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Abstract

Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine 

palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells 

and regulates numerous biological pathways, such as membrane trafficking, protein secretion, 

signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, 

including descriptions of proteins known to be modified and the functions of the modifications, the 

enzymes that control them, and the tools and technologies developed to study them. We also 

highlight key questions about protein lipidation that remain to be answered, the challenges 

associated with answering such questions, and possible solutions to overcome these challenges.
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1. Introduction

Lipids are essential molecules that compose cellular membranes, which provide the barriers 

and boundaries needed for cells to survive and proliferate. This confinement of cellular 

materials by cellular membrane structures necessitates cellular communication (i.e., cell 

signaling and membrane trafficking) with the extracellular environment and among cellular 

membrane organelles. Cell signaling and membrane trafficking rely on proteins that are 

secreted into the environment, embedded in cellular membranes, and reversibly associated 

with membranes. Not surprisingly, nature also uses lipids to control and regulate membrane–

protein interactions. These functions are achieved through two strategies. Certain proteins 

have evolved to bind specifically to certain lipid molecules. For example, some pleckstrin 

homology domains recognize specific phosphoinositides,1 and blood clotting factors 

recognize phosphatidylserine, which is found only in the inner leaflet of the plasma 

membrane.2 Another widely observed interaction strategy is the covalent modification of 

proteins by lipid molecules. These modifications are the focus of this review.

Lipidation occurs on numerous proteins and regulates many aspects of physiology. The 

effects of protein lipidation on cellular function are achieved by regulating protein–

membrane interactions, and perhaps somewhat surprising, protein–protein interactions, 

protein stability, and enzymatic activities. The lipid moieties added to proteins can be either 

fatty acyl or polyisoprenyl groups, and the modifications typically occur on the nucleophilic 

side chains of proteins (e.g., cysteine, serine, and lysine) and the NH2 group at the N-termini 

of proteins (Figure 1). Two lipid modifications occur at the C-termini of certain 

extracellular-membrane-associated proteins: cholesterol esterification and 

glycosylphosphatidylinositol anchoring (see Figure 1). This review focuses on the direct 

modification of protein nucleophilic residues by lipid molecules. 

Glycosylphosphatidylinositol anchors, which are attached to proteins with a carbohydrate 

moiety via multiple enzymatic steps, are not discussed herein, but excellent books and 

reviews are available.3–5

The review is organized by the type of lipid modification that occurs on various nucleophilic 

groups. For each modification, we discuss the enzymes that control the modification, the 

modified proteins, the functions of the modification, and the tools or technologies that have 

been developed to study the modifications. Each section is independent; however, certain 

modifications, such as cysteine palmitoylation, depend on other modifications (cysteine 

prenylation or N-terminal glycine myristoylation). Therefore, the sections are ordered so that 

that the occurrence and functions of various modifications are easy to understand.

2. Protein Prenylation

Prenylation is the addition of multiple isoprene units to cysteine residues near the C-termini 

of proteins. Up to 2% of the total cellular proteins in mammalian cells are prenylated.6 There 

are two types of prenylation—farnesylation and geranylgeranylation—which involve three 

and four isoprene units, respectively (Figure 2). The processes through which these 

modifications take place are also referred to in the literature as isoprenylation or 

polyisoprenylation. Technically, the most appropriate description is polyisoprenylation, but 
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the simpler term prenylation is more popular and is therefore adopted here. The majority of 

prenylated proteins are geranylgeranylated proteins.6 The linkage between farnesyl or 

geranylgeranyl groups and cysteine residues is a thioether bond, which is more stable than 

ester and thioester bonds. The general belief is that this modification is irreversible, and no 

enzyme that reverses this modification in intact proteins has been identified. However, a 

prenylcysteine lyase is thought to be present in lysosomes7,8 and cleave the thioether bond 

of prenylcysteines in the degradation of prenylated proteins.

In 1989, several studies reported that Ras proteins and lamin B are farnesylated at cysteine 

residues.9,10 These studies showed that farnesylation occurs on a C-terminal CaaX sequence 

motif (C: cysteine, a: an aliphatic amino acid, X: any amino acid), which provided the initial 

paradigm with which to predict whether a protein will be prenylated. Soon thereafter, protein 

geranylgeranylation was discovered in HeLa cells and Chinese hamster ovary cells.11,12 

Later, the C-terminal aaX was reported to be further cleaved by an endoplasmic reticulum 

(ER) protease, Ras-converting enzyme 1, or a-factor converting enzyme 1 after prenylation 

in the cytoplasm.13 The prenylated cysteine residue is then carboxylmethylated by another 

ER enzyme, isoprenylcysteine carboxylmethyltransferase (ICMT; see Figure 2).14

2.1. Protein Prenyltransferases

Three members of the protein prenyltransferase family are present in eukaryotes. Farnesyl 

transferase (FT) transfers the 15-carbon farnesyl group from farnesyl diphosphate (FPP) to 

substrate proteins. Geranylgeranyl transferase (GGT-1) catalyzes a similar reaction 

comprising the transfer of a 20-carbon geranylgeranyl group from geranylgeranyl 

diphosphate (GGPP). The substrate proteins of both FT and GGT-1 have typical C-terminal 

CaaX motifs for prenylation. Another protein prenyltransferase, Rab geranylgeranyl 

transferase (RGGT or GGT-2; see Figure 2), usually transfers two geranylgeranyl groups 

from GGPP to the C-terminal double-cysteine motif (CC or CXC) of Rab proteins.

2.1.1. FT and GGT-1—The first protein FT was isolated from rat brain in 1990.15 FPP, 

generated from mevalonate as an intermediate in the cholesterol biosynthetic pathway, was 

later shown to be the co-substrate of FT for p21Ras modification in vitro. Protein GGT-1 

was also first identified from rat brain tissue as a modifier of Ras proteins.16 This study 

showed that GGT-1 has distinct selectivity for substrate proteins with C-terminal CaaL 

motifs rather than those with CaaM or CaaS motifs, which are preferred by FT. The authors 

also revealed that both FT and GGT-1 are heterodimers sharing a common α subunit with 

different β subunits. Further studies with recombinant rat FT and GGT-1 confirmed that the 

enzymes have the same α subunit of 48 kD and homologous β subunits of 46 kD and 43 kD, 

respectively.17–19

Crystal structures of rat FT and GGT-1 were solved in 1997 and 2003, respectively (Figure 

3A)20,21 and showed that the major secondary structures of the α and β subunits are α-

helices. In the α subunit, 14 of 15 α-helices are folded into seven successive helical hairpins 

and arranged in a double-layer super helix as a crescent-shaped domain that wraps around a 

portion of the β subunits. The β subunits of FT and GGT-1 share 25% sequence identity and 

have similar overall structures (Figure 3B) consisting of 14 and 13 α-helices, respectively. 
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Twelve α-helices of the β subunits are folded into an unusual α-α barrel. Six parallel helices 

form the core of the barrel, and the other six form the outside of barrel, which is antiparallel 

to the inner core helices. One end of the barrel is blocked by the C-terminal loop of the β 
subunits, and the other end is open to the solvent and forms a deep hydrophobic pocket in 

the center of the barrel. This pocket has conserved aromatic residues that bind hydrophobic 

isoprene units of FPP and GGPP (Figure 3G).

The structures also reveal the location of the Zn2+ required for the enzymatic activities of FT 

and GGT-1.22,23 One zinc ion binds to the β subunit near the subunit interface (Figure 3E) 

and is coordinated by three conserved residues of the β subunit, Asp297β/Cys299β/His362β 
in FT and Asp269β/Cys271β/His321β in GGT-1 (Figure 3F).20,21 Ternary complex 

structures of FT or GGT-1 with peptide substrates and FPP or GGPP analogues show that 

the zinc ion is also coordinated with the cysteine thiol group in the C-terminal CaaX motif 

of the peptide substrates (Figure 3F),21,24 which is essential for the binding of CaaX 

peptides.

How do FT and GGT-1 achieve selectivity for FPP or GGPP? Binary complexes of FT with 

FPP and GGT-1 with GGPP provide clues about the mechanism for lipid length 

differentiation (Figure 3G).21,25 The diphosphate portion binds to a positively charged 

region at the top of the hydrophobic pocket near the subunit interface. The farnesyl portion 

of FPP binds in an extended conformation along one side of the hydrophobic pocket of the 

α-α barrel in the FT β subunit. The first three isoprene units of GGPP bind in a similar 

conformation within the GGT-1 β subunit, but the fourth isoprene unit is turned ~90° relative 

to the rest of the molecule. This positioning of the fourth isoprene unit indicates that Thr49β 
in GGT-1 is critical for lipid length discrimination because the corresponding position in FT 

is a bulky residue, Trp102β (Figure 3H). Phe324β in GGT-1 is also positioned near the 

fourth isoprene unit, whereas the corresponding residue in FT is Tyr361β. The hydroxyl 

group from Tyr361β might also help discriminate against GGPP in FT. Thus, steric 

hindrance in FT determines its preferential binding to FPP. A single mutation in FT, 

Trp102Thr, switches the co-substrate preference.21

The structures of GGT-1 in complex with the prenylated product reveal that GGPP rotates 

around the second isoprene unit to approach the thiol group of the cysteine in the CaaX 

peptide to generate the geranylgeranylated product while the other portion of isoprenoid 

retains its substrate binding position (Figure 3C). Product release from the GGT-1 active site 

requires the binding of fresh GGPP to displace the geranylgeranyl-peptide product (Figure 

3D).21 The binding affinity of FPP for GGT-1 is much weaker and thus, FPP cannot 

efficiently displace the complex of GGT-1 and the geranylgeranylated product. This feature 

contributes to the isoprenoid substrate selectivity of GGT-1 for GGPP over FPP. However, 

RhoB is reportedly farnesylated and geranylgeranylated efficiently by GGT-1,26 which 

indicates that GGT-1 has the capability to transfer both farnesyl and geranylgeranyl groups, 

and the choice of prenylation may depend on the nature of the substrate proteins and relative 

concentrations of FPP and GGPP. The FPP and GGPP concentrations measured are similar 

in several human cancer cell lines (about 0.1 pmol/106 cells in K562 cells and 2.0 pmol/106 

cells in MCF-7 cells).27 Notably, treating the cancer cells with a small molecule, zoledronic 

acid, dramatically increases the FPP concentration with minimal effects on GGPP 
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concentration.27 The levels of FPP (0.9–3.7 ng/mg protein) and GGPP (3.7–27.8 ng/mg 

protein) in human brain tissue have also been determined and showed a significantly higher 

concentration of GGPP.28,29 Thus, certain conditions or biological environments may affect 

the ratio of farnesylation to geranylgeranylation.

