substrates. Tables 3-9 summarize known S-palmitoylated proteins according to
whether they are cytoplasmic or transmembrane. Many substrate proteins are either integral
membrane proteins or undergo prenylation or myristoylation that targets them to membranes
in which DHHCs are localized. Notably, the reported palmitoylation sites of the majority
(>95%) of palmitoylated single-pass integral membrane proteins are located either directly
adjacent to or inside the annotated transmembrane domain. Furthermore, S-palmitoylation
normally occurs close to the N-glycine myristoylation or C-terminal prenylation site for
cytoplasmic proteins. The fact that S-palmitoylation occurs next to a transmembrane domain
or another lipid modification is likely determined by the proximity of these sites to the
DHHC active site. On the contrary, many S-palmitoylated proteins lack transmembrane
domains or other lipid modifications that could recruit them to membrane-localized DHHCs
(Table 8). These proteins may be recruited to membranes via interaction with membrane-
localized proteins. For example, PSD-95 is recruited to synapses by the transmembrane
protein ephrin-B3.4%9
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PATSs not only have broad specificity for protein substrates but also display broad specificity
for the acyl-CoA co-substrate. Although palmitoyl-CoA (C16) is the preferred substrate,
other long-chain acyl-CoAs such as myristoyl-CoA (C14) and stearoyl-CoA (C18) are also
efficiently transferred by PATs. DHHC2 transfers acyl-CoAs with various chain lengths and
degrees of saturation. DHHC15 also has a promiscuous fatty acyl-CoA substrate profile.373
The broad specificity indicates that cells can utilize various fatty acyl-CoA to modify the
activity of PAT substrates depending on the metabolic state of the cell. DHHC3, however,
exhibits a more stringent acyl-CoA substrate profile and efficiently transfers only C14 and
C16 acyl groups.*69 This specificity is independent of the protein substrate, which indicates
a level of control to prevent the incorrect modification of DHHC substrates by other lipids.
A more in-depth study of acyl-CoA substrate specificity 461 expanded previous studies by
analyzing a larger number of acyl groups and DHHCs. The results supported the finding that
each DHHC has individual acyl-CoA preferences. Surprisingly, DHHC3 and DHHC?7, which
have highly similar protein sequence, have different acyl-CoA substrate preferences:
DHHCY prefers the longer C18 groups whereas DHHC3 prefers shorter C14 and C16
groups. The determining factor was isolated through mutagenesis studies to be a single
isoleucine in the third transmembrane domain of DHHC3. When the isoleucine on DHHC3
is mutated to serine, as found on DHHC7, the mutant utilizes C18 groups.

Notably, this review and the studies cited generally assume that palmitate is the acyl group
being attached by the DHHC PATSs. Although this attachment is the most likely event, a
general lack of mass spectrometry (MS) data confirming the identity of the modification
catalyzed by individual DHHCs leaves open the possibility that other acyl groups are being
attached by this family of PATs. This possibility is supported by the observation that other
fatty acids, such as arachidonate, eicosapentaenoate, palmitoleic acid, and stearic acid,
reportedly attach to protein substrates through thioester bonds.#62-465 Cysteines modified
with 14:0, 18:0, 18:1, and 18:2 fatty acids were detected in bovine heart and liver tissue.466
S-acylation with stearate and arachidonate also occurs on the Ga subunit, myelin, the G2
protein of the Rift Valley fever virus, and the asialoglycoprotein receptor,464:465467-469

Although many proteins are known to be palmitoylated, associating the modifications to the
actions of specific DHHCs is difficult for several reasons, including PAT redundancy, the
lack of clearly defined recognition sequences, difficulty associated with obtaining purified
DHHCs, and the deconvolution of enzymatic versus non-enzymatic protein palmitoylation.
However, it would not be surprising to find that most, if not all, cysteine S-palmitoylation
events are mediated by DHHCs.

4.1.4. Mechanism of Palmitoylation—Cysteine palmitoylation forms a thioester bond
that is similar in energy to the thioester bond in the palmitoyl donor, palmitoyl-CoA. Thus,
the overall the reaction is energy-neutral, and no energy source (i.e., ATP) is needed. Indeed,
purified PATSs can directly modify their substrate using palmitoyl-CoA in the absence of an
energy source.373

DHHCs themselves are autoacylated in vivo and in vitro.370:371.373 |ncubating 3H-palmitoyl-
CoA with partially purified yeast Erf2/Erf4 in the absence of Ras2 substrate results in the
formation of 3H-labeled Erf2.370 Heat inactivation before the addition of 3H-palmitoyl-CoA
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abolishes the acyl-Erf2 intermediate. These results suggest that native Erf2 autoacylates. The
formation of the intermediate depends on an intact DHHC domain. When the cysteine is
mutated to sering, the resulting Erf2 C203S mutant cannot be acylated, which suggests that
the cysteine is the site of palmitoylation.370 The acyl intermediate may be the active enzyme
intermediate that transfers the acyl group to substrate proteins. Thus, the enzymatic
mechanism likely has a two-step ping-pong mechanism (Figure 20). The first step is fast
autoacylation, and in the slower second step, the palmitoyl is transferred to the substrate
protein. Evidence to support the chemical and kinetic competence of this intermediate has
been reported.#0 In this study, purified DHHC2 and DHHC3 were labeled with 3H-
palmitoyl-CoA in vitro and then re-purified to remove excess radioactive palmitoyl-CoA.
The PAT was then incubated with a protein substrate. Over time, the signal was transferred
from the PAT to the substrate protein, thereby directly demonstrating the transfer of the
palmitoyl group from enzyme to substrate.

Notably, the identity of the autoacylated cysteine remains unknown. Mutagenesis only
shows that the cysteine in the DHHC domain is necessary for autoacylation because it is
required for catalytic activity. A radioactive signal on the PAT was observed despite long
incubation times with substrate proteins, which suggests that either 3H-palmitoyl is also
located on a cysteine residue not involved in the catalytic transfer or the PAT is inactive.
460470 Additional results, such as X-ray crystal structures of the catalytic domain in complex
with substrates, will greatly help to elucidate the catalytic mechanism of DHHCs.

When the His201 in Erf2, the first conserved histidine residue in the DHHC motif, is
mutated to alanine, the resulting Erf2 H201A-Erf4 complex loses its PAT activity despite the
formation of the acyl intermediate.370 This outcome suggests that His201 is involved in the
transfer of the acyl group to the substrate but is not important for the formation of the acyl
enzyme intermediate, which is not the case for all DHHCs. For example, Swfl with a
DQHC motif instead of the DHHC motif has partial activity.4’? This motif also exists in the
human DHHC13 protein that acylates the huntingtin protein. Surprisingly, in the yeast
system, the overexpression of Swfl mutants in which the catalytic cysteine of the DHHC
motif is altered to arginine (DHHR) still results in increased palmitoylation of the Swfl
substrates Tlgl, Syn8, and Sncl. Most likely, the acyl-DHHC intermediate would not form
with the Swfl DHHR mutant.

The conserved CRDs of DHHCs contain many palmitoylated cysteine residues that are
distinct from the catalytic cysteine. These cysteines are located downstream of the DHHC
domain and form a unique motif, CCX(7-13)C(S/T).402 This motif is found in DHHCS,
DHHC6, and DHHCS. The function of this modification on the DHHCs and its formation
mechanism require further study. It could be a consequence of the auto-catalytic activity or
the activity of another DHHC on DHHC5, DHHC6, and DHHCS. Indeed, DHHCE6 is a
downstream substrate for DHHC16 and the depalmitoylase APT2.472 When palmitoylated,
but not when de-palmitoylated, DHHCG6 has detectable activity. Notably, DHHC6 exists in
multiple differentially palmitoylated states with variable activity and stability. This complex
regulatory mechanism is reminiscent of that of protein phosphorylation and further
highlights the importance of protein acylation.
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One study demonstrated that DHHC2 and DHHC3 form homodimers that inhibit enzyme
activity,4”3 which suggests that oligomerization may be a means to regulate DHHC PAT
activity. Another potential regulatory mechanism is phosphorylation to turn DHHCs on or
off. DHHC3 is regulated by the Src and fibroblast growth factor receptor tyrosine kinases.
Compared with the WT, DHHC3 with the phosphorylated tyrosine sites mutated had a
stronger interaction with neural cell adhesion molecule and further increased its
palmitoylation levels.474

The interaction of DHHC with other non-substrate proteins also regulates the function and
activity of DHHCs. DHHCO requires Golgi complex-associated protein of 16 kDa (GCP16)
for proper functioning. DHHCSG, through its SH3 domain, reportedly associates with
Selenoprotein K,404 which serves as a cofactor in a manner similar to that of GCP16. The
DHHC-cofactor complex increases the palmitoylation of its substrates. The mechanism
through which SelK interacts with DHHC6 to promote palmitoylation requires further study.
The cofactor could stabilize the DHHC enzyme, as in the case of DHHC9 and GPCP16,412
or recruit the substrate to the complex.

The DHHC proteins bind zinc with specific cysteine residues in the CRD.47 Interestingly,
these conserved cysteine residues can also be palmitoylated, which destabilizes the enzyme.
476 The relationship between the zinc binding and palmitoylation of these cysteines is
unknown but could be a potential regulatory mechanism.

4.1.5. Biological Function and Disease Relevance of DHHCs—Significant
progress has been made in elucidating the functional role of palmitoylation, but the role of
DHHC enzymes remains incompletely understood. Through knockdown and deletion
studies, various biological functions have been attributed to specific DHHCs (Table 2). In
general, most mutations are correlated with neurodegenerative diseases such as
Huntington’s, Alzheimer’s, and schizophrenia. Other diseases such as cancer and
developmental defects have also been attributed to various DHHCs. The biological functions
of DHHCs are ultimately determined by the substrate proteins they modify and regulate.
Because these substrates have not been completely identified in most cases, understanding of
the biological functions of the DHHC enzymes remains limited. Redundancies among
DHHCs, poor antibodies against endogenous DHHCs, and weak in vitro DHHC activity are
a few of the obstacles that must be overcome to further elucidate DHHC function.