Based on kinetic studies15,30–34 and structures of FT in complex with substrates (FPP or its 

analogue and K-Ras4B C-terminal peptide) or products,20,24,25,35 an ordered sequential 

kinetic mechanism of farnesylation has been proposed (Figure 4). At the start of the 

reaction, a binary enzyme–substrate complex forms when FPP binds to the FT β subunit. 

Then, a ternary complex forms with the binding of the CaaX substrate. At the completion of 

the reaction, the farnesylated product remains in the active site until a new FPP displaces it; 

this step is the rate-limiting step.32,36,37 The resulting binary FT-FPP complex then enters 

the next round of the reaction. Geranylgeranylation catalyzed by GGT-1 is thought to follow 

the same reaction pathway, but detailed rate constants have not been reported.38 The results 

of a number of mechanistic studies that include stereochemical data and kinetic isotope 

effects data suggest that the transition states of FT- and GGT-catalyzed reactions have 

associative characteristics involving both the thiolate nucleophile and the diphosphate 

leaving group.39–42

2.1.2. RGGT—RGGT (also called GGT-2) transfers two geranylgeranyl groups from 

GGPP to the C-terminal CC or CXC motifs in Rab proteins. RGGT has two subunits, a 60 

kD α subunit and a 38 kD β subunit.43 Studies have shown that RGGT requires Rab escort 

proteins (REPs) to recruit substrate proteins for the geranylgeranylation reaction.43–45 

Unlike FT and GGT-1, RGGT cannot catalyze reactions with short peptides containing a 

Rab C-terminal prenylation motif or recognize Rab proteins alone. Mammals have two REP 

proteins, REP-1 and REP-2. REP-1 is encoded on the X chromosome, and REP-1 mutations 

cause X-linked retinal degeneration (choroideremia). The substrate specificities of the REP 

proteins are essentially unknown, but Rab27a, a protein that accumulates in an unmodified 

form in choroideremia, cannot be efficiently modified with REP-2.46,47 Except in the retina, 

the presence of functional REP-2 largely compensates for the loss of REP-1 in 

choroideremia patients, which suggests that REP-1 and REP-2 have significantly 

overlapping functions. The first crystal structure of RGGT demonstrated that there are three 

domains in its α subunit (Figure 3A): a helical domain, an immunoglobulin (Ig)-like 

domain, and a leucine-rich repeat domain.48 RGGTα and FTα or GGT-1α have only 22% 

sequence identity according to structure-based alignment. The helical domain of RGGTα is 

structurally similar to the α subunit of FT and GGT-1 and forms a crescent-shaped super 

helix with 15 α-helices. The other domains, leucine-rich repeat domain and Ig-like domain, 

are unique in RGGTα, and their functions remain unknown.

Twelve α-helices in the β subunit of RGGT create an α-α barrel, which resembles the α-α 
barrels in FTβ and GTT-1β (Figure 3B). In the central pocket of the RGGT α-α barrel, 

Ser48β has the same functional role as Thr49β has in GGT-1 to accommodate GGPP, 

whereas Trp102β at the same position in FT prevents GGPP binding (Figure 3G and 3H).49

As shown by the structure of the RGGT–REP-1 complex (Figure 3I),50 REP-1 has two 

domains: a large domain consisting of four β–sheets and six α-helices, and a small domain 
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with five α-helices. The interface between RGGT and REP-1 comprises two α-helices from 

the REP small domain and three α-helices from RGGTα. The interaction between RGGT 

and REP-1 is regulated by GGPP. Kinetics studies have demonstrated that REP-1 binds to 

RGGT with a Kd of 10 nM in the presence of GGPP,51 which is 100 times tighter than 

without GGPP.

The structure of monogeranylgeranylated Rab7 in complex with REP reveals that Rab7 

binds to the Rab-binding platform (RBP) on the side of REP large domain, and the REP C-

terminal binding region (CBR) associates with the Rab7 CBR-interacting motif (CIM) to 

form the binary complex (Figure 3J).47 Additional modeling experiments have shown that 

the prenylated C-terminus of Rab7 is harbored in the hydrophobic tunnel in the REP small 

domain to solubilize prenylated Rab7.47

Figure 5 shows the reaction pathway of Rab digeranylgeranylation by RGGT based on 

structural, computational, and biochemical studies.47,49–55 Rab and REP first form the 

binary complex, after which a high-affinity ternary complex of Rab-REP-RGGT is 

assembled via the interaction between the REP small domain and the RGGT α subunit. In 

this way, REP brings the Rab C-terminus to the active site of RGGT. Because RGGT does 

not bind its substrate peptide directly at the active site, the reaction is driven by 

concentration, and any cysteine presented by REP at the active site can be prenylated. This 

mechanism allows RGGT to modify more than 60 Rab proteins with unrelated C-terminal 

sequences. After the transfer of the first prenyl group from GGPP, a new GGPP molecule 

binds to the active site and displaces the substrate-conjugated isoprenoid. The mono-

prenylated substrate is then conjugated with the second isoprenoid, and the resulting double-

prenylated product is displaced by another new GGPP binding at the active site. The double-

prenylated Rab C-terminus associates with the REP lipid-binding pocket and induces the 

conformational change in the REP small domain. Then REP dissociates from RGGT and 

translocates into the cell membrane.

2.2. Protein Substrates of Prenyltransferases

Prenylation has been found only in eukaryotic cells, and most of the identified prenylated 

proteins are eukaryotic proteins. However, certain proteins from pathogenic bacteria can be 

prenylated by their hosts. Farnesylated proteins (substrates of FT) include Ras, Hdj2, nuclear 

lamins, and Rheb proteins.56 GGT-1 catalyzes the geranylgeranylation of Rac, RhoA, 

Cdc42, and the γ subunit of heterotrimeric G proteins.57 Most Rab proteins, with the 

exception of Rab8 and Rab13, are doubly geranylgeranylated by RGGT.58,59 Some proteins, 

such as K-Ras, N-Ras, and RhoB, are substrates of both FT and GGT-1.60,61 Prenylation 

Prediction Suite (http://mendel.imp.ac.at/PrePS/) is a Web-based tool that predicts whether a 

protein will be prenylated.

The originally discovered farnesylated and geranylgeranylated proteins provided the 

paradigm with which to identify protein substrates of prenylation. This paradigm is the C-

terminal CaaX motif. Later studies with short peptides and FT or GGT-1 showed that a 

protein substrate is farnesylated by FT if the terminal “X” is serine, methionine, or 

glutamine, whereas the substrate is geranylgeranylated by GGT-1 if X is leucine.62,63 Later 
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studies showed that this motif cannot fully describe the prenylated proteins or predict the 

prenylated substrates of FT or GGT-1.56,64

The screening of a CaaL peptide library for FT substrates revealed that FT can farnesylate a 

number of CaaL peptides,64 which is contrary to the CaaX paradigm describing CaaL as the 

canonical GGT-1 substrate sequence. Further screening with a large peptide library based on 

the human proteome identified two classes of FT substrates,56 one of which is farnesylated 

under multiple-turnover conditions and the other under single-turnover conditions. After the 

single-turnover substrate is modified by FT, the resulting product dissociates extremely 

slowly from the enzyme. Multiple-turnover substrates typically have CaaX sequences with 

phenylalanine, methionine, and glutamine at the X position, whereas the sequences of 

single-turnover substrates are more diverse. Computational techniques have also been 

applied to predict potential FT substrates65,66 and identified a novel substrate class with 

members that contain an acidic C-terminal residue (CaaD and CaaE).66 CVXX and CCXX 

peptide libraries were used to further probe the substrate specificity of rat FT and found 

several new sequences (e.g., CVIA, CVCS, CCIM, and CCVS) to be prenylation substrates.
67 These studies demonstrate that FT can farnesylate a wide range of peptide substrates. 

Elucidating the physiological relevance of these findings will require additional research 

efforts to validate the protein substrates corresponding to these peptide substrates in vivo. 

Using a yeast-based screening system for FT, randomization of aaX residues in the CaaX 

sequence motif showed that the second “a” strongly prefers small hydrophobic residues, 

whereas the first a and X have relatively more relaxed specificities.68 This study further 

expanded the list of prenylated substrates.

Bacterial effector proteins with C-terminal CaaX motifs were also found to be prenylated by 

their host prenyltransferases. Salmonella-induced filament A from Salmonella typhimurium 
is geranylgeranylated at the C-terminal CCFL by mammalian host GGT-1.69 The 

farnesylation of Legionella pneumophila ankyrin B (ANKB) at the C-terminal of CVLC by 

the host FT anchors ANKB to the Legionella-containing vacuole for the intravacuolar 

proliferation of the bacterium.70 Additional effector proteins with CaaX motifs in L. 
pneumophila were later shown to be prenylated by the host to facilitate their targeting to host 

organelle membranes in the process of intracellular infection.71,72

Viral proteins containing the C-terminal CaaX motif can also be prenylated by host 

prenyltransferases. One example of clinical relevance is the large antigen of the hepatitis 

delta virus. The prenylation of the large antigen is key for virus assembly.73,74 Most 

important, prenylation inhibitors have been shown to depress viral particle formation,75 and 

a phase 2A clinical trial showed that the prenylation inhibitor lonafarnib significantly 

reduces hepatitis delta virus levels in humans.76

2.3. Chemical Probes for Protein Prenylation

Since the discovery of prenylated proteins, various analogues of isoprenoid diphosphates 

have been synthesized and used to study the structures and reaction mechanisms of 

prenyltransferases and to visualize and identify prenylated proteins and prenyltransferases 

(Figure 6). Isotopic probes of FPP and GGPP including [1-3H]FPP and [1-3H]GGPP were 

originally used to validate the enzymatic activities of FT, GGT-1, and RGGT and elucidate 
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their selectivity for peptide substrates. The photo-affinity probes [3H]-DATFP-FPP, [3H]-

DATFP-GPP, [32P]DATFP-GPP, and benzophenone-GPP have also been applied to label FT 

enzymes.77–79 Methods using isotopic isoprenoid probes are usually not very sensitive and 

require long exposure time (days) for detection. Furthermore, these probes lack affinity tags 

for the isolation and identification of target proteins, which limits their applications. 

However, the isotopic native molecules [1-3H]FPP and [1-3H]GGPP have proved useful for 

validating whether the prenylated proteins identified in proteomics studies using other 

affinity probes are true substrates of FT, GGT-1, or RGGT. This confirmation is particularly 

critical because some studies have suggested that various farnesyl diphosphate analogues 

may differ in terms of protein substrate specificity and reaction rates with FT.80

Fluorine,81 vinyl,82 cyclopropyl, and tert-butyl groups83 have been incorporated into 

isoprenoid diphosphate analogues to study the farnesylation mechanism. As an 

immunogenic probe, an aniline-tagged isoprenoid diphosphate was shown to label several 

FT protein substrates in mammalian cells, which could be detected by the specific antibody 

raised against the aniline moiety.84 The corresponding aniline-tagged isoprenol, which is 

converted into the diphosphate in cells,85 was used to label cellular proteins metabolically 

before antibody-based detection.86

Fluorescent derivatives of isoprenoid diphosphate, such as didehydrogeranylgeranyl (ΔΔGG) 

diphosphate,87 7-nitro-benzo[1,2,5]oxadiazol-4-ylamino (NBD) FPP,88 and N-

methylanthraniloyl isoprenoid diphosphate,89 have been designed as efficient isoprenoid 

donors for prenyltransferases and used in high-throughput fluorometric assays to screen 

potential inhibitors of in vivo protein trafficking. To facilitate the labeling and enrichment of 

prenylated proteins from biological samples, biotin-functionalized geranyl pyrophosphate 

has been applied to identify and analyze prenylated mammalian proteins with engineered 

prenyltransferases.90 Such probes can help elucidate the mechanisms through which protein 

prenylation is regulated and the therapeutic effects of various agents. Although fluorescent 

and biotin probes are convenient for in-gel detection, high-throughput assays, or affinity 

purification, their relative large and bulky conjugated functional groups may interfere with 

recognition by prenyltransferases and perturb signaling pathways.

With click chemistry now being widely applied in biological systems, bioorthogonal 

reporters of protein prenylation have been developed via the incorporation of small alkyne or 

azide groups into isoprenoid diphosphates (Figure 6).91–95 These probes can be efficiently 

incorporated into prenylated proteins in vitro and are easily conjugated to various functional 

tags for fluorescence detection or affinity purification. Furthermore, alkyne- or azide-labeled 

isoprenols are cell-permeable and can be used to label prenylated proteins metabolically in 

live cells (Figure 6).91,95–100 Studies using these probes indicated that the substrate 

specificity of prenyltransferases may depend on the bioorthogonal probes used, and alkynyl-

isoprenoid probes are generally more sensitive than azido-isoprenoid probes.97 Studies of 

protein prenylation have historically focused on the Ras superfamily of G proteins. 

Proteomics studies using clickable probes have led to the identification of other proteins 

modified by prenylation, such as lamin B1, chaperonin DNAJA2, and zinc finger antiviral 

protein (ZAP).91,98,99 Recently, both alkyne-tagged isoprenols and isoprenoid diphosphates 
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have been used to identify prenylated proteins in the malaria parasite Plasmodium 
falciparum.101,102

Notably, cross-reactivity is observed when prenyl probes are used to identify prenylomes in 

cells. For example, known geranylgeranylated protein Cdc42 was identified by using an FPP 

probe,91 and alkynyl-farnesol is utilized by all three cellular prenyltransferases.97 However, 

such cross-reactivity may also be physiologically relevant, as RhoB is reportedly 

farnesylated and geranylgeranylated efficiently by GGT-1.26

2.4. Functions of Prenylation

2.4.1. Membrane Association—The prenyl group is hydrophobic and thus recruits 

soluble proteins to cellular membranes. In this mechanism, it is important to distinguish the 

plasma membrane from endomembranes (membranes of intracellular organelles such as the 

ER, Golgi, endosomes, lysosomes, and nucleus). Ras proteins were found to associate with 

the plasma membrane in a prenylation-dependent manner.9 Mutation of the prenylated 

cysteine residues or the blocking of isoprenoid biosynthesis abolished the prenylation of Ras 

proteins and their plasma membrane association. However, later studies suggested that 

prenylation is mainly responsible for targeting proteins to endomembranes.103 Specifically, 

the CaaX prenylation targets proteins to the ER and Golgi.103

The endomembrane targeting of prenylation explains why many prenylated proteins with 

CaaX motifs require additional membrane targeting motifs for plasma membrane 

localization, including cysteine palmitoylation (which provides greater hydrophobic affinity 

to the membranes) and a polybasic domain (which interacts electrostatically with negatively 

charged phospholipid head groups on the inner leaflet of plasma membranes; Figure 7). 

These additional membrane-targeting motifs aid the translocation of these proteins from 

endomembranes to the plasma membrane. For example, H-Ras and N-Ras undergo both 

cysteine prenylation and cysteine palmitoylation at the C-terminus. Although 90% of wild-

type (WT) H-Ras is associated with the plasma membrane, only 8% of a non-palmitoylated 

H-Ras mutant was found to do so,104 which indicates that both modifications are required 

for plasma membrane targeting. N-Ras has only one palmitoylated cysteine, but H-Ras 

contains two. Compared with the single cysteine palmitoylation on N-Ras, the double-

cysteine palmitoylation on H-Ras reportedly promotes trans-Golgi localization.105

A similar model applies in the targeting of farnesylated proteins to other membrane 

organelles: farnesylation targets proteins to endomembranes, and other signals help target 

proteins to specific membrane organelles. For example, prelamin A requires both a C-

terminal CSIM farnesylation motif and a nuclear localization signal to accumulate in the 

nuclear envelope for later endoproteolysis to generate mature lamin A.106 Another lamin 

protein, lamin B, also requires farnesylation to assemble into lamina and associate with the 

nuclear membrane during mitosis.107 Unlike lamin A, lamin B does not undergo 

endoproteolysis, and thus, mature lamin B retains the farnesylation. Lamin B1 farnesylation, 

but not lamin B2 farnesylation, is key for brain development and the formation of stable 

nuclear lamina in mice; a nonfarnesylated lamin B1 mutation led to death soon after birth.
108 The farnesylation of the ZAP long isoform has been demonstrated to regulate the 
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localization of the isoform to the lysosomes and late endosomes.98 Presumably, another 

signal is needed to target ZAP specifically to these organelles.

The process of protein prenylation with a CaaX motif typically requires three steps: 

prenylation, proteolysis, and carboxylmethylation. In vitro studies of K-Ras showed that 

only 20% of K-Ras is associated with membranes when K-Ras undergoes farnesylation 

without proteolysis and carboxylmethylation, whereas up to 80% of K-Ras is associated 

with membranes after the methylation step is completed.109 This result suggests that 

carboxylmethylation greatly enhances the membrane association of the farnesylated protein 

owing to the increase in hydrophobicity and the removal of the negative charge on the 

carboxylate group. Further studies demonstrated that carboxylmethylation has a much 

smaller effect on geranylgeranylated proteins.110,111 Notably, the membrane localization of 

Ras proteins is complicated and incompletely understood. For example, the small molecule 

fendiline reportedly promotes the intracellular membrane localization of K-Ras, but the 

mechanism remains unknown.112

Some Ras proteins have C-terminal CCaX motifs, including a brain-specific splice variant of 

Cdc42 (CCIF), RalA (CCIL), and RalB (CCLL). A recent study demonstrated that these 

proteins undergo prenylation on the first cysteine and palmitoylation on the second cysteine 

for stable anchoring in the plasma membrane (Figure 7). This reaction differs from and 

likely competes with the classical CaaX processing in which a sole prenylation is followed 

by proteolysis and carboxylmethylation.113

One of the potential advantages of having multiple membrane targeting motifs for 

membrane anchoring is the capacity for easy regulation of membrane associations. For 

example, K-Ras4B has a polybasic region containing six lysine residues upstream of the 

prenylation site (Figure 7). Alterations to this polybasic region significantly decrease the 

plasma membrane association of K-Ras4B.104,114 Phosphorylation on Ser181 within the 

region changes the electrostatic status of the protein by partially neutralizing the positive 

charge and thus destabilizes the electrostatic interaction between K-Ras4B and the plasma 

membrane. This change promotes the dissociation of K-Ras4B from the plasma membrane.
115 In vitro studies using K-Ras4B and nanodiscs confirmed the effect of Ser181 

phosphorylation and further demonstrated that farnesylated K-Ras4B prefers disordered 

lipid microdomains.116

Most Rab proteins have C-terminal CC or CXC motifs for digeranylgeranylation (Figure 7), 

which is more hydrophobic. In terms of membrane targeting, digeranylgeranylation seems 

only to target proteins to endomembranes, as most Rab proteins are targeted to specific 

intracellular membrane organelles, not the plasma membrane. However, the effects of 

digeranylgeranylation can differ from those of single geranylgeranylation. When the CC or 