The most thoroughly studied case is the role of DHHC17 and HIP14L (DHHC13) in
Huntington’s disease. These PATs were initially shown to interact and palmitoylate
huntingtin through their ankyrin repeat domains. Disease mutations of huntingtin diminish
interaction with PATSs, which reduces palmitoylation and and ultimately causes cell death.#26
Notably, when WT huntingtin levels are low, the degree to which DHHCL17 itself is
palmitoylated is significantly reduced. This decrease leads to defective enzymatic activity
against known substrates SNAP25 and GIuR1 in mice lacking one of the alleles coding for
huntingtin, and the effect is even greater in cells treated with antisense oligos to degrade the
huntingtin gene.#43 Huntingtin likely acts as a protein scaffold to bring together DHHC17
and its substrates. Because most substrates of DHHC17 are involved in neurological
processes, it is easy to see how the loss of normal huntingtin or DHHC17 function could
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result in neurological defects. Furthermore, mice deficient in DHHC17 exhibit a

neurological and behavioral phenotype similar to that of patients with Huntington’s disease.
477

These studies have generally shown that the palmitoylation of huntingtin is protective and
that the inhibition of PAT-huntingtin interaction is necessary for the progression of
Huntington’s disease. Although the exact mechanism through which DHHC17 contributes to
Huntington’s disease remains to be established, a recent study showed that caspase-6, a
cysteine protease involved in neurological disorders, is a substrate of DHHC17. Caspase-6
activity is inhibited by palmitoylation, and in DHHC17 —/- mice, decreased caspase-6
palmitoylation results in increased caspase-6 activity, which is reportedly required for the
progression of Huntington’s disease.#33 Additional mouse studies have demonstrated
embryonic lethality in DHHC17 and DHHC13 knockout mice.4”8 These embryos have
characteristics similar to those of huntingtin (=/=) embryos, such as a disorganized chorion.
Although its mechanism remains to be elucidated, the lethality further emphasizes the
importance of palmitoylation at various stages of development.

DHHC mutations are also associated with X-linked mental retardation,#”® including X
chromosome mutations in zDHHC9 and zDHHC15 (X-linked mental retardation type 91).
421 It is not clear how deficiency in DHHC9 and DHHC15 leads to mental retardation, but it
is not unexpected, because DHHC15 and DHHC9 substrates are involved in neural
development (see Table 2).

Two studies have suggested that DHHC2 functions as a tumor suppressor. Reduced
expression of the corresponding gene (zDHHC?2) predicts a poor prognosis in gastric
adenocarcinoma patients and is associated with lymph node metastasis.*8° When zDHHC2
is knocked down, cytoskeleton-associated protein 4 (CKAP4) palmitoylation is significantly
reduced, which decreases the capacity of antiproliferative factor to suppress proliferation
and tumorigenesis. The interaction between CKAP4 and antiproliferative factor is mediated
by the palmitoylation of CKAP4 by DHHC?2, which explains its function as a tumor
suppressor.481

The overexpression of DHHC14 is linked to gastric cancer. Gastric cancer tissue samples
with higher levels of DHHC14 messenger RNA (mMRNA) are associated with more
aggressive tumor invasion in vivo. In vitro, DHHC14 activates gastric cancer cell migration
and invasion, whereas cells with DHHC14 knockdown are relatively less invasive.482

Mice deficient in the zZDHHCS5 gene show a remarkable defective phenotype. Litter sizes are
reduced by half, and the survivors are deficient in contextual fear conditioning. DHHCS5 is
also highly expressed in neural tissue and interacts with PSD-95 through the PDZ3 domain
on PSD-95.3%9 These observations suggest that DHHC5 may be linked to post-synaptic
function, learning, and memory. The effect of DHHC5 on learning and memory might be
explained by the ability of DHHCS5 to interact with and palmitoylate SSTR5, a GPCR
expressed mainly in neural tissue but not in tissues such as the kidneys or liver.3%° The exact
function of palmitoylation on GPCRs is not well understood. Studies on rhodopsin have
suggested that palmitoylation near the carboxyl-terminal tail at Cys322 and Cys323, which
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extends into the cytoplasm, induces the formation of a pseudo loop.#83 The C-terminus of
GPCRs is important for interaction with downstream signaling molecules such as receptor
kinases, and the palmitoylation-dependent formation of the pseudo-loop could be a
mechanism that regulates GPCR signaling#84:485 through DHHCs. A study has also linked
DHHCS5 to non-small cell lung cancer.#8¢ When zDHHC5 was knocked down, the cancer
cells exhibited reduced cell proliferation, colony formation, and cell invasion, and could be
rescued by overexpression of the WT DHHCS5 but not the catalytically dead DHHS5. The
phenotype was replicated in a mice tumor xenograft model in which DHHC5 knockdown
inhibited tumor formation.486

A study in mice showed that a deletion of three base pairs resulting in the loss of a highly
conserved phenylalanine in DHHC21 was sufficient for hair loss in mice.#39 This single
mutation resulted in the mislocalization and loss of catalytic activity of DHHC21. Re-
introducing WT DHHC21 into the mice rescued the shiny and smooth coat phenotypes. The
authors then showed that Fyn, a Src-family kinase involved in keratinocyte differentiation, is
a substrate for DHHC21. The observed effects of Fyn mislocalization and reduced levels of
Lefl, nuclear p-catenin, and Foxnl in the DHHC21 mutant keratinocytes may explain the
hair loss and differentiation phenotypes.#3® DHHC21 is also linked to endothelial
inflammation.#87 This enzyme is required for the barrier response, and DHHC21-deficient
mice are more resistant to injury. These effects are likely mediated by the palmitoylation of
PLCR1.487 Another study linked DHHC21 to vascular function in mice through the
palmitoylation of the a. 1D adrenoceptor, the palmitoylation of which is required for receptor
function.39°

In mice, a nonsense mutation in the zZDHHC13 gene results in the degradation of mMRNA and
phenotypes of amyloidosis, alopecia, and osteoporosis.*41 The protein responsible for the
osteoporosis phenotype is membrane type-1 matrix metalloproteinase (MT1-MMP), a factor
that controls skeletal development. The palmitoylation of MT1-MMP by DHHC22 (encoded
by zDHHC13) is required for its proper distribution and function in facilitating vascular
endothelial growth factor expression. Osteocalcin expression is also associated with
DHHC22-dependent MT1-MMP palmitoylation, which links DHHC22 to skeletal
development through its palmitoylation activity on MT1-MMP.442 Other studies have linked
DHHC22 to mitochondrial function and metabolism in mouse liver cells. A proteomics
study identified 254 potential DHHC22 substrates. Among them, malonyl-CoA-acyl carrier
protein transacylase and catenin delta are verified substrates.*88 These findings were further
confirmed in the hepatocytes of zZDHHC13 knockout mice, which showed diminished
mitochondrial function.*88 DHHC22 also reportedly plays roles in hair anchoring and skin
barrier integrity through its substrate cornifelin.#44 The loss of zZDHHC13 makes mice more
susceptible to bacteria, which results in skin inflammation.#87 Similarly, a spontaneous
mouse mutation in zDHHC13 reportedly led to increased susceptibility to skin
carcinogenesis.*>°

Mice deficient in zZDHHC16 (Aph2) exhibit cardiomyopathy and cardiac defects such as
bradycardia.#24 The phenotype functions primarily through the DHHC16 substrate
phospholamban (PLN). When PLN is palmitoylated, its interactions with protein kinase A
and protein phosphatase 1 control the pentamer formation of PLN. In zDHHC16-deficient
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mice, PLN phosphorylation decreases, which inhibits PLN function. Surprisingly, the
deleterious phenotype is alleviated to a degree in PLN~/~ zDHHC16~/~ mice. DHHC16 is
also reportedly involved in the DNA damage response pathway; however, the mechanism
has not been elucidated, and the effects are observed only when zDHHC16 is knocked out in
mouse embryonic fibroblast cells.48°

Genomic mapping studies in schizophrenia patients have identified multiple gene deletions
that may be involved. zDHHCS8 is a commonly observed deletion located in the chromosome
22011 region*® that has been linked with schizophrenia. One potential substrate that may
mediate the effects of zZDHHCS deletion is the ankyrin-G protein (ANK3). DHHC5 and
DHHCS are reportedly required for the palmitoylation and localization of ANK3,491 and
other studies have linked ANK3 to schizophrenia.*%2 Another potential substrate is bCDCA42,
the overexpression of which restores dendritic spine cell density in adult 22q11 deletion

mice.493 However, the association of zZDHHC8 mutation with schizophrenia is controversial.
490,494,495

Surprisingly, unlike the deletion of zZDHHC17 or zDHHCS, the deletion of the broad-
specificity DHHC3 or DHHC?7 in mice does not result in obvious deleterious phenotypes.#52
However, simultaneous knockout of DHHC3 and DHHC?7 results in a drastic phenotype of
reduced body and brain mass and perinatal lethality. This observation confirms to some
degree the existence of functional redundancies for DHHC3 and DHHC?7 and likely other
DHHCs. DHHC7 knockout mice show increased glucose tolerance and hyperglycemia
linked to the palmitoylation of Glut4.4%% Additional evidence has linked DHHC?7 to cell
polarity and tumorigenesis through the palmitoylation of Scribble#®® and to cell migration
via junction adhesion molecule C.408

The palmitoylation of viral proteins is required for proper protein function as previously
noted,496 but the transferases for these proteins have yet to be identified. The likelihood that
viral proteins hijack the DHHCs of their target cells is high because viral proteins are known
to hijack cellular machinery to ensure the survival of the virus. A recent example is the
HSV-1 envelope protein UL20, which interacts with and serves as a substrate for
DHHC3.497 Cells overexpressing catalytically dead DHHS3 have lower viral titers and
altered UL20 localization. This hijacking is not limited to viruses. Bacterial pathogens have
also been demonstrated to hijack host cells. The GobX protein from L. pneumophila and
SspH2 from Salmonella are two examples of bacterial proteins that are palmitoylated inside
host cells and require palmitoylation for proper localization.#%8

DHHC-mediated palmitoylation is also critical for calcium flux. IP3R, the receptor for
inositol 1,4,5-triphosphate, is palmitoylated by the SelK-DHHC6 complex. Knockdown of
DHHCS disrupts IP3R-mediated Ca?* flux, and mutagenesis of the IP3R palmitoylation
sites decreases the function of the receptor. The electrogenic NCX1 is also regulated by
palmitoylation.499

Generally, the deletion of a zDHHC gene and subsequent loss of the fine control of
associated substrate palmitoylation is likely to be deleterious to cell homeostasis in healthy
normal cells. The disruption of DHHC levels in malignant cells has not been well studied.
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One study reported that epidermal growth factor receptor (EGFR) signaling is increased in
DHHC20-deficient cancer cells.436 Palmitoylation-deficient EGFR exhibited increased
activation and downstream signaling, and the increased EGFR signaling sensitized the cells
to EGFR inhibition and increased inhibitor-induced cell death.

In conclusion, DHHCs play vital roles in normal cellular functions and are involved in the
development of neurological disease and cancer. Similar to protein kinases, most DHHCs
are involved in signaling pathways, but the modifications DHHCs catalyze do not turn on
their substrates but instead direct them to the correct cellular compartment. This mechanism
is supported by the deleterious phenotypes observed when DHHCs are deleted or their
catalytic activity is lost. How DHHCs themselved are regulated to control their catalytic
activity is poorly understood and remains an exciting area of study.

4.2. Proteins That Catalyze Cysteine Depalmitoylation

Two known cytosolic acyl protein thioesterases, APT1 and APT2 (also called LYPLA1 and
LYPLAZ2), are thought to be responsible for depalmitoylating many S-acylated proteins.
APT1 was first reported to deacylate the a subunit of trimeric G proteins and the small
GTPase H-Ras in vitro and when overexpressed in cells.590:501 Knockdown of APT1 also
increases the acylation of overexpressed N-Ras.?%2 However, as described later in this
section, APT1 and APT2 knockdown do not affect the acylation of endogenous Ras, which
suggests that endogenous Ras is not a physiological substrate of APT1 and APT2.503
Notably, APT1 and APT2 themselves are also palmitoylated.5% APT1 can depalmitoylate
both itself and APT2. Palmitoylation is proposed to target APT1 and APT2 to the plasma
membrane, where they can deacylate other substrate proteins.5% However, another report
suggested that the soluble unpalmitoylated APT deacylates substrate proteins on all
membranes.>0°

The development and use of APT1 and APT2 inhibitors have provided further support for
the roles of these acyl protein thioesterases. The first reported APT1/APT2 inhibitor was
palmostatin B,02 and a more potent analogue, palmostatin M, has also been developed.59
However, later studies showed that palmostatin B and M are not specific for APT1 and
APT2. They also inhibit other serine hydrolases according to the results of activity-based
protein profiling.>%7 Thus, previous conclusions about the effects of palmostatins on APT1
and APT2 must be viewed with caution.

ML348 and ML349, which are more specific inhibitors for APT1 and APT2, respectively,
have been developed (Figure 21) through high-throughput screening facilitated by activity-
based protein profiling.298-510 Notably, ML348 is highly specific for APT1, and ML349 is
highly specific for APT2.511.512 Thys, these inhibitors will be highly useful for dissecting
the roles of APT1 and APT2. One study with ML348 and ML349 showed that APT1 and
APT2 do not affect signaling downstream of N-Ras, thereby correcting a previous report
obtained with nonspecific inhibitors.%3 These APT1- and APT2-selective inhibitors have
been used to demonstrate that APT2 depalmitoylates Scribble and affects its membrane
localization.513

Chem Rev. Author manuscript; available in PMC 2019 February 14.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jiang et al.

Page 34

The a/B-hydrolase domain 17 (ABHD17) family of proteins has been identified as a group
of depalmitoylases. The knockdown of APT1 and APT2 affects the S-palmitoylation of
huntingtin but not that of PSD-95 and N-Ras. They used the nonspecific inhibitor
palmostatin B to profile novel serine hydrolase targets and discovered a family of
uncharacterized ABHD17 proteins that catalyze the depalmitoylation of PSD-95 and N-Ras.
498 Another group screened 38 mouse serine hydrolases and also found that ABHD17
members (ABHD17A, ABHD17B, and ABHD17C) are depalmitoylases of PSD-95.514
These studies broadened the family of depalmitoylase enzymes and suggest that even more
proteins than previously thought can catalyze cysteine depalmitoylation.

4.3. Palmitoylation Inhibitors

Protein palmitoylation plays key roles in protein trafficking and is related to several diseases.
Palmitoylation inhibitors can therefore be useful tools with which to study the function of
palmitoylation or treat related diseases, and interest in their development is increasing.
Currently available palmitoylation inhibitors can be categorized into two general types:
lipid-based and non-lipid-based (Figure 22). The most commonly used lipid-based inhibitor
is the non-selective 2-bromopalmitate (2BP). 2BP inhibits the palmitoylation of Src family
kinases Fyn and Lck, Rho family kinases, and H-Ras.?15-517 Cerulenin, initially discovered
as a fatty acid synthase inhibitor, is also reportedly an S-palmitoylation inhibitor for
CD36.518 Tunicamycin, an N-linked glycosylation inhibitor, also inhibits protein
palmitoylation on substrates such as estrogen receptor a variant and Ca2* channels.519.520

A high-throughput screening was used to identify several non-lipid-based palmitoylation
inhibitors, which were reported to inhibit the Raf/Mek signaling pathway and suppress
cancer cell proliferation.>21 However, later studies using purified DHHCs showed that only
one of the five compounds has inhibition activity and is less potent than 2BP.522

More efficient and selective inhibitors for cysteine palmitoylation are urgently needed. All
current inhibitors are limited either by low inhibition potency or lack of selectivity. Although
2BP has historically been the most commonly used “palmitoylation inhibitor”, its noted off-
target activity and toxicity are such that it could equally be considered the worst available
inhibitor.523.524 |n cells, 2BP is converted to its CoA form, which is a substrate for DHHCs
and can lead to the labeling of substrate proteins.523 Thus, inhibitors that specifically target
DHHCs are in great demand. Inhibitors that can distinguish different DHHCs would be even
more useful. More efficient and selective inhibitors will greatly aid elucidation of the
function of cysteine palmitoylation and its therapeutic potential.

4.4. Functions of Protein S-Palmitoylation

4.4.1. Proteins Known to Be S-Palmitoylated—We summarize proteins that are
experimentally validated to be S-palmitoylated in Tables 3-9. The proteins are classified into
these tables according to whether they contain other membrane-targeting signals, such as
transmembrane domains, N-terminal glycine myristoylation or C-terminal prenylation. The
tables clearly show that palmitoylation occurs on an extraordinarily diverse set of proteins,
and unlike glycine myristoylation or cysteine prenylation, no consensus sequence exist for
predicting which proteins undergo cysteine palmitoylation. The reported functions of S-
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palmitoylation are listed along with their references in the tables. A brief summary of the
reported functions of cysteine palmitoylation is provided here.

4.4.2. Regulation of Protein Trafficking—Owing to the hydrophobicity of the acyl
group, palmitoylated proteins normally associate with the membranes of various organelles
and facilitate trafficking between these organelles. This section reviews two well-studied
proteins, Ras and Cdc42, to illustrate the regulation of protein trafficking through
palmitoylation.

Ras membrane trafficking is discussed in section 2.4a, but this section provides a more
detailed picture. H-Ras, N-Ras, and K-Ras are the most well-known Ras genes in humans.
670 Ras is a small GPTase that exists in a GTP-bound active state and a GDP-bound inactive
state. GEFs activate Ras by catalyzing the exchange of GTP for GDP in Ras,671 whereas
GAPs inactivate Ras by promoting the hydrolysis of GTP to GDP.572 Among the different
PTMs that regulate Ras activity,673 lipidation acts mainly by controlling Ras trafficking. Ras
proteins are prenylated at the C-terminal CaaX motif and subsequently cleaved and
carboxylmethylated at the cysteine.13.14.674 Bjochemical studies suggest that farnesylation
cannot provide adequate binding affinity for the plasma membrane.110.111 Therefore, a
second event is needed. This second event differs for the various members in Ras family. For
H-Ras, N-Ras, and K-Ras4A, palmitoylation is this second event, and it occurs on cysteines
near the CaaX motif after farnesylation (Figure 23). N-Ras and K-Ras4A each have only one
cysteine (Cys181 and Cys180, respectively) near the CaaX motif (Figure 23), which is the
palmitoylation site. H-Ras has two cysteines (Cys181 and Cys184) near the CaaX motif
(Figure 23) and is dually palmitoylated.142

After farnesylation and palmitoylation (known as dual lipidation), Ras is sorted into the
vesicle and travel to the plasma membrane.57% In the case of H-Ras, the mono-
palmitoylation of Cys181 is sufficient for plasma membrane localization, whereas the mono-
palmitoylation of Cys184 leads to Golgi localization,676 which indicates that the Cys181 of
H-Ras is more involved in targeting to the plasma membrane. Another member of the Ras
family, K-Ras4B, has no cysteines for palmitoylation near the CaaX motif. However, K-
Ras4B has eight lysines near the C-terminus that may interact electrostatically with the
negatively charged plasma membrane for localization.104 After palmitoylation and
localization, H-Ras, N-Ras, and K-Ras4A are depalmitoylated by acyl-protein thioesterases
and return to their mono-lipidation states.>%2 Weak plasma membrane binding affinity results
in the localization of Ras to the Golgi (facilitated by PDE8142), in which it is re-acylated and
sorted to the plasma membrane. This dynamic acylation—deacylation cycle therefore helps
maintain the plasma membrane localization of Ras (Figure 23).677

Cdc42 belongs to the Rho GTPase family and regulates cell polarity, migration, and
progression.878:679 Cdc42 has two isoforms. The ubiquitously expressed isoform 1 (aCdc42)
contains a CaaX motif and is either farnesylated or geranylgeranylated. There is no
additional cysteine near the CaaX motif, and thus, aCdc4z2 is not palmitoylated. Isoform 2
(bCdc42) is expressed specifically in the brain.880 It contains a unique CCaX motif in which
the first cysteine is farnesylated. After farnesylation, two processing pathways become
available. One pathway is the classical CaaX processing pathway. The protein is first
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farnesylated in the ER, followed by RCE1 and ICMT-mediated cleavage of aaX and
carboxylmethylation of the terminal prenylcysteine. Then bCdc42 binds to RhoGDla and
travels to the plasma membrane.132 The other processing pathway bypasses the proteolysis
step, and palmitoylation occurs on the second cysteine of the CCaX motif.113:681 Then,
bCdc42 is localized to the Golgi and travels to the plasma membrane via vesicular transport.
After plasma membrane localization, bCdc42 can be depalmitoylated and travel back to the
Golgi via binding to RhoGDla. In this second pathway, bCdc4z2 is dually lipidated followed
by vesicle localization, a process similar to the one that Ras undergoes. However, it is
unknown what mechanism determines the processing of Cdc42. Only some proteins with the
CCaX motif undergo dual lipidation,113 which indicates that the CCaX motif is not a general
feature of dual lipidation.