CXC motif is replaced with a mono cysteine motif, Rab5a and Rab27a are mistargeted to the 

ER instead of to endosomes and melanosomes, respectively.117 Rab proteins with a CXC 

motif undergo terminal carboxylmethylation on prenylcysteine, whereas those with a CC 

motif do not.118 Although this methylation has no effect on the subcellular localization of 

Rab proteins,119 it might indicate that Rab proteins with CXC motifs need to pass through 

the ER for methylation by ICMT, whereas Rab proteins with CC motifs can be directly 
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transferred to the target membrane without interacting with the ER. The localization of 

digeranylgeranylated Rab proteins to specific membrane organelles also requires an 

additional targeting signal in their protein sequences.106,120 Initially, the hypervariable C-

terminal domains (HVDs) of Rab proteins120 were thought to help determine the appropriate 

subcellular localization of the proteins, but later experiments suggested that the situation is 

more complicated. Studies using semisynthetic Rab proteins (Rab1, Rab5, Rab7, Rab35) in 

which the HVDs were replaced with a polyethylene glycol linker have demonstrated that the 

HVDs of Rab1 and Rab5 are not required for Golgi and early endosome localization, 

respectively.121 By contrast, the HVD of Rab7 is key for late endosome and lysosome 

localization because this domain interacts with Rab-interacting lysosomal protein, which is a 

Rab7 effector. The HVD of Rab35 is also central to its plasma membrane localization owing 

to the presence of a polybasic sequence.121 Another study showed that interactions between 

Rab1A/Rab5A/Rab8A and their corresponding guanine nucleotide exchange factors (GEFs) 

play important roles in targeting the proteins to the correct intracellular membranes. 

Therefore, the correct targeting of Rab proteins is determined by prenylation; interactions 

with GEFs, effectors, and possibly other proteins; and negative charges on the plasma 

membrane.

2.4.2. Protein-Protein Interactions—Many studies of the Ras superfamily have 

demonstrated that prenylation is critical for protein-protein interactions. The farnesylation of 

yeast Ras2 increases the binding affinity to adenylyl cyclase 100-fold; however, the 

subsequent palmitoylation of Ras2 has little effect despite its importance for Ras2 membrane 

targeting.122 A recent study also showed that human Spindly, a mitotic checkpoint protein, 

requires farnesylation to target kinetochores via protein–protein interactions.123

Guanine nucleotides bound to Ras proteins are controlled by GEFs. One GEF, human SOS 

(hSOS1), forms a complex with farnesylated K-Ras4B, but not with unmodified K-Ras4B, 

to regulate the binding ofguanine nucleotides and response to growth factor stimulation.124 

The polybasic domain of K-Ras4B is not required for the interaction with hSOS1. Other 

studies have emphasized that the prenylation of N-Ras is critical for the binding of N-Ras to 

both the active and allosteric sites of hSOS1.125 Interestingly, oncogenic K-Ras reportedly 

binds to the allosteric site of hSOS1, which promotes the activation of WT H-Ras and N-

Ras.126 The farnesylation of Cdc42 is also central to the activation of Cdc42 by its GEF, 

Dock7.127

In vitro studies have shown that the geranylgeranylation of RhoA is important for 

interactions with the RhoA guanosine diphosphate (GDP) dissociation inhibitor (GDI) and 

GDP dissociation stimulator (GDS) but not GTPase activating proteins (GAPs).128 

Geranylgeranylation is also required for the interaction between RhoA and IQ-motif-

containing GTPase activating protein IQGAP1 to regulate RhoA functions in breast cancer 

cell proliferation and migration.129 IQGAP1 is likely an effector protein of RhoA because it 

functions downstream of RhoA.129

A short splice variant of small guanosine triphosphate (GTP)-binding protein guanine 

nucleotide dissociation stimulator, SmgGDS-558, selectively binds prenylated Rap1A to 

facilitate the trafficking of Rap1A to the plasma membrane,130 whereas the long splice 
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variant SmgGDS-607 associates with non-prenylated Rap1A to regulate Rap1A entry into 

the prenylation pathway. This provides a regulatory mechanism for the prenylation of small 

GTPases.

In all the cases described above, it is unclear whether prenylation is involved in the protein-

protein interaction directly or via indirect mechanisms, such as those affecting subcellular 

localization. By contrast, prenylation is directly involved in the protein-protein interactions 

described below for GDI proteins. RabGDIs specifically bind geranylgeranylated Rab 

proteins in their GDP-bound forms (but not their GTP-bound forms) to retrieve them from 

the target membranes after vesicular transport.131 This activity is central to the cellular 

recycling of Rab proteins for normal functioning. Similarly, RhoGDIs bind to and stabilize 

Rho proteins to regulate their cellular homeostasis.132

The structure of the Cdc42-RhoGDI complex demonstrates that a hydrophobic pocket exists 

between the two opposing β-sheets of the Ig-like domain of RhoGDI. This pocket binds the 

geranylgeranyl moiety of Cdc42 (Figure 8A),133 which changes the conformation of an α-

helix (Rho insert) in Cdc42.134 The binding by RhoGDI also facilitates the extraction of 

Cdc42 from the cellular membrane. Additional structures of GDI complexed with Ras 

proteins further support the functional role of prenylation in the interaction between GDI 

and Ras proteins (Figure 8B and 8C).135–138 A GDI-like solubilizing factor, PDE6δ, can 

bind prenylated retinal PDE6 catalytic subunits,139 rhodopsin kinases,140 prostacyclin 

receptor,141 and Ras proteins.142 The C-terminal farnesyl moiety of Ras binds to a 

hydrophobic pocket in the Ig-like domain of PDE6δ, as demonstrated by crystal structures 

of the PDE6δ–Rheb complex (Figure 8D)143 and KRas4b–PDE6δ complex.144 Notably, 

PDE6δ lacks the regulatory arm required to interact with the switch regions of Rheb or Ras, 

which differs from the association of RhoGDI with Rho (compare Figure 8D to Figure 8A–

8C). By binding to and solubilizing prenylated Ras proteins, PDE6δ may enhance the 

diffusion of these proteins into the cytoplasm and facilitate more effective trapping of both 

depalmitoylated Ras proteins at the Golgi and polycationic Ras proteins at the plasma 

membrane.144 Similarly, by binding to farnesylated or geranylgeranylated INPP5E, PDE6δ 
mediates the sorting of INPP5E into cilium.145

By contrast, the RabGDIs have a completely different fold from that of the RhoGDIs. 

RabGDIs have more than 440 amino acids and are larger than RhoGDIs, which have 

approximately 200 amino acids. No significant sequence homology exists between RabGDIs 

and RhoGDIs. In the structures of the prenylated YPT1-RabGDI complex and the doubly 

prenylated YPT1-RabGDI complex (Figure 8E and 8F), the Rab-binding platform and the 

C-terminal binding region in domain I of RabGDI interact with the Switch I/II regions and 

C-terminus of YPT1. Geranylgeranyl moieties are buried in the hydrophobic pocket formed 

by the α-helices of RabGDI domain II.

Quantitative analysis of the interaction between prenylated RhoA and RhoGDI has revealed 

that the extraction of Rho GTPase from membranes by RhoGDI is a thermodynamically 

favored passive process modulated by a series of progressively tighter complexes (Figure 9).
135 RhoGDI initially binds RhoA to form a low-affinity complex. Then, the positively 

charged C-terminus of RhoA binds to the negatively charged residues at the C-terminus of 
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RhoGDI, increasing the complex affinity. This complexation positions the C-terminus of 

RhoGDI near the membrane-buried geranylgeranyl moiety of RhoA and opens the lipid-

binding pocket at the C-terminus of RhoGDI. Next, the geranylgeranyl moiety is transferred 

from the membrane to the lipid-binding pocket of RhoGDI, which forms a high-affinity 

complex that spontaneously dissociates from the membrane. RabGDI uses a similar 

mechanism to extract Rab proteins from membranes.146

2.5. Prenyltransferase Inhibitors

Because the oncogenic form of Ras requires farnesylation for activity, the inhibition of the 

farnesylation process may be a strategy to treat cancer. Thus, FT inhibitors have attracted 

attention,147 and many FT inhibitors have been reported (Figure 10). There are four types of 

FT inhibitors: FPP analogues, CaaX peptides analogues, bisubstrate analogues, and non-

peptide inhibitors.148–152104 104 104103,147–151 Certain natural products have also been 

identified as FT inhibitors.

Although FT inhibitors generally have low toxicity, they lack efficacy in clinical trials,153 

perhaps because GGT-1 compensates for the inhibited FT and carries out the 

geranylgeranylation of Ras proteins, thereby allowing the proliferation of cancer cells.154 

Geranylgeranylated RalA transforms cells in several cancers,155 and geranylgeranylated 

RhoC is essential for cancer metastasis.156,157 These findings suggest that GGT-1 is a 

promising target for cancer treatment. Many specific GGT-1 inhibitors have been identified 

and show therapeutic effects (Figure 11).158–166 Dual inhibitors for FT and GGT-1167–169 

and combination treatments using FT inhibitors with GGT-1 inhibitors or other 

agents153,170–174 have also been reported.

RGGT is overexpressed in several tumors and has an anti-apoptotic effect in some cancer 

cell lines.175 Studies have also demonstrated that RGGT is involved in tumor survival. 