4.4 3. Regulation of Protein Stability—S-palmitoylation also regulates protein stability.
The best-studied example is Tlgl in yeast, which plays key roles in the regulation of protein
recycling between endosomes and the Golgi.82:683 Tig1 is palmitoylated by the yeast PAT
Swf1.684 palmitoylation retains Tlg1 on the trans Golgi network and endosome membranes
and inhibits Tlgl degradation. By contrast, the mutation of palmitoylation sites or
inactivation of Swfl results in Tlg1 ubiquitination and degradation, which are mediated by
the Tlg1 E3 ligase Tul1.%8 In this case, the function of palmitoylation is to prevent protein
ubiquitylation and thus increase Tlgl half-life and stability. Furthermore, the cellular
localization of cysteine-mutated Tlg1 is similar to that of WT Tlg1,684 which indicates that
palmitoylation does not influence the membrane association of Tlgl but simply blocks Tlgl
ubiquitylation. However, the mechanism through which palmitoylation inhibits
ubiquitylation is unknown. One hypothesis is that two contiguous aspartates are located in
the transmembrane domain, which triggers quality control to ubiquitylate and degrade the
protein because the negatively charged aspartate is incompatible with the membrane. When
palmitoylation occurs on two adjacent cysteines, the long-chain fatty acyl group covers two
aspartates and thus rescues the incompatibility. In addition to the regulation of Tlg1, the
stability of several other proteins is regulated by S-palmitoylation. The palmitoylation of
HIV receptor C-C chemokine receptor type 5 stabilizes the membrane expression of the
receptor.5’2 The lack of palmitoylation of estrogen receptor-a. results in more E2-dependent
degradation.4° Palmitoylation prolongs the half-life of regulator of G protein signaling 4
(RGS4) more than 8-fold.39

4.4.4. Prevention of Unfolded Protein Response in the ER and Promotion of
ER Exit—Low-density lipoprotein receptor-related protein 6 (LRP6) is a single-pass type |
membrane protein. It is a co-receptor of Wnt and is required for the initiation of the Wnt/p-
catenin signaling pathway.586:687 The palmitoylation of LRP6 occurs on Cys1394 and
Cys1399 and is required for LRP6 exit from the ER.337 It has been proposed that
palmitoylation allows LRP6 to avoid triggering ER quality control. Because LRP6 contains
a 23 amino acid transmembrane domain, which is longer than the usual membrane thickness,
the hydrophobicity of the extra residues is mismatched with the hydrophilic environment
and thus can trigger the unfolded protein response. The palmitoylation of two
juxtamembranous cysteines tilts the extra residues towards the membrane and thus avoids
the mismatch.537 Yeast chitin synthase Chs3 must also be palmitoylated for ER export,588
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and a study of amyloid precursor protein (APP) showed that the blocking of its
palmitoylation causes nearly complete ER retention, which suggests that this reaction is
required for the ER export of APP.689

4.4.5. Prevention of Protein Aggregation—Knowledge of the function of
palmitoylation in protein aggregation comes from studies of Huntington’s disease, which is
caused by the mutation of the huntingtin protein. In healthy individuals, the N-terminal
region of the huntingtin protein contains 635 repeated glutamine residues (known as the
polyQ region), whereas in patients with Huntington’s disease, the polyQ region expands to
more than 40 repeated glutamines.590 These excess glutamines cause huntingtin aggregation,
which is the primary marker of the disease.#30 Huntingtin is palmitoylated on Cys214 by
DHHC17,59% and compared with WT huntingtin, mutated huntingtin is reportedly
palmitoylated at a much lower level 430 The overexpression of DHHC17 reduces huntingtin
aggregation efficiently, whereas the knockdown of DHHC17 increases huntingtin
aggregation and induces neuronal cell death. The involvement of palmitoylation by
DHHC17 may provide new targets for the treatment of Huntington’s disease.

4.5. Techniques for Detecting Protein Palmitoylation

The study of protein cysteine palmitoylation has benefited significantly from technologies
that can detect this process. To date, several methods have been developed to detect protein
S-palmitoylation, thereby enabling the identification of palmitoylated proteins and the
functional study of palmitoylation.

4.5.1. Radioactive-lsotope-Labeled Palmitic Acid—Using radioactive-isotope-
labeled palmitic acid to label proteins metabolically was the earliest reported method for the
detection of protein S-palmitoylation.692 After treatment with radiolabeled palmitic acid,
radiolabeled palmitoyl-CoA forms in cells and used by PATs to modify target proteins.
Immunoprecipitation followed by radioactivity monitoring allows the detection of
palmitoylated proteins. Three radiolabeled palmitic acids are commonly used: 3H-, 14C- and
125|_palmitic acids.#12:693.694 3. and 14C-palmitic acids are structurally the same as
endogenous palmitic acids and mimic palmitoylation accurately. However, the use of these
radiolabeled palmitic acids requires long exposure times owing to the weak radioactive
signals of 3H and 14C. 1251-palmitic acid has higher sensitivity, but the introduction of the
iodo label significantly changes the structure of palmitic acid, and thus this probe may not be
ideal.

4.5.2. Bioorthogonal Palmitic Acid Probes—To solve the problem of low sensitivity
of 3H- and 14C-palmitic acids, bioorthogonal palmitic acid probes which contain a terminal
azido or alkynyl group have been developed (Figure 24).5%5 Compared with radiolabeled
palmitic acid probes, these bioorthogonal probes have high sensitivity and are more
convenient to handle. Furthermore, combined with click chemistry, affinity probes such as
biotin can be installed on proteins to allow the affinity purification and identification of
modified proteins with MS. Currently, this method is broadly used with two types of probes:
azido palmitic acid probes and alkynyl palmitic acid probes (Figure 24). Azido fatty acids
with 15 carbons (Az-C15, Figure 24) primarily label S-palmitoylated proteins,327:696
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whereas azido fatty acids with shorter carbon chains (e.g., Az-C12 and Az-C11) label only
N-myristoylated proteins.696.697

Compared with radiolabeled probes, the azido fatty acid probes have significantly increased
detection sensitivity. However, compared with alkyne probes, azido probes reportedly give
higher background.698:352 Therefore, alkyny! fatty acid probes, which are structurally more
similar to endogenous palmitic acid, have been developed to minimize background labeling.
Alkynyl fatty acids with various carbon chain lengths can mimic a range of protein fatty
acylations. For example, alkynyl fatty acids with 16 or 18 carbons (Alk-C16 or Alk14, Alk-
C18 or Alk16) can label S-palmitoylated proteins,327-329 whereas alkynyl fatty acids with
12 carbons (Alk-C14 or Alk12) can label N-myristoylated proteins.32%:697 However, there is
overlap among proteins labeled by different probes: Alk12 can also label palmitoylated
proteins, and Alk14 can also label myristoylated proteins.333.699 Therefore, analytical
methods that can identify the modification site are helpful in determining which type of
modification the probe is labeling and which enzymes may be responsible for that
modification. A cleavable azido molecule was introduced to alkynyl fatty acid labeled
proteins to facilitate the identification of modification sites.336 This molecule contains
fluorescence and biotin tags for the visualization and enrichment of fatty-acylated proteins.
It also bears a protease cleavage site and therefore can leave a hydrophilic and charged tag
on fatty-acylated peptides after in vitro protease digestion. This method increases the
hydrophilicity and ionization of fatty-acylated peptides and enables the direct identification
of sites modified by fatty acid probes.

4.5.3. Acyl-Biotin Exchange—Acyl-biotin exchange (ABE) is an indirect method for
detecting protein S-palmitoylation.”%0.701 The three-step ABE procedure is shown in Figure
25. The first step is to use N-ethylmaleimide to block all the free cysteines in proteins. Then,
hydroxylamine is used to cleave the palmitoyl group from the modified cysteines. The third
step is the use of biotin- -[6-(biotinamido)hexyl]-3’-(2"-pyridyldithio)propionamide
(biotin-HPDP) to label the relieved cysteines, followed by streptavidin pull-down and MS
identification. Compared with palmitic acid probes, ABE has several advantages. Both the
radiolabeled and bioorthogonal palmitic acid probes operate via metabolic labeling, which
interferes with global metabolism status and may disrupt normal cell processes. ABE is not
metabolic labeling, so it can detect protein S-palmitoylation under any conditions, including
various stress conditions. In 2006, this method was used to profile global S-palmitoylated
proteins in yeast, which was the first proteomics study of palmitoylation.*4” Thirty-five new
palmitoylated proteins were identified in this study. Furthermore, ABE is the most ideal
method developed to date for the study of protein S-palmitoylation in animal tissues because
it lacks a pre-treatment step and can monitor the dynamics of S-palmitoylation.%81 By
comparison, metabolic labeling with alkyne-tagged fatty acids and pulse-chase method can
also be used to examine the dynamic of S-palmitoylation in cell culture,”92 but it cannot be
easily applied to study palmitoylation in animals.

ABE also has limitations, however. Its most obvious drawback is the hydroxylamine
treatment step, which removes the lipidation from cysteines and therefore obscures which
form of lipidation (myristoylation, palmitoylation, or other acyl groups) is occurring on the
cysteine residues. Certain S-palmitoylations may also be relatively resistant to
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hydroxylamine treatment; junction adhesion molecule C is one reported example.4%8 A
variation of the ABE method called acyl-PEG exchange has been reported. In this method, a
5 kD or 10 kD PEG is added to S-acylated proteins instead of biotin. This mass tag allows
the visualization of S-acylation level with western blots because the modified protein
migrates more slowly than the unmodified protein.”%3 Ethylenediaminetetraacetic acid
(EDTA) is necessary for effective hydroxylamine treatment, likely because it chelates metals
that could oxidize the liberated cysteine residues.’93

4.5.4. Imaging Palmitoylated Proteins in Cells—The three methods described above
use biochemical approaches to detect protein palmitoylation after the lysing of cells or
tissues. A fluorescence imaging method for tracking specific palmitoylated proteins in
mammalian cells has also been developed.’% As shown in Figure 26, the method uses Alk14
(Alk-C16) metabolic labeling and click chemistry to install a tag on a target protein. Two
primary antibodies are then used to recognize the target protein and tag, and two distinct
secondary antibodies conjugated to oligonucleotides are used to bind specifically to the two
primary antibodies. After this step, the two secondary antibodies form a closed circle
because they bind to the same protein (distance between two secondary antibodies is <40
nm). A rolling-circle amplification reaction is performed, and then fluorescent
oligonucleotide probes are added for hybridization and the signals that depend on the
distance between the two secondary antibodies can be observed. Non-target proteins or non-
palmitoylated proteins cannot be recognized by the primary antibodies, so the final
hybridization cannot occur. Using this approach, the authors visualized the O-palmitoylation
of Wnt3a in cells and successfully tracked the secretion pathway of the protein. However,
because this method uses antibodies and click chemistry, which requires Cu(l), the cells
must be fixed.