Rab25, a substrate of RGGT, determines the aggressiveness of epithelial cancers.176 Other 

Rab proteins have elevated expression in various human cancers.177 However, only a few 

specific RGGT inhibitors (Figure 11) are available and they typically have low affinities.
160,178–185

Another application of FT inhibitors is the treatment of parasitic diseases, including malaria 

(caused by Plasmodium falciparum),186–190 African sleeping sickness (caused by 

Trypanosoma brucei),191,192 Chagas disease (caused by Trypanosoma cruzi),193–196 and 

leishmaniasis (caused by Leishmania mexicana).197 The parasitic vectors of these diseases 

are hypothesized to lack GGT-1; therefore, FT inhibitors are sufficient to inhibit their 

growth. Antifungal198–202 and antiviral75,203–207 activities of FT inhibitors and GGT-1 

inhibitors have also been explored.

Among the most promising clinical applications of FT inhibitors are the treatment of 

Hutchinson-Gilford progeria syndrome (HGPS) and hepatitis D. HGPS is a rare premature 

aging disease caused by mutations in the LMNA gene that encodes prelamin A and prelamin 

C.208 As described in section 2.4a, prelamin A is farnesylated and targeted to the nucleus, 

where it is proteolyzed to remove the C-terminal farnesylated peptide. The mutations that 

cause HGPS abolish the proteolysis step, which leads to premature aging. In one study, 
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lonafarnib treatment increased body weight and lessened arterial stiffness in 25 children with 

HGPS.209 In another study, lonafarnib treatment increased mean survival by 1.6 years.210 

Combining lonafarnib with pravastatin and zoledronic acid increased bone mineral density 

in patients with HGPS but offered no benefits beyond those of lonafarnib treatment alone.211

Hepatitis D is caused by the hepatitis delta virus, and no satisfactory treatment currently 

exists. As mentioned in section 2.2, the prenylation of the hepatitis delta virus large antigen 

is key for virus assembly,73,74 and prenylation inhibitors have been shown to inhibit virus 

particle formation.75 A proof of concept, randomized, double-blind, placebo-controlled 

phase 2A trial showed that lonafarnib significantly reduces hepatitis D viral load.76 Another 

trial to test lonafarnib in combination with ritonavir or PEGylated interferon α (PEG = 

polyethylene glycol) is ongoing (NCT02430194).

3. N-Terminal Glycine Myristoylation

N-glycine myristoylation refers to the co- or post-translational attachment of a saturated 14-

carbon fatty acyl group, myristoyl, to the N-terminal glycine of proteins via an amide bond 

(Figure 12). The consensus sequence required for the co-translational modification after 

removal of the first methionine residue by methionine aminopeptidase is Gly-XXX-Ser/Thr/

Cys.212 N-Glycine myristoylation has also been reported as a post-translational modification 

for certain pro-apoptotic proteins.213 The cleavage of these proteins by caspases exposes an 

internal glycine for myristoylation (Figure 12). N-Glycine myristoylation plays essential 

roles in the targeting of proteins to desired subcellular localizations by mediating protein-

protein and protein-membrane interactions. Owing to the diversity of substrate proteins 

modified, N-glycine myristoylation is critical for signal transduction, apoptosis, and virus-, 

protozoa-, and fungi-induced pathological processes.212,214 Therefore, this modification is a 

promising target for the development of anti-parasitic and antifungal drugs.215

3.1. N-Myristoyltransferase

N-Glycine myristoylation is catalyzed by myristoyl-CoA: protein N-myristoyltransferase 

(NMT), which belongs to the GCN5-related N-acetyltransferase superfamily.216 NMT has 

been characterized extensively in many organisms, including mammals, insects, plants, 

parasites, yeast, and fungi. Saccharomyces cerevisiae and Candida albicans contain a single 

NMT, whereas Homo sapiens has two NMTs (NMT1 and NMT2).217 The X-ray crystal 

structures of S. cerevisiae NMT show that NMT is folded into a saddle-shaped β-sheet 

flanked by several α-helices (Figure 13A). Within this pseudo-two-fold symmetry, the N- 

and C-terminal halves of NMT contribute to the myristoyl-CoA and protein substrate 

binding sites, respectively.218,219

Kinetic and structural evidence suggests that NMT catalysis follows a sequential ordered Bi-

Bi mechanism.220 The myristoyl-CoA initially binds the apo-NMT and induces a 

conformational change for peptide binding. After the formation of a ternary NMT - 

myristoyl-CoA - peptide complex, acyl transfer occurs via the attack of the N-terminal 

glycine at the thioester bond of myristoyl-CoA. Free CoA is then released, followed by the 

myristoylated peptide product.220 Several structures of the ternary complex have been 

reported221 and highlight several notable features. First, an oxyanion hole is formed by the 
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main-chain amide bonds of Phe170 and Leu171 (Figure 13B). Second, the bent 

conformation around the C5 and C6 of myristoyl-CoA positions the end of the acyl chain in 

a deep pocket of the enzyme (Figure 13C). These features may provide the measurements of 

acyl chain length that result in the specificity toward myristoyl-CoA.218 The highly abundant 

palmitoyl-CoA is also capable of binding NMT; however, the catalytic efficiency is much 

lower than that of myristoyl-CoA.222 Finally, the structures provide an explanation for the 

peptide sequence selectivity of NMTs (Figure 13D). The amino group of the N-terminal 

glycine must rotate to the left to attack the carbonyl of myristoyl-CoA. A larger side chain 

group (if substituting glycine with other amino acids) may impede the rotation and thus the 

myristoylation.221 The serine side chain at position 5 interacts with a small hydrophilic 

pocket, which explains the preference for serine/threonine/cysteine at this position. By 

contrast, positions 2–4 are either solvent-exposed or accommodated by large pockets, which 

explains the lack of preference at these positions.

Several studies have shown that NMT is essential for the survival of mammals,223 fungi,
224,225 flies,226 and parasites.227 In humans, NMT1 and NMT2 share approximately 76% 

sequence identity and have partially overlapping biological functions and substrate 

selectivity.217,223 S. cerevisiae and human NMTs are predominantly localized in the cytosol.
228,229 The N-terminal region of human NMTs, which consists of polybasic amino acid 

sequences (K-box), is reported to be crucial for targeting to the ribosomes, where co-

translational N-myristoylation modification occurs.230,231

NMT1, but not NMT2, is also critical for cell proliferation, whereas cell survival is likely 

regulated by both NMT1 and NMT2.223 NMT1 is essential for embryonic development and 

proper monocytic differentiation in mice,232,233 in which thymus-specific knockouts of 

NMT1 and NMT2 have been generated. NMT1 knockout significantly decreases T-cell 

numbers and T-cell receptor signaling, whereas NMT2 knockout has only minor effects.234 

T-cell apoptosis increases most dramatically when both NMT1 and NMT2 are knocked out, 

but compared with NMT1 knockout, the knockout of NMT2 seems to have a stronger effect 

on apoptosis.234 An increase in the activity of both NMT1 and NMT2 has been observed in 

colonic and brain tumors.235

NMTs have been demonstrated to be substrates for caspases during apoptosis.236 The 

caspase cleavage of NMTs potentially regulates the localization of NMTs. The removal of a 

lysine cluster from NMT1 by caspase-3 or caspase-8 promotes the translocation of NMT1 

from the ribosomal and membrane fractions to the cytosol. However, the caspase-3 cleavage 

of NMT2 leads to the relocalization NMT2 from the cytosol to the membrane fraction.236 

The reasons for NMT-specific localization change during apoptosis require further 

investigation.

3.2. Proteins Modified by N-Glycine Myristoylation

Experimentally identified N-glycine myristoylated proteins can be classified into various 

functional classes such as signaling proteins (GTP-binding proteins, Ca2+-binding EF-hand 

proteins, and protein kinases), apoptotic proteins, and structural viral proteins. The modified 

mammalian proteins are summarized in Table 1.237
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3.3. Functions of Glycine Myristoylation

3.3.1. Cellular Localization and Membrane Attachment—N-Glycine myristoylation 

mediates the targeting of modified proteins to various membranous locations (e.g., the 

plasma membrane, ER, Golgi complex, mitochondrial membranes, and nuclear envelope). 

However, glycine myristoylation alone is insufficient for membrane targeting, and another 

signal is typically required. This signal includes other proximate lipid modifications (e.g., 

cysteine palmitoylation or cysteine prenylation) and the presence of positively charged 

amino acid clusters.237 This requirement allows myristoylation to act as a “myristoyl 

switch” (Figure 14), in which the membrane association of myristoylated proteins is 

regulated by phosphorylation or ligands such as GTP and Ca2+.297 For example, the 

phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and Src 

stimulates membrane dissociation presumably by decreasing electrostatic interactions 

between the protein and the phospholipid membrane.298 On the contrary, GTP and Ca2+ 

have been shown to promote the membrane binding of myristoylated ADP ribosylation 

factors and recoverin, respectively.299–301 The binding of these ligands can induce 

conformational changes within proteins and results in the exposure of the N-myristoyl 

moiety for membrane association.297,300

Proteolysis can also trigger a myristoyl switch.302 Human immunodeficiency virus (HIV)-1 

Gag is initially synthesized in a 55 kDa precursor form (Pr55Gag), and the exposed 

myristoyl group promotes membrane binding. Upon cleavage by HIV-1 protease, the 

myristoyl moiety is sequestered and Gag is released from the membrane. The Gag myristoyl 

switch may not be induced by conformational changes as observed in other myristoyl 

switches, however.303 Instead, the synergistic interaction between Gag subdomains promotes 

the exposure of the myristoyl group and regulates membrane binding while protease 

cleavage of Gag decreases the cooperative effect and leads to the dissociation of Gag.

N-Glycine myristoylation also markedly increases the stability of hisactophilin, a 

membrane-binding protein in Dictyostelium discoideum.304 The modification also raises the 

protein dynamic (the rate of global protein folding and unfolding), which might facilitate 

conformational changes or myristoyl switching in hisactophilin.304

N-Glycine myristoylation functions not simply in membrane anchoring but also in the 

specific localization of certain transmembrane proteins. For example, NADH-cytochrome b5 

reductase (b5R), an integral membrane protein, is dually targeted to the outer mitochondrial 

membrane and ER. The myristoylation of b5R is indispensable for targeting to the outer 

mitochondrial membrane, whereas a non-myristoylated mutant is localized to the ER.290 

Notably, further study demonstrated that the myristoylation of b5R interferes with the 

recognition of the nascent peptide by the signal recognition particle, thereby preventing ER 

targeting.305

Another integral membrane protein that requires glycine myristoylation for localization is 

dihydroceramide Delta4-desaturase 1, an enzyme in the last step of de novo ceramide 

biosynthesis. In COS-7 cells, only the myristoyled form of this enzyme localizes to the 

mitochondria, which results in an increase in ceramide production. The non-myristoylatable 

mutant localizes primarily to the ER.288
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The role of N-glycine myristoylation in controlling the cellular distribution of proteins has 

also been observed in yeast.295 Kimura and colleagues demonstrated that the N-glycine 

myristoylation of the Rpt2 subunit regulates the nuclear localization of the 26S proteasome, 

and the non-myristoylatable mutant of Rpt2 shifted the 26S proteasome into the cytoplasm 

without affecting its molecular assembly and peptidase activity.

3.3.2. Regulation of the Membrane Localization of Caspase Substrates in 
Apoptosis—The N-glycine myristoylation of some proteins occurs post-translationally. 

BID, a pro-apoptotic protein, was the first protein reported to undergo post-translational 

myristoylation.213 BID is cleaved by caspase-8 into a 7 kDa N-terminal fragment and a 15 

kDa C-terminal fragment that remain associated as a complex. The exposed N-glycine of the 

BID C-terminal fragment is myristoylated to promote mitochondrial outer membrane 

targeting, thereby activating cytochrome C release and apoptosis, respectively.

Another caspase-cleaved protein, p21-activated kinase 2 (PAK2), is also post-translationally 

myristoylated.276 The myristoylation and the polybasic region are sufficient to relocalize the 

C-terminal of PAK2 (ctPAK2) from the cytosol to the plasma membrane and membrane 

ruffles. The overexpression of ctPAK2 has been shown to induce cell death.306 To 

investigate the role of myristoylation in apoptosis, the percentage of cell death was 

compared between myristoylatable and non-myristoylatable ctPAK2, the latter of which 

impaired the apoptotic effect. The non-myristoylatable mutant less efficiently activated Jun 

N-terminal kinase phosphorylation and signaling, a pathway known to be involved in 

apoptosis. To date, several caspase-cleaved proteins that undergo N-glycine myristoylation 

have been identified,238,287,307 and these findings emphasize the biological function of N-

glycine myristoylation in the regulation of cell death.

3.3.3. Regulation of Protein-Protein Interaction—In addition to mediating protein 

localization and membrane targeting, N-glycine myristoylation plays a role in protein-

protein interaction. Some of the examples described below are accompanied by structural 

evidence of this role. In examples that lack structural support, the effects on protein-protein 

interaction may be indirect.

CAP-23/NAP-22 is a brain-specific protein kinase C substrate involved in synaptic plasticity. 

The phosphorylation of CAP-23/NAP-22 by protein kinase C is regulated by calmodulin 

binding in a Ca2+-dependent manner. The myristoyl group and at least nine basic amino 

acids at the N-terminus are necessary for efficient interaction with calmodulin.292 A crystal 

structure of calmodulin in complex with the myristoylated CAP-23/NAP-22 N-terminal 

peptide shows that the myristoyl group is directly involved in calmodulin binding.308 The 

interaction between myristoylated alanine-rich C kinase substrate and calmodulin is also 

dependent on N-terminal myristoylation.309 However, the interaction between calmodulin 

and the HIV-1 Gag protein seems to occur independent of N-terminal myristoylation.310 

Furthermore, the binding of calmodulin is thought to expose the N-terminal myristoyl group 

on Gag for membrane interaction.310 Notably, calmodulin also binds to farnesylated K-

Ras4b in a nucleotide-independent manner. This interaction can occur even in the presence 

of negatively charged membranes, which suggests that calmodulin is able to extract K-Ras4b 

from membranes.311 By contrast, the PDE6δ–K-Ras4b interaction is less stable in the 
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presence of negatively charged membranes, and thus it is unlikely that PDE6δ extracts K-

Ras4b from membranes.312

Compared with the myristoylated form of the Goα protein, the non-myristoylated form 

shows decreased affinity for βγ subunits.313 The γ subunit of this protein is prenylated, and 

thus the increased binding affinity between α and βγ may be due to the targeting of both α 
and βγ to the membrane.

A role for N-glycine myristoylation in transcription has also been reported.293 The 

interaction of myristoylated CAP-23/NAP-22 (also called brain acid soluble protein 1 or 

BASP1) with PIP-2 is essential for the transcriptional corepression activity of Wilms’ tumor 

1 (WT1), a transcriptional regulator involved in cell development. BASP1 binds to WT1 and 

mediates its transcriptional repression function. Notably, compared with WT BASP1, non-

myristoylatable BASP1 shows significantly decreased transcriptional repression. The exact 

function of BASP1 myristoylation is unknown. However, non-myristoylatable BASP1 fails 

to recruit histone deacetylase (HDAC) 1 to the promoters of WT1 target genes and exhibits 

increased histone H3K9 acetylation,293 which suggests that myristoylation may regulate 

protein-protein interaction.

N-glycine myristoylation also regulates the Golgi membrane tethering process mediated by 

Golgi reassembly stacking protein (GRASP), which is required for the ribbon-like network 

of Golgi. GRASP undergoes myristoylation, and this modification is key to maintaining the 

structure of the Golgi network. The myristoylation of GRASP is thought to affect GRASP 

orientation and thus promote the trans interaction between GRASP proteins (a GRASP 

protein in one Golgi membrane interacting with a GRASP protein in a neighboring Golgi 

membrane) and prevent the cis interaction in the same membrane (Figure 15).314,315 A 

similar situation may explain the function of the myristoylation of Lunapark, a double-

spanning integral membrane protein involved in ER network formation. The myristoylation 

of Lunapark is not required for specific membrane localization. Instead, the modification 

changes ER morphology by inducing polygonal tubular ER formation when the protein is 

overexpressed. This change is not observed for a non-myristoylated Lunapark mutant.239

N-Glycine myristoylation has also been shown to mediate protein sorting into cilium. This 

process is mediated by two proteins, Uncoordinated 119a (Unc119a) and Unc119b.316 These 

proteins are homologous to PDE6δ, which binds to prenylated proteins (see section 2.4b). 

Notably, Unc119a and Unc119b recognize only myristoylated proteins, whereas PDE6δ 
recognizes only prenylated proteins.317 The structures of Unc119a and Unc119b in complex 

with the acylated peptides revealed that the recognition of myristoylated peptides by these 

proteins resembles that of prenylated peptides by PDE6δ.318,319 Notably, ADP ribosylation 

factor-like 2 and 3 release the bound prenylated and myristoylated proteins from PDE6δ and 

Unc119a and Unc119b, respectively, in a GTP-dependent manner.316,319

3.3.4. Regulation of Protein Stability—N-Glycine myristoylated calcineurin B 

homologous protein isoform 3 (CHP3) is a Ca2+ binding protein that plays a role in 

intracellular pH homeostasis by interacting with Na+/H+ exchanger (NHE1). CHP3 

enhances the expression and stability of NHE1 at the cell surface through an unknown 
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mechanism. N-myristoylation and the Ca2+ binding domain of CHP3 are not essential for 

interaction with NHE1.295 However, Gly2Ala and Ca2+ binding site CHP3 mutants 

decreased NHE1 half-life and exchange activity, which suggests that they are required for 

the stabilization of NHE1 at the plasma membrane and enhancement of Na+/H+ exchanger 

activity. Nevertheless, the underlying mechanism of this stabilizing effect by N-glycine 

myristoylation remains unknown and requires further investigation.295

3.3.5. Regulation of Enzymatic Activity—The best understood example of the 

regulation of enzymatic activity by myristoylation is the myristoyl switch that negatively 

regulates c-Abl tyrosine kinase activity. c-Abl is a member of the Src family of protein 

tyrosine kinases, which typically exist in an inactive state under resting conditions until 

activated through signaling.320 In addition to having a kinase domain, c-Src also has an SH2 

and an SH3 domain. The SH2 domain binds to a phosphorylated tyrosine residue (pTyr527) 

and maintains c-Src in an inactive conformation. The SH3 domain binds a proline-rich 

sequence of c-Src and further locks c-Src in the inactive conformation. The activation of c-

Src requires the binding of the SH2 domain to other phosphotyrosine residues, which 

unlocks the inactive conformation.320

The c-Abl protein also has an SH2 and an SH3 domain N-terminal to the kinase domain. 