4.5.5. Other Methods for the Detection of Protein Palmitoylation—Additional
methods have been developed for the detection of protein palmitoylation. Difference gel
electrophoresis based proteomics 79° detects slight differences in pl values and the relative
mobility of palmitoylated and depalmitoylated proteinsMicellar electrokinetic
chromatography was used identify GAP-43 palmitoylation in vitro.”%6 The separation of
palmitoylated and unmodified GAP-43 peptides can be performed in less than 7 min. Gas
chromatography-MS and liquid chromatography-MS methods have also been developed to
directly identify and quantify palmitoylation and other lipidations by comparing the
retention time and mass spectrum with standard samples.”%7:798 However, these methods
require a large amount of protein, which limits their capacity to detect protein palmitoylation
in cell lysates or tissues.

4.5.6. Software for the Prediction of Protein Palmitoylation—Several software
programs have been developed for the prediction of protein palmitoylation. CSS-Palm 1.0
(CSS: clustering and scoring strategy) was the first model built for palmitoylation site
prediction.”®® NBA-Palm (NBA: naive Bayes algorithm) is another program available for
palmitoylation site prediction.”10 CSS-Palm 1.0 has been updated to CSS-Palm 2.0 and used
to predict the palmitoylation sites of 16 known palmitoylated proteins in budding yeast;
these sites were subsequently validated experimentally.”11 CSS-Palm 2.0 was used in global
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in silico screening and identifed neurochondrin/norbin as a novel palmitoylated protein.374
Yet another program for palmitoylation site prediction, CKSAAP-Palm (CKSAAP:
composition of A-spaced amino acid pairs),’12 has a sensitivity higher than that of CSS-Palm
2.0 for predicting palmitoylated proteins in budding yeast.

5. Lipidation on Other Residues

In addition to cysteine prenylation, N-terminal glycine myristoylation, and cysteine
palmitoylation, several other lipid modifications of proteins have been reported, including
serine O-acylation, N-terminal cysteine N-palmitoylation, lysine N-acylation, and C-
terminal cholesterol esterification (Figure 27). Only a few proteins have been determined to
undergo these modifications. Thus, the preferred sequence motifs and likelihood of these
modifications occurring in other proteins are unknown. However, these lipid modifications
clearly play important roles in the biological functions of the known proteins.

5.1. Serine Fatty Acylation of Wnt Proteins

Whnt proteins require acylation for secretion and activity. The Wnt family of secreted
signaling proteins impacts virtually all aspects of developmental biology and is also essential
during adulthood.”3 In the canonical Wnt signaling pathway, Wnt binds to the Frizzled
(Fz)-LRP complex, thus transducing a signal to Dishevelled and Axin. This signal leads to
the inhibition of B-catenin degradation, and accumulated B-catenin then enters the nucleus
and interacts with T-cell factor to regulate the transcription of certain genes.’14

The first pure and active secretory Wnt protein (murine Wnt3a) was successfully isolated
from cell culture medium in 2003.71° Triton-X-114 phase separation assays showed that
most of the purified Wnt3a partitioned into the Triton-X-114 phase, which suggested that
similar to integral membrane proteins, Wnt3a is highly hydrophobic. 3H-palmitate metabolic
labeling further confirmed that Wnt3a is palmitoylated. MS analysis showed that Cys77 of
Whnt3a is modified with a palmitate group. This cysteine residue is conserved among the
Whnt family members. In 2006, it was reported that 3H-palmitate metabolic labeling of both
the WT and a cysteine mutant (C77A) of Wnt3a were resistant to neutral hydroxylamine (pH
7.0), which was used to specifically cleave thioester linkages but leave oxyester and amide
bonds intact.”1® These observations suggest that Wnt3a undergoes another type of acylation.
Truncation together with site-directed mutagenesis demonstrated that the conserved Ser209
residue of Wnt3a is required for acylation. Unexpectedly, a monounsaturated palmitoleoyl
(C16:1) moiety was found to be attached to Ser209 via an oxyester linkage. Mutation of
Ser209 yielded nonfunctional and poorly secreted Wnt3a protein. However, one of the Wnt
proteins, Wnt8/WntD, lacks the corresponding serine but is secreted normally.”16

Subsequently, an imaging method using click chemistry with bioorthogonal fatty acids and
in situ proximity ligation was developed, which allowed the first visualization of acylated
Wht proteins in the cellular context.”94 Their results demonstrated that Wnt3a is acylated
only on Ser209 and not on the originally reported Cys77, consistent with the crystal
structure of Wnt protein reported in 2012.717
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5.1.1. Wnt Serine Acyltransferase and Its Inhibitors—Porcupine (PORCN), a
member of the membrane-bound O-acyl-transferase (MBOAT) family,”18 is thought to
catalyze the transfer of acyl groups to the serine residue of Wnt proteins. Mutations in
PORCN abrogate both the activity and the secretion of Wnt and result in early embryonic
lethality in mice.”® Mutations in human PORCN lead to focal dermal hypoplasia, an X-
linked developmental disorder.”20 The catalytic mechanism of PORCN has not been
established conclusively partly owing to its hydrophobic nature. However, the highly
conserved histidine and asparagine residues among all 11 human MBOAT family members
are considered putative catalytic sites.”18 Mutations of the conserved His341 residue ablate
the activity of PORCN, whereas the conserved Asn306 is not required for PORCN
acyltransferase activity.”2! Truncation of either the N- or C-terminal domain of PORCN
causes destabilization and inactivity.”?2 PORCN is palmitoylated mainly at Cys187, which is
likely catalyzed by DHHCs. A PORCN C187A mutant showed modestly increased fatty
acylation and signaling activity of Wnt3a.04

Considering the broad biological roles of Wnt signaling, substantial effort has been made to
develop potent agonists and antagonists of the Wnt signaling pathway. The most widely used
small-molecule agonist inhibits glycogen synthase kinase 3,723 a component of the B-catenin
destruction complex, thus leading to the stabilization of B-catenin and activation of its
downstream gene transcription. To inhibit the Wnt signaling pathway, a synthetic chemical
library was screened, which led to the identification of two classes of highly selective and
powerful inhibitors: inhibitor of Wnt production 1 (IWP-1; Figure 28) and inhibitor of Wnt
response.’24 The former interacts with and inhibits PORCN specifically, and the latter
abolishes the destruction of Axin proteins, which suppress Wnt signaling.”24725 Because
PORCN is hypothesized to fatty-acylate Wnt proteins exclusively, the development of
inhibitors similar to IWP-1 will allow the specific targeting of Wnt-involved biological
processes without affecting others.

Additional PORCN inhibitors have been developed, including IWP-L6,726 LGK974,727 and
IWP-01728 (Figure 28). IWP-L6 potently inhibited Wnt-mediated branching morphogenesis
in cultured embryonic kidneys.”26 LGK974 potently inhibited tumor growth in a murine
mouse mammary tumor virus—Wnt1 breast cancer model and a human HN30 head and neck
squamous cell carcinoma model, but it had no effect on cells from several other human
cancer cell lines, such as brain cancer and colon cancer.”2” GNF-6231 (Figure 28), a
compound similar to LGK974, has also been reported.’2°

5.1.2. Extracellular Wnt Serine Deacylase—Unlike cysteine palmitoylation which
usually undergoes multiple cycles of acylation and deacylation, the O-palmitoleate
modification of Wnt was long thought to be irreversible given the presence of the more
stable ester bond compared with a more labile thioester bond. In 2015, Notum, a secreted
Whnt antagonist, was identified as the enzyme that deacylates the O-palmitoleic group of
secreted Wnt protein.”30 The crystal structure of catalytically inactive human Notum S232A
in complex with a palmitoleoylated peptide derived from human Wnt7a shows that a large
hydrophobic pocket accommodates the palmitoleoyl group. A “kink” in the
monounsaturated hydrocarbon chain is positioned at the base of the cavity surrounded by
Notum 11e291, Phe319, and Phe320. Notably, the lipid-binding cavity of Notum seems
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unable to accommodate saturated fatty acids (C14:0/C16:0). Kinetic and MS analyses
further proved that Notum is an esterase using both Wnt peptide and protein substrates.
Notum has a canonical a/p-hydrolase fold bearing the hallmark serine-histidine—aspartic
acid catalytic triad, and it inactivates Wnt signaling by deacylating Wnt protein
extracellularly and causing Wnt3a and Wnt5a to form oxidized oligomers.”3! During
development, Notum is required for neural and head induction via the inactivation of Wnt
signaling pathway.

5.1.3. Functions of Wnt Serine Acylation—Wnt serine acylation is crucial for the
binding of Wnt to its receptor. The structure of Xengpus Wnt8 in complex with its co-
receptor Fz8 CRD in mice suggested that serine acylation is required for high-affinity
interaction between Wnt and Fz8 (Figure 29). 717 Their study revealed two extending
domains, an N-terminal domain and a C-terminal domain (see Figure 29) of Wnt. Ser187 is
located at the tip of the N-terminal domain and is modified by a palmitoleoyl group,
consistent with the results of a previous MS study. The palmitoleoyl group inserts deeply
into a hydrophobic tunnel of the Fz8 CRD (see Figure 29). The conserved C-terminal
domain of Whnt also interacts with a hydrophobic core of the Fz8 CRD. Notably, this
structure revealed that instead of being palmitoylated, the conserved Cys77 residue forms a
disulfide linkage, which supports the hypothesis that instead of being dually lipidated, Wnt
proteins are lipidated only on the conserved serine residue.

Whnt serine acylation is critical for intracellular trafficking. Wnt is translated in the rough ER
and then translocates into the ER lumen, in which glycosylation and fatty acylation are
catalyzed by an oligosaccharyl transferase complex and PORCN, respectively. The
acquisition of membrane-association allows modified Wnt to exit the ER for anterograde
transport. In the Golgi complex, two cargo receptors, Wntless’32-734 and p24,735.736 pind
Whnt and escort it to the cell surface. Serine acylation is required for the interaction between
Whtless and Whnt proteins.”37:738 Whtless is recycled from the plasma membrane to the
Golgi complex via endosome trafficking mediated by a retromer complex for the next round
of Wnt secretion.”3?

Whnt serine acylation may also be important for extracellular transport. Lipoprotein particles
are hypothesized to be long-range transporters of Wnt morphogen.”4 In mammalian cells,
Wnt3a co-fractionates with ApoB100 and associates with high- and low-density
lipoproteins.” The lipid modification on Wnt may contribute to the interaction with
lipoproteins and further assembly into secretory particles.

5.2. N-terminal Cysteine N-Palmitoylation of Hedgehog

Hedgehog (Hh) signaling plays major roles in embryonic development and malignant
tumorigenesis in pancreatic, gastric, and lung cancers. Mammals have three Hh family
members, Sonic Hedgehog (Shh), Indian Hedgehog, and desert Hedgehog, among which
Shh is the best studied. The Hh ligand binds to its transmembrane receptor, Patched, which
then activates Smoothened, leading to the nuclear translocation of Gli transcription factors
and activation of downstream gene expression. Hh proteins are initially synthesized as 45
kDa precursor proteins. Upon cleavage of an N-terminal signal peptide, Hh protein
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undergoes both C-terminal autoprocessing to incorporate a cholesterol modification and N-
terminal cysteine palmitoylation via an amide linkage, thus generating a 19 kDa mature form
of the Hh signaling molecule.”42

Unlike the extensively studied cysteine palmitoylation via a labile thioester bond, Hh
proteins are modified with a palmitoyl group at the N-terminal cysteine through a stable
amide linkage. Two possible mechanisms have been proposed for this unique reaction
(Figure 30). The first posits that palmitoylation initially occurs on the sulfhydryl group of
the cysteine side chain. The thioester intermediate then rearranges to an amide linkage via an
intramolecular S-to-N shift.”43 The second mechanism proposes that N-terminal
palmitoylation occurs directly via an enzymatic reaction similar to that of N-terminal
myristoylation. The second model is supported by evidence that N-terminal-blocked Shh
proteins cannot be palmitoylated and, more importantly, no thioester-linked palmitoylated
intermediate has been detected.’44 The first six amino acids of Hh are reportedly sufficient
for palmitoylation by Hedgehog acyltransferase (Hhat).”#> When the N-terminal cysteine is
mutated to alanine, no acylation occurs, but the cysteine-to-serine mutant is acylated at
reduced levels.”4>

5.2.1. Hh Acyltransferase and Its Inhibitors—In 2001, three research groups
discovered that in Drosophila melanogaster, the palmitoylation of Hh protein is catalyzed by
a member of the MBOAT family called Skinny Hedgehog, Sightless Hedgehog, Central
missing, or Rasp.”46-748 The mammalian homolog of the corresponding Hh
palmitoyltransferase is called Hhat. In Hhat-deficient mice, Hh proteins are not
palmitoylated, and the mice exhibit impaired signaling activity evidenced by defects in
neural tube formation and limb development.”4® Moreover, the depletion of Hhat has been
shown to reduce tumor growth in a mouse xenograft model of pancreatic cancer.”>9 Hhat is a
~50 kDa multiple-span transmembrane protein of the MBOAT family, and its enzymatic
activity has been demonstrated with in vitro biochemical assays.’4* A biochemical study
also showed that the N- and C-terminal variable regions are central to Hhat stability and
activity.”>1 Later studies showed that Hhat has 10 transmembrane domains and two re-entry
loops. The catalytic histidine residue is in the loop on the luminal side, whereas the
conserved aspartate residue is on a cytosolic loop.”52.753

Several inhibitors have been developed to suppress the Hh signaling pathway, mostly by
targeting downstream components including the Smoothened or Gli proteins.”* A high-
throughput screen identified small-molecule inhibitors for Hhat, such as RU-SKI 43 (see
Figure 28),7%° which inhibits Hhat palmitoyl transferase activity specifically on Shh proteins
both in vitro and in cells. However, later studies showed that RU-SKI 43 has off-target
effects and that its cellular toxicity is unrelated to its effect on Hhat. By contrast, a new
analogue, RU-SKI 201, is a specific inhibitor of Hhat with no off-target effects reported.’>6

5.2.2. Functions of Hh Palmitoylation—Hh palmitoylation is key for the proper
secretion and signaling activity of Hh. Although mutation of the Shh N-terminal cysteine to
serine (C25S) does not affect Shh localization in the lipid raft, the C25S mutant cannot form
a soluble multimeric protein complex thought to be the major active component for Hh
signaling.”® Notably, apart from lipidation, a conserved lysine/arginine residue in a
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predicted interaction interface has also been demonstrated to be crucial for Hh multimeric
complex formation by contributing to electrostatic interactions.”>’ Furthermore, Hh
oligomers co-localize with heparan sulfate proteoglycans on the surface of Hh-producing
cells and assemble with lipoprotein particles, which mediate long-range Hh signaling
activity and contribute to the formation of a morphogen concentration gradient during
embryonic development, 40757

5.3. Cholesterol Modification of Hh

Apart from unusual N-terminal cysteine palmitoylation, Hedgehog proteins also undergo a
unique auto-cleavage process that incorporates a cholesterol modification and releases the C-
terminal domain.”>8.759 The two-step mechanism for Hh autoprocessing is similar to that of
intein self-splicing proteins (Figure 31). First, the sulfhydryl group of a cysteine residue
attacks the carbonyl of the preceding glycine residue to form a thioester linkage. Then, the
labile thioester intermediate is attacked by the 3B-hydroxyl group of a cholesterol molecule
to generate an oxyester bond and liberate the C-terminal autoprocessing domain.

Both azido- and alkyne-modified cholesterol analogues have been synthesized and used to
label modified Hh proteins.”60.761 Compared with the azido analogue, the alkyne analogue is
more efficient for labeling Hh.761 These analogues allow the installation of fluorescence or
affinity probes for in-gel visualization and affinity purification.

C-terminal cholesterol modification is mainly responsible for the release of dually lipidated
Hh proteins from the cell surface with the aid of Dispatched, a 12-pass transmembrane
protein, and a secreted protein, Scube.”62:763 Notably, Dispatched and Scube recognize
different parts of the cholesterol molecule, which suggests a hand-off mechanism
reminiscent of the transfer of free cholesterol between Niemann-Pick disease proteins NPC1
and NPC2 during the exit of cholesterol from late endosomes.”52 However, cholesterol is not
absolutely required for Hh signaling activity even though the absence of the modification
reduces signaling potency.”53 Moreover, several lines of evidence have shown that the
cholesterol moiety is required for the short- and long-range distribution of Hh morphogen.
Cholesterol incorporation restricts Hh diffusion by enhancing hydrophobic interactions with
the plasma membranes of adjacent cells and thus increases short-range distribution.”>8 On
the contrary, for long-range transport mediated by lipoprotein particle carriers,”4 cholesterol
modification contributes to the partitioning of Hh into particles and the formation of the
soluble multimeric complex.”64

5.4. Serine Octanoylation on Ghrelin

In 1999, the search for the ligand of growth hormone secretagogues receptor (GHSR) led to
the discovery of a polypeptide ghrelin known as the “hunger hormone.”65 By binding to
GHSR, ghrelin stimulates growth hormone release from the anterior pituitary and helps
regulate energy homeostasis. The ghrelin gene is first transcribed into the 117-residue
preproghrelin, which is then cleaved into the 94-residue proghrelin via the loss of the N-
terminal signal peptide. Further processing of proghrelin yields a 28-residue ghrelin peptide
that is released into the circulation.”6
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Ghrelin is the only mammalian peptide hormone known to be modified with an octanoyl
group on the third serine residue,”5% which is conserved from rats to humans. The initial
report of ghrelin peptide indicated that only acylated ghrelin is functional and able to
activate GHSR. Des-acyl ghrelin has long been considered a degradation product of acylated
ghrelin. However, studies have shown that des-acyl ghrelin can antagonize acylated ghrelin
and act as an independent hormone, likely via binding to its own receptor.”66

In 2008, two research groups independently discovered the acyl transferase, ghrelin
octanoyltransferase (GOAT), that adds the octanoyl group onto ghrelin. Similar to PORCN
and Hhat, this enzyme belongs to the MBOAT family that resides in the ER.718 One group
overexpressed all 16 mouse MBOAT family members and found that only the
overexpression of GOAT dramatically increased the hydrophobicity of ghrelin.”” Another
group discovered GOAT by knocking down potential MBOAT family proteins and
monitoring the reduction in ghrelin octanoylation with matrix-assisted laser desorption
ionization time-of-flight MS.768

Mutation of the conserved histidine or asparagine residue of GOAT completely abolishes its
enzymatic activity. GOAT exhibits promiscuity toward various fatty acyl groups varying
from C2 to C14.768 GOAT contains 11 transmembrane domains and one reentrant loop.
Similar to Hhat, GOAT has a catalytic histidine in the ER lumen, whereas the asparagine
residue is on a cytoplasmic loop.”®® Purified GOAT can accept a minimal five-residue
ghrelin peptide as a substrate, and the N-terminal glycine is required for recognition by
GOAT.’70

The identification of GOAT allowed the mechanism-based development of antagonists that
could potentially prevent obesity. A pentapeptide inhibitor derived from the first five N-
terminal amino acids of proghrelin was developed and further improved by replacing the
oxyester linkage with a more stable amide linkage on the third serine residue.”’! Later,
developed a bi-substrate mimic peptide-based inhibitor, Go-CoA-Tat, was developed, which
integrated the binding affinity of both substrates, octanoyl-CoA and ghrelin peptide, by
linking them with a non-cleavable bridge.””? Go-CoA-Tat inhibited GOAT efficiently and
selectively in mice, and the intraperitoneal administration of GO-CoA-Tat improved glucose
intolerance and reduced weight gain in WT mice but not in ghrelin-deficient mice. Several
non-peptide small-molecule inhibitors for GOAT have also been reported, including some
triterpenoid compounds that act as covalent reversible inhibitors.””3.774 However, the in vivo
effects of these compounds have not been reported.