However, there is no pTyr corresponding to pTyr527 in c-Src. Thus, the mechanism through 

which c-Abl is maintained in an inactivate state is interesting: myristoylation of the N-

terminal glycine plays a central role in maintaining this inactive form. Compared with the 

myristoylated form, unmyristoylated c-Abl is much more active.321 An X-ray crystal 

structure of a truncated c-Abl (containing the SH2, SH3, and kinase domains) with and 

without bound myristoyl peptide provides key insights on the regulation of c-Abl activity by 

myristoylation (Figure 16).322 The myristoyl group binds to a hydrophobic pocket in the C-

lobe of the kinase domain, which triggers a conformational change in the C-terminal of the 

kinase domain. In the structure of c-Abl without bound myristoyl, an extended α-helix (αI, 

colored grey in Figure 16) prevents the binding of the SH2 domain to the kinase domain. In 

the myristoyl-bound state, the αI is separated into two short α-helices, αI (magenta in 

Figure 16) and αI′ (blue in Figure 16). The αI′ helix makes an abrupt turn to bind to the 

myristoyl group. These conformational changes lead to the docking of the SH2 domain onto 

the kinase domain and subsequent autoinhibition.322

The Tyr kinase c-Src itself is also myristoylated. However, different from the regulation of c-

Abl, myristoylation positively regulates c-Src kinase activity.214 The enhanced kinase 

activity of N-glycine-myristoylated c-Src is presumably due to a membrane attachment that 

orients c-Src favorably for kinase activity. The myristoylation of c-Src can also affect protein 

stability by regulating membrane association and facilitating ubiquitination and degradation 

mediated by the E3 ligase Cbl.214

3.4. Tools for the Study of Glycine Myristoylation

3.4.1. N-Myristoylation Predictive Tools—N-Glycine myristoylation predictive tools 

are bioinformatics methods that can predict potentially N-glycine myristoylated proteins. 

Three such tools are now available. The MYR Predictor (http://mendel.imp.univie.ac.at/
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myristate/) was first developed by Maurer-Stroh and co-workers.323 Based on known 

substrate sequences, crystal structures, and biochemical data of NMT, the motif for N-

terminal myristoylation is 17 amino acids identified in three regions that (1) fit into the 

binding pocket, (2) interact with the NMT surface, and (3) form a hydrophilic linker. The 

second predictive tool, the Myristoylator (http://web.expasy.org/myristoylator/), predicts the 

N-terminal myristoylation of targets with neural network models trained to distinguish 

myristoylated and non-myristoylated proteins.324 The Myristoylator and MYR Predictor 

have similar error rates. Another software program, Terminator3 (http://www.isv.cnrs-gif.fr/

terminator3/index.html), makes predictions based on pattern scanning.325 These predictive 

software tools require improvement in terms of sensitivity and accuracy.326

3.4.2. Chemical Tools for Detecting N-Myristoylation—Several approaches have 

been developed to detect N-glycine myristoylation in vivo and in vitro. The classic method 

uses radioactive-labeled fatty acids such as [3H]-myristic acid and [125I]-myristic acid, 

which are incorporated into cellular proteins, followed by the immunoprecipitation of target 

proteins and film exposure. This technique is typically time-consuming and insensitive. An 

alternative non-radioactive method has gained considerable attention since its development. 

This method uses ω-azido or ω-alkynyl myristate analogues as bioorthogonal probes to 

identify myristoylated proteins.327–329 These probes can be incorporated into proteins after 

addition into cultured cells, and the probe-modified proteins are then conjugated to 

fluorophores or biotin via the Staudinger ligation (for ω-azido probes) and the Huisgen 

cycloaddition reaction (for ω-alkynyl probes). The fluorophore- or biotin-conjugated 

myristoylated proteins can be detected via in-gel fluorescence after separation with sodium 

dodecyl sulfate polyacrylamide gel electrophoresis or western blot analysis.330

Several proteomics studies using bioorthogonal probes have been carried out to identify N-

myristoylated proteins in various species, including T. brucei,331 Leishmania donovani,332 

immortalized retinal pigment epithelial cells with and without herpes simplex virus (HSV) 

infection,333 CEMx174 cells with and without HIV infection,334 and HeLa cells with and 

without apoptosis.335 The study in HeLa cells is particularly notable because it uses NMT 

inhibitors in proteomics experiments to ensure that the identified proteins are indeed 

substrates of NMT. Furthermore, it compares the proteomics results with results predicted 

with the bioinformatics tools. This comparison shows that although the predication tools 

give largely correct predictions, some of the results are inconsistent with the proteomics 

results.335 The largest data set of experimentally validated human proteins myristoylated by 

NMT in living cells was obtained using a multifunctional enrichment reagent and NMT 

inhibitors.336

3.5. N-Glycine Myristoylation and Disease

3.5.1. NMT as a Target for Treating Fungal Infections and Parasitic Diseases—
Several studies have shown that NMT is a potential target for antifungal225 and anti-

parasite227,337,338 drugs because it is indispensable for the growth and viability of fungal 

and parasitic organisms. Moreover, compared with the myristoyl-CoA binding site, the 

peptide binding pocket of NMT is less well-conserved across species.339 The pocket can 

therefore be targeted for the development of selective NMT inhibitors. Several series of 
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inhibitors (Figure 17) from high-throughput screening have been reported for NMTs in 

humans,340 parasites (P. falciparum, Leishmania sp., T brucei),338,341–344 and fungi.345–347

Several peptidomimetic inhibitors were designed and synthesized to target Candida albicans 
NMT.348–350 These efforts lead to the development of an imidazole-substituted dipeptide 

that inhibits C. albicans NMT potently and selectively.348 RO-09-4879 and FTR1335, which 

are benzofuran346 and benzothiazole351,352 NMT inhibitors, respectively, were subsequently 

developed with high selectivity and promising properties as antifungal agents (Figure 17).

T. brucei NMT inhibitors have also been screened and developed.343 These pyrazole 

sulfonamide derived compounds strongly inhibit T. brucei NMT with selectivity over human 

NMT. Binding to the peptide substrate pocket of the enzyme, the inhibitor (DDD85646, 

Figure 17) kills T. brucei and cures trypanosomiasis in a mouse model of acute illness. 

These highly potent inhibitors thus pave the way for the development of therapeutic drugs 

for African sleeping sickness. These NMT inhibitors have also been used in proteomics 

studies to identify NMT substrate proteins in T. brucei331 and L. donovani.332

P. falciparum, a malaria parasite, contains a single NMT, and the inhibition of N-glycine 

myristoylation leads to the disruption of subcellular structure and cell death.338 Using 

bioorthogonal chemical probes and proteomics profiling of N-glycine myristoylated 

proteins, several P. falciparum NMT candidate substrates were identified with diverse 

biological functions, many of which are essential for parasite survival. Notably, enzyme 

inhibition using DDD85646, a compound originally developed for the T. brucei NMT, and a 

benzothiophene-containing compound (see Figure 17) results in the loss of inner membrane 

complex proteins required for parasite development and red blood cell invasion.338 NMT is 

therefore a promising target for the development of anti-malaria drugs.

3.5.2. NMT Inhibitors as Potential Cancer Treatments—NMT inhibitors have also 

been developed for cancer treatment. Myristoylated proteins are involved in cell signaling 

pathways and the apoptotic process (see the section 3.3 on the function of glycine 

myristoylation). Abnormalities in these proteins can lead to tumorigenesis. For example, N-

glycine-myristoylated c-Src tyrosine kinase is activated in colon carcinoma.353 As 

mentioned in section 3.3e, N-glycine myristoylation can positively regulate c-Src kinase 

activity.214 Moreover, NMT expression and activity are increased in early stage rat and 

human colonic carcinogenesis.354 These results suggest that NMT might be a potential 

biomarker or target for colon cancer.355 Similarly, several studies have demonstrated that 

NMT expression is elevated in oral squamous cell carcinoma,356 gallbladder carcinoma,357 

and brain tumors.235 Moreover, a cyclohexyl-octahydropyrrolo[1,2-a]pyrazine based NMT1 

inhibitor, COPP-24 (Figure 17), has been shown to inhibit the proliferation of some tumor 

cancer cell lines.340 Another study showed that NMT inhibitors induce stress and an 

unfolded protein response in the ER, which led to apoptosis in several cancer cell lines.358

3.5.3. Viral and Microbial Utilization of Host Protein N-Glycine Myristoylation—
Many viruses and bacteria exploit host N-glycine myristoylation systems for successful 

colonization. Several studies have shown that the N-myristoylation of certain viral proteins 

by host cell NMTs is critical for viral particle formation.359–361 The myristoylation of Gag, 
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an HIV-1 structural protein, is crucial for viral replication and assembly.361 Also, the 

myristoylation of Nef (a virulence factor of lentiviruses) by NMT-1 facilitates viral 

replication.362 NMT1 and NMT2 have different specificities for the N-myristoylation of Gag 

and Nef.363 Therefore, NMTs have also been considered targets for antiviral drug 

development.

A study identified the novel demyristoylation activity of invasion plasmid antigen J (IpaJ) 

from the bacterial pathogen Shigella flexneri, which causes Golgi disruption in host cells.364 

IpaJ is a cysteine protease that specifically recognizes and cleaves the amide bond after the 

N-myristoylated glycine residue. Several N-myristoylated proteins central in cell signaling 

and growth may be substrates for this enzyme. This discovery also suggests a new bacterial 

pathogenic mechanism that targets the N-glycine myristoylation of host cells.364

4. Cysteine Palmitoylation

Cysteine palmitoylation is the addition of a 16-carbon palmitoyl group via thioester bonds 

on protein cysteine residues (also known as S-palmitoylation; Figure 18). This reaction is 

highly reversible depending on the presence of enzymatic or non-enzymatic hydrolysis. 

Unlike other protein lipidations such as glycine N-myristoylation and cysteine prenylation, 

S-palmitoylation lacks a specific sequence motif. Thus, it is difficult to predict with 

precision which proteins will undergo the reaction. However, S-palmitoylation typically 

occurs on cysteines near or within a transmembrane domain or near a membrane-targeting 

PTM, such as prenylated cysteine or N-terminal myristoylated glycine.