5.5. MBOATs

Members of the MBOAT enzyme family transfer fatty acyl groups to the hydroxyl moiety of
either protein side chains or small hydrophobic lipid molecules. In 2000, Hofmann
discovered the MBOAT family through bioinformatics analysis,”18 thus leading to the
subsequent identification of several other family members at the biochemical level. MBOAT
family members contain multiple transmembrane domains and share two common putative
catalytic residues: histidine and asparagine (Table 10). The active histidine residue is
surrounded by a stretch of hydrophobic amino acids, whereas the asparagine site is
embedded within a hydrophilic region. Both residues are highly conserved among MBOAT
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family members and required for enzymatic activities, with the exception of PORCN, in
which the conserved asparagine is not required for activity.”? Human MBOAT family
members can be characterized into three subclasses. Class | enzymes, including acyl-CoA
cholesterol acyltransferase 1 and 2 (ACAT1/2)775:776 and diacylglycerol acyltransferase 1
(DGAT1), are mainly involved in neutral lipid biosynthesis.”’” ACAT1/2 catalyze
cholesterol esterification using oleoyl-coA and are potential drug targets for the treatment of
Alzheimer’s disease. DGAT1 catalyzes the biosynthesis of retinyl esters, wax esters, and
triacylglycerol.”8 Class 1| MBOAT enzymes acylate protein substrates and consist of
PORCN, Hhat, Hhat-like,”’® and GOAT (see sections 5.1 and 5.2). The third subgroup
belongs to the lysophospholipid acyltransferases (LPAT) family, which is involved in the
phospholipid remodeling process. The fatty acid motif at the C2 position of a
glycerolphospholipid can be cleaved by phospholipase A2 to produce lysophospholipid,
which is reacylated by LPATS to diversify fatty acids at the C2 position.
Lysophosphatidylethanolamine acyltransferase 1 (LPEATL), lysophosphatidylcholine
acyltransferase (LPCAT) 3, LPCAT4, and lysophosphatidylinositol acyltransferase 1
(LPIAT1) constitute the third class of MBOATS.”80

Serine Palmitoylation

Histone H4 is reportedly palmitoylated on Ser47. Histone H4 serine palmitoylation occurs in
a CaZ*-dependent manner, and LPCAT1 is the acyltransferase of histone serine
palmitoylation.694 LPCAT1 acylates lysophosphatidylcholine to generate the pulmonary
surfactant dipalmitoylphosphatidylcholine. Even though its name is similar to some of the
MBOAT proteins mentioned above, LPCAT1 belongs to a different group of enzymes that
contain only one transmembrane domain. Under normal conditions, LPCAT1 is found
mainly in the cytosol. When the intracellular Ca2* concentration increases, LPCAT1
translocates to the nucleus and promotes H4 palmitoylation, which is proposed to increase
mRNA synthesis through an unknown mechanism.694

5.7. Lysine Acylation

Protein lysine residues are modified by many acyl groups from various acyl-CoA molecules
produced during cellular metabolism, such as acetyl-CoA, propionyl-CoA, butyryl-CoA,
succinyl-CoA, crotonyl-CoA, and long-chain fatty acyl-CoA."81 These modifications
regulate various aspects of cell biology, most prominently epigenetics and metabolism. This
section discusses the long-chain fatty acylation of protein lysine residues.

Escherichia colihemolysin, a pore-forming toxin, undergoes lysine myristoylation,’82 and
this reaction is necessary for toxin activity. The myristoylation of hemolysin requires a
specific acyl transferase that uses a myristoyl group tethered to the acyl carrier protein as the
myristoyl donor.

In mammalian cells, the first protein reported to contain myristoyl lysine was tumor necrosis
factor-alpha (TNFa.).”8 This discovery was made during the study of proteins that are
myristoylated but lack an N-terminal glycine, which is the site for the well-known N-
terminal glycine myristoylation. TNFa is a type 1l membrane protein with a single
transmembrane domain. Lysine myristoylation occurs on Lys19 and Lys20 in the
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intracellular N-terminal domain. Similarly, interleukin-1 alpha is myristoylated on Lys82
and Lys83 in the propiece, catalyzed by an unidentified enzyme in monocyte lysate.”84 Lens
integral membrane protein aquaporin-0 reportedly undergoes lysine palmitoylation and
oleylation. At present, the lysine acyltransferases remain unidentified.

The function of lysine fatty acylation in mammalian cells has been increasingly recognized
owing to studies of a class of enzymes called sirtuins, which have begun to shed light on the
function of this acylation. Sirtuins regulate many important biological processes, including
transcription, metabolism, genome stability, and aging.”85-787 They were thought to be NAD
*-dependent protein lysine deacetylases.” However, several of the seven mammalian
sirtuins lack efficient deacetylase activity. Among them, SIRT5 is found to be an efficient
desuccinylase and demalonylase,”8® whereas SIRT6 can remove long-chain fatty acyl groups
efficiently.”%0 One of the physiological substrates for the defatty-acylase activity of SIRTS is
TNFa.”0 Defatty-acylation of TNFa on Lys19 and Lys20 by SIRT6 promotes the secretion
of TNFa, which provides the first clue about the physiological function of lysine fatty
acylation. One study has shown that the lysine fatty acylation of TNFa targets TNFa
primarily to the lysosomes for degradation.”®1 However, the exact mechanism through which
fatty acylation promotes this targeting remains unknown. Notably, although the original
report suggested that TNFa. is myristoylated, later studies of SIRT6-TNFa have suggested
that palmitoylation might be more abundant because Alk14 produces stronger labeling than
Alk12.

A more notable development is the finding that Ras-related protein R-Ras2 is fatty-acylated
on lysine residues near the C-terminal, where the prenylated and palmitoylated cysteines
reside.”®2 Similar to cysteine palmitoylation, lysine acylation promotes the plasma
membrane targeting of R-Ras2. At the plasma membrane, R-Ras2 is more active and turns
on the phosphatidylinositol 3-kinase (PI13K)/AKT signaling pathway, which leads to
increased cell proliferation. Furthermore, R-Ras2 lysine fatty acylation can be reversed by
SIRTS6, a known tumor suppressor.”92:793 The regulation of R-Ras2 and thus PI3K/AKT
signaling may underlie this tumor suppressor role.”92 The R-Ras2 lysine acylation study®°
suggests that similar to cysteine acylation, lysine fatty acylation may have key biological
functions.

Studies of sirutins have also suggested that lysine fatty acylation may be more abundant than
previously thought. Data from our laboratory and others have shown that several mammalian
sirtuins, such as SIRT1, SIRT2, and SIRT3, can remove long-chain fatty acyl groups with
reasonable catalytic efficiency.”94 A zinc-dependent histone deacetylase, HDACS, also
shows defatty-acylation activity in vitro.”9 These sirtuins and HDAC may remove fatty acyl
groups from various protein lysine residues in vivo, although the exact substrate proteins
remain to be identified. A sirtuin from the malaria parasite was also demonstrated to prefer
fatty acyl lysine over acetyl lysine, which suggests that protein lysine fatty acylation also
occurs in this parasite.’%6
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6. Concluding Remarks and Perspectives

This section highlights unaddressed fundamental questions in protein lipidation, the
difficulties associated with addressing these questions, and potential solutions to overcoming
these difficulties. Protein lipidation is clearly abundant and plays critical roles in biology.
However, the detailed mechanistic understanding of the functions of lipidation is incomplete.
Remarkable phenotypic observations have been made in many cases, but the fundamental
mechanisms underlying these observations is lacking. When a lipid modification affects the
activity of the protein being modified, the underlying mechanism is unknown in most cases.
Does membrane association increase the chances of the protein interacting with its binding
partners or substrates that are also membrane-associated? Or does the modification change
the conformation of the protein, thereby affecting the binding of its partners or catalysis? Or
is the modification directly involved in the binding interaction? Answering these questions
requires structural information that may be difficult to obtain because many of the targets are
membrane proteins or membrane-associated proteins. Although acquiring the structures of
membrane proteins is becoming more tractable, it still requires tremendous effort. Therefore
techniques such as hydrogen exchange MS”97 may be more applicable. Technology that
facilitates the preparation of membrane proteins, such as nanodiscs,”98 will also be helpful
for these studies.

Even for membrane targeting, specific questions must still be answered. For example, how
can the same modification target different proteins to different organelles (e.g., N-terminal
glycine myristoylation targets certain proteins to the mitochondria and others to the plasma
membrane)? Do lipid modification and its local environment have intrinsic affinity for
different membranes, or are different trafficking machineries engaged by the modified
proteins? We do not think significant technical challenges are associated with addressing
these questions. By contrast, the difficulty might be the complexity of the situation (e.g., the
existence of different trafficking machineries).

The dynamic regulation of lipid modification is another area that has not been thoroughly
investigated. For example, can the metabolic or nutritional status of a cell affect protein
lipidation? Can certain signaling pathways affect lipid modifications? This area is a key
research direction because it may provide another level of understanding of the
physiological processes involving protein lipidation. As a reference point, the importance of
protein phosphorylation would not have been appreciated without knowing the dynamics of
protein phosphorylation. Our investigation of TNFa lysine fatty acylation indicates that the
level of fatty acids in the cell medium can affect the secretion of TNFa., which suggests that
the metabolic or nutritional status of cells can affect protein lipidation and therefore protein
function.”®0 Currently, the most widely adapted technology to detect protein lipidation is
metabolic labeling with chemical probes. However, this approach is difficult to apply to
studies of the dynamic regulation of protein lipidation by metabolic or nutritional status. The
use of chemical probes unavoidably changes the metabolic status of the cells, and these
probes are challenging to use in whole animals. From this perspective, the most urgently
needed tools are antibodies or their equivalents that can be used to detect protein lipidation.
Currently, no antibodies are available for any of the lipid modifications discussed in this
review, perhaps because the antigens used to immunize animals might nonspecifically
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associate with cell membranes and therefore cannot be effectively seen by the immune
system. If this is true, then certain in vitro systems for antibody development (aptamers
SELEX or phage display) may be useful alternatives to the development of such antibodies.

In addition to questions that are general to all lipid modifications, questions specific to
certain lipidations also remain. Cysteine palmitoylation, by far the most complex of all
protein lipid modifications, still requires elucidation. For example, the substrates and
functions of each DHHC are largely unknown. No efficient inhibitors have been developed
to determine whether any DHHCs can be pharmacologically targeted to treat human diseases
(the most commonly used inhibitor to date is 2-BP, which has multiple
drawbacks®12:522,799.800) The reversibility of cysteine palmitoylation is also of great
interest. Even though depalmitoylases have been reported, the extent to which cysteine
palmitoylation is regulated by enzymatic depalmitoylation is unknown. For the MBOAT
family of protein O-acyltransferases, a particularly compelling question is whether, similar
to other lipidation enzymes, they have multiple substrate proteins. For lysine fatty acylation,
pressing questions include how it occurs, how abundant it is, what biological functions it
has, and how it achieves these functions.

Since the late 1990s, tremendous progress has been made in elucidating protein lipidation.
Given the enormous body of knowledge accumulated and the availability of numerous tools
and technologies in this field, progress in the coming decades will be even more impressive,
and many of the questions raised in this review will be satisfactorily addressed.
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Chem Rev. Author manuscript; available in PMC 2019 February 14.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Jiang et al. Page 97

_, isoprene unit

2 % WL/\)\
’0’#\0"%\0 Z 7 Z Sl N
00
farnesyl diphosphate (FPP) Farnesylation by FT
Cys—SH
29
’O;Z\O’FI"O 7 Z 7 Z /cys,SM/\/L
geranylgeranyl diphosphate (GGPP) )
Geranylgeranylation by GGT-1 or RGGT
SH D I o GG
FPP + FT RCE1 ICMT
(JN aaX m QN aaX — N OH — i 0-CH,
+ - i ;
H o9 HJ inER Ho in ER Rl
(CaaX motif)

I Y. .
- CysCys »—CysXCys ————> CysCys - CysxCys GG: geranylgerany! group
(CC motif) (CXC motif)

Figure 2.

Protein prenylation.

Chem Rev. Author manuscript; available in PMC 2019 February 14.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Jiang et al. Page 98

a subunit g.% asubunit o g
& . . ) &N
3 tg %& Ig-like & e
©, ddmain £33 >R

; O S5 Tir)

LTy V/a &
o2
i 23
d

J

I‘.‘;'\.

bt
SR T oo

(;

ASp297p_FT

Asp269p_GGT-1

Asp238)_RGGT
¢ Cys

ek @ )—Y

= S k

P His3e2p_FT Cys299p_FT

y His321p_GGT-1, Cys271p_GGT-1

His290%_RGGT Cys240p_RGGT

H

Tyr361p_FT
Phe324_GGT-1
Phe293)_RGG|

Trp102_FT.
Thrdgp_GGT-1
Serd8i_RGGT

. &
Y
Ay

Rab7

Figure 3.
(A) Protein structures of FT (PDB ID 1FT1), GTT-1 (PDB ID 1N4P), and RGGT (PDB ID

1DCE). The a subunits (green) of FT and GTT-1 are identical. There are extra leucine-rich
repeats (LRRs) and immunoglobulin (1g)-like domains in the a subunit of RGGT (a.-helices
in cyan and B-sheets in red). (B) Superimposition of the B subunits of FT (cyan), GGT-1
(yellow), and RGGT (magenta) to show the structural homology. (C) The binding of
substrates versus product in GGT-1. Geranylgeranyl diphosphate (GGPP; indicated by a
GGPP analogue in magenta) rotates toward the cysteine in the CaaX peptide (PDB ID
1IN4Q) to form the prenylated product (green; PDB ID 1N4R). (D) Simultaneous binding of
GGPP (magenta) and the translocated prenylated product (green) at the active site of GGT-1
(PDB ID 1N4S). (E) The zinc binding site in the B subunit of FT (PDB ID 1D8D). (F) In FT,
GGT-1, and RGGT, conserved residues in the B subunits of prenyltransferases bind to zinc,
including an aspartate residue (Asp297p, Asp269p, and Asp238p, respectively), a cysteine
residue (Cys299p, Cys271p, and Cys240p, respectively), and a histidine residue (His362p,
His321p, and His290p, respectively). The zinc also coordinates with the cysteine residue of
CaaX peptides. (G) Binding position of isoprenoid diphosphate in prenyltransferases,
including FPP in FT (PDB ID 1FT2) and GGPP in GGT-1 (PDB ID 1N4P) and RGGT (PDB
ID 3DST). (H) Comparison of isoprenoid diphosphate binding in FT (PDB ID 1FT2), GGT-I
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(PDB ID 1N4P), and RGGT (PDB ID 3DST). FPP (pink) with Trp102p and Tyr361p (pink)
in FT, GGPP (green) with Thr49p and Phe324B (green) in GGT-1, and GGPP (yellow) with
Ser48p and Phe293p (yellow) in RGGT. In FT, the bulky Trp102p residue occupies the
space in which the fourth isoprene unit of GGPP binds in GGT-1 and RGGT. This residue
determines the isoprenoid specificity. (1) Protein structure of the RGGT-REP-1 complex
(PDB ID 1LTX). REP-1 is yellow. (J) Protein structure of the prenylated Rab7-REP-1
complex (PDB ID 1VGO0). REP-1 is yellow and Rab7 is blue. All protein structures were
made using PyMol with the PDB files.
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General reaction scheme with an ordered sequential kinetic mechanism for prenylation

catalyzed by FT and GGT-1. The kinetics data for farnesylation and geranylgeranylation are
from reference 22a and 23, respectively.
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Figure7.
Plasma membrane targeting involving prenylation and a second signal, including (1)

upstream palmitoylation, (I1) downstream palmitoylation, and (111) upstream polybasic
domain (typically six lysine residues).
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Figure8.
Protein structures of guanosine diphosphate dissociation inhibitors (GDIs) in complex with

prenylated proteins. (A) Prenylated Cdc42 (green)-RhoGDI (cyan) complex (PDB 1D
1DOA), (B) prenylated Racl (green)-RhoGDI (cyan) complex (PDB ID 1HH4), (C)
prenylated RhoA (green)-RhoGDI (cyan) complex (PDB ID 4F38), (D) prenylated Rheb
(green)-PDES (cyan) complex (PDB ID 3T5G), (E) prenylated YPT1 (green)-RabGDI
(cyan) complex (PDB ID 1UKV), and (F) doubly prenylated YPT1 (green)-RabGDI (cyan)
complex (PDB ID 2BCG). CBR, C-terminal-binding region. The prenyl moiety is shown in
purple or red. All protein structures were made using PyMOL with PDB files.
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Mechanism of RhoA membrane extraction by RhoGDI. GG, geranylgeranyl group.
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Farnesyltransferase inhibitors.
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Specific inhibitors of GGT-1 and RGGT and dual inhibitors of FT and GGT-1. ICsg, half-
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Chem Rev. Author manuscript; available in PMC 2019 February 14.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Jiang et al.

Page 108
(0]
(@]
B M-G-X-X-X-S/T/C
A mRNA
methionine 1
aminopeptidase
NH,-G-X-X-X-S/T/C s e Ry
mRNA 1 proteases
NMTs Nree
Myr-CoA
NMTs
Myr-G-X-X-X-S/T/C l Myr-CoA

mRNA

Myr-G«

Figure 12.
(A) Myristoyl modification at an N-terminal glycine residue. (B) Co-translational N-

myristoyl modification. (C) Post-translational N-myristoyl modification.
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Figure 13.
(A) Crystal structure of S. cerevisiae NMT in complex with a non-hydrolyzable myristoyl-

CoA analogue and a peptide substrate (PDB ID 11I1D). (B) Phe170 and Leul71 form the
oxyanion hole to stabilize the negative charge developed on the carbonyl oxygen of
myristoyl-CoA during catalysis. (C) The hydrophobic myristoyl group binds in a deep
pocket in NMT. (D) The peptide substrate recognition site of NMT, which explains the
peptide sequence specificity of NMT. All protein structures were made using PyMOL with
PDB files.
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Figure 14.
Myristoyl switch mechanisms. (A) The phosphorylation of N-glycine myristoylated protein

stimulates membrane dissociation by interrupting the electrostatic interaction between
proteins and the phospholipid. (B) Ligand binding enhances the membrane association of N-
glycine myristoylated proteins. (C) Proteolysis triggers the release of N-glycine
myristoylated protein from the membrane.
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N-Glycine myristoylation may facilitate the trans interaction between Golgi reassembly

stacking proteins by limiting conformational flexibility.
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Figure 16.
The myristoyl switch that regulates c-Abl activity. The c-Abl structure (PDB ID 10PL) in

complex with myristoyl and a kinase inhibitor is superimposed on the c-Abl structure
without bound myristoyl (PDB ID 1M52). In the absence of myristoyl, an extended a-helix
(al, grey) prevents the binding of the SH2 domain to the kinase domain. In the myristoyl-
bound state, the al helix is separated into two shorter helices, al (magenta) and al” (blue).
The al’ helix makes an abrupt turn to bind to the myristoyl group. This conformational
change leads to the docking of the SH2 domain at the kinase domain and subsequent
autoinhibition.
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Figure 17.

Structures and half-maximal inhibitory concentration (1Csg) values of representative
inhibitors developed for NMTs in various species (CaNMT: Candida albicans NMT;
HsSNMT1/2, Homo sapiens NMT1/2; PEINMT, Plasmodium falciparum NMT; PYNMT,
Plasmodium vivax NMT; and TONMT: Trypanosoma brucei NMT).
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Figure 18.
Reversible cysteine palmitoylation.
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Figure 19.

Predicted topology and domain structure of DHHCs. TMD, transmembrane domain.
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Figure 20.
Mechanism of DHHC-catalyzed cysteine palmitoylation.
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Figure 22.
Structures of reported palmitoylation inhibitors.
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Figure 23.
C-terminal sequences of Ras family members and Ras trafficking.
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Figure 24.
Bioorthogonal palmitic acid probes for the detection of protein palmitoylation.
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Figure 25.
Procedure of ABE method for the detection of protein S-palmitoylation.
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Figure 26.
Method for imaging palmitoylated proteins in cells.
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Figure 27.
Protein O- and N-acylation and protein C-terminal cholesterol esterification.
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Figure 28.
Inhibitors targeting Porcupine (PORCN) and Hedgehog acyltransferase (Hhat).
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Figure29.
Crystal structure of Xenopus Wnt8 in complex with the Frizzled-8 (Fz8) cysteine-rich

domain (CRD; PDB 4F0A). CTD, C-terminal domain; NTD, N-terminal domain.
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Figure 30.
Two proposed mechanism for the N-palmitoylation of Hedgehog (Hh) proteins.
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Figure 31.
Mechanism of C-terminal autoprocessing of Hh proteins.
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