4.1. Palmitoyltransferases

4.1.1. Identification of the Cysteine Protein Acyltransferases—The covalent 

attachment of fatty acids to proteins was first observed in the early 1970s on a major 

structural protein found in bovine brain myelin.365,366 A later discovery that viral 

glycoproteins from the Sindbis virus contained a covalently linked palmitic acid on the side 

chain of an amino acid suggested that protein fatty acylation is prevalent.367 Additional 

protein substrates modified with palmitoyl groups were identified just a few years later, 

including G-protein-coupled receptors (GPCRs)368 and Ras proteins.369 The mechanism 

through which palmitoyl is attached to these protein substrates was not elucidated until 30 

years after the first observation of the PTM. It is now known that the majority of protein 

palmitoylations are enzymatic events catalyzed by an evolutionarily conserved family of 

protein acyltransferases (PATs). These enzymes, which catalyze the attachment of a 

palmitoyl group to cysteine residues, were discovered in the early 2000s. Erf2–Erf4 were 

identified as an essential enzyme complex for the palmitoylation of Ras2 in S. cerevisiae.370 

Erf2 or Erf4 alone cannot palmitoylate Ras2. The catalytic activity resides solely on Erf2, 

whereas Erf4 is required for the stable expression of Erf2. At the same time, Akr1 was 

identified as a PAT with activity against the yeast casein kinase Yck2.371 Erf2 and Akr1 

share homology in a single domain, an aspartic acid-histidine-histidine-cysteine (DHHC) 

cysteine-rich domain (CRD), which is characteristic of palmitoyltransferases.

In 2004, the first mammalian protein with cysteine palmitoyltransferase activity was 

reported.372 The Golgi-apparatus-specific protein with the DHHC zinc finger domain 
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(GODZ, also known as DHHC3) has PAT activity toward the γ-aminobutyric acid A 

receptor γ2 subunit and increases palmitoylation upon co-expression. DHHC3 palmitoylates 

the cytoplasmic loop domain of the γ2 subunit, which suggests that PAT activity functions in 

a cytosolic environment. Through a database search of the mouse and human genomes, 23 

proteins were identified that have homology with the DHHC domain of DHHC3 (Table 2). 

Various members of this family have PAT activity.373 When transfected into COS7 cells, 

several DHHC enzymes increase the incorporation of 3H-palmitate into PSD-95, which 

suggests that the DHHC proteins are, in general, palmitoyltransferases.

4.1.2. Topology of Palmitoyltransferases—DHHC proteins are predicted to have a 

common topology comprising several trans-membrane domains (TMDs) and a conserved 

DHHC CRD active site on the cytosolic face (Figure 19). The number of TMDs ranges 

between four (DHHC1, DHHC2) and six (DHHC13, DHHC17). This conserved DHHC 

CRD is generally located in the middle of the enzyme on the cytoplasmic loop between 

TMD2 and TMD3. At the C- and N-terminal cytosolic domains, there is less homology 

among the family members. The variable domains include a predicted SH3 domain in 

DHHC6 and ankyrin repeats in DHHC13 and DHHC17. These variable domains and 

sequences at the N- and C-termini mediate protein–protein interactions, a key mechanism 

for the interaction of substrates and PATs. For example, DHHC17 and huntingtin interact 

through the ankyrin repeats on DHHC17.393 DHHC5 and DHHC8 interact with glutamate 

receptor-interacting protein 1b (GRIP1b) through the PDZ domains at the C-terminal end of 

DHHC5 and DHHC8.381,393,400 DHHC5 also interacts with cardiac phosphoprotein 

phospholemman via the C-terminal domain.401

Additionally, the DHHC family has long been annotated as zinc finger proteins and newer 

experimental evidence has demonstrated that DHHCs bind zinc ions. Zinc binds to the CRD 

of DHHCs and is crucial for enzyme stability. Generally, the DHHC CRD can be considered 

a stable core that is conserved among the family members, whereas the N- and C-termini are 

more disordered to allow for variable protein-protein interactions.401 These features are 

discussed in section 4.1c below. The lack of crystal structures of the catalytic domain 

currently limits our understanding of these enzymes.

4.1.3. Substrate Specificity of DHHCs—Many factors, such as potential protein 

interacting domains, the amino acid composition of the modification site, and cellular 

localization, determine the substrate specificity of PATs. These factors are discussed here.

In general, DHHCs have substrate specificity with some redundancies. When certain PATs 

are inactivated, a loss of modification occurs on specific proteins in yeast.447 Yeast Erf2p 

can palmitoylate substrates other than yeast Ras. However, the level of palmitoylation is 

weak (~5% of Ras palmitoylation). These results suggest that PATs can show strong 

preferences for specific substrates. In mammalian cells, co-expression studies confirm that 

specific DHHCs modify specific substrates: the palmitoylation of Lck, a tyrosine kinase, is 

increased upon overexpression of DHHC17 and DHHC18, that of SNAP-25b and Gαs by 

the overexpression of DHHC3 and DHHC7, Ras by DHHC18 and DHHC9, PSD-95 and 

GAP-43 by DHHC2 and DHHC15, and paralemmin by DHHC8.373,393,412 DHHC17 can 

also palmitoylate huntingtin, SNAP-25, PSD-95, GAD-46, and synaptotagmin I,429 and 
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DHHC3 can palmitoylate endothelial nitric oxide synthase (NOS), GluR receptors, and 

GAP-43.382,448 GRIP1b palmitoylation is incompletely abolished when DHHC5 or DHHC8 

is individually knocked down with short hairpin RNA, but double knockdown completely 

abolishes palmitoylation.400 In general, a palmitoylated substrate may be modified by more 

than one DHHC. Notably, although some DHHCs may appear to have highly specific 

substrate targets, such as DHHC19 and its only substrate R-Ras,449 the vast majority of 

palmitoylation events have yet to be assigned to the enzymatic activity of a specific DHHC. 

The closely related DHHC3 and DHHC7 have broad substrate specificities that allow for 

redundancies to be built into the regulation of protein palmitoylation. These redundancies 

may serve to ensure proper palmitoylation in the event that one DHHC is compromised.

The co-localization of a DHHC with its substrate ensures that the correct palmitoylation 

event occurs. DHHCs have distinct cellular localizations including the plasma membrane, 

ER, Golgi, and endosomal membranes. The exact mechanism through which DHHCs are 

properly sorted is unknown. However, several studies have advanced understanding of 

DHHC sorting and localization. The C-terminal portion of DHHC2 and DHHC15 regulate 

the localization of these two distinctly localized PATs.450 Swapping the C-terminal region of 

DHHC2 to DHHC15 altered the localization of the chimeric DHHC15 to regions similar to 

those of WT DHHC2. DHHC4 and DHHC6 were later found to sort to the ER through a 

canonical dilysine motif that interacts with coat protein complex 1. The five C-terminal 

amino acids containing the dilysine motif of DHHC4 or DHHC6 are also sufficient to 

relocalize the Golgi-specific DHHC3 to the ER.451

External stimuli may alter the localization of DHHC enzymes.380 In dendritic cells, 

palmitoylated PSD-95 localizes to the dendritic spine and, upon depalmitoylation, 

translocates to the shaft where it can be repalmitoylated by DHHC2-containing vesicles for 

shuttling back to the spine. When synaptic activity is blocked, DHHC2 relocalizes to the 

spine to increase PSD-95 palmitoylation levels to upregulate 2-amino-3-(hydroxy-5-

methyl-4-isoxazole) propionic acid type glutamate receptor activity to maintain homeostasis. 

However, localization alone is insufficient to confer substrate specificity. For example, in 

human embryonic kidney 293T cells, up to 11 DHHCs are associated with the Golgi 

complex upon expression.416

The method through which DHHC substrate pairs have been identified has usually relied on 

what is known as the Fukata screen, in which individual DHHCs are ectopically 

overexpressed with a potential substrate. This process generates a panel of DHHCs capable 

of increasing the palmitoylation levels of the substrate. Next, the DHHCs are knocked down, 

and decreased palmitoylation after knockdown verifies the substrate–enzyme pair. However, 

the knockdown of a DHHC that can increase palmitoylation levels does not always result in 

complete or decreased palmitoylation. This phenomenon is likely attributable to the 

redundancies of the DHHCs. On the contrary, the overexpression of a DHHC could disrupt 

the fine localization of the enzyme.452 It was reported that decreased PSD-95 palmitoylation 

levels were not observed in DHHC3 knockout mice, whereas the ectopic expression of 

DHHC3 with PSD-95 increased palmitoylation levels in cells. Endogenous DHHC3 

predominately localizes to the cis Golgi membranes, and the overexpression of DHHC3 

disrupts the localization of endogenous DHHC3.452 Mislocalized enzymes that retain their 
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activity could easily acylate substrates other than their natural substrates (false positives). 

This study highlighted that downside to the use of the Fukata screen for the identification of 

enzyme–substrate pairs, which is further complicated by the fact that single knockdown/

knockout experiments do not always completely abolish substrate palmitoylation. Although 

there are robust examples of DHHC-substrate pairs, other substrates may be palmitoylated 

by several DHHCs. One example is N-Ras, in which palmitoylation decreases but persists at 

low levels in vivo when DHHC9 is knocked out.453 This divergence from a single enzyme - 

single substrate system highlights the complexity of protein palmitoylation and the 

challenges in elucidating the mechanism of palmitoylation regulation.

The variable N- and C- terminal domains of DHHCs play key roles in substrate specificity, 

whereas the conserved catalytic core contributes little.381 A chimeric DHHC15 construct 

containing the DHHC CRD of DHHC3 (DHHC15/3) failed to palmitoylate SNAP23, a 

substrate modified by WT DHHC3 but not WT DHHC15. This outcome suggests that the 

DHHC CRD of DHHC3 is insufficient to confer substrate specificity to SNAP23. DHHC17, 

also known as huntingtin-interacting protein 14 (HIP14), contains an ankyrin repeat domain 

that interacts with an N-terminal fragment of huntingtin.426 Although DHHC3 cannot 

interact with huntingtin, when the ankyrin repeat domain of DHHC17 is fused to DHHC3, 

the chimeric protein interacts with huntingtin and redistributes it to the perinuclear region 

through palmitoylation-dependent vesicular trafficking.393 This result and the DHHC15/3 

chimera data suggest that substrate specificity is determined by the N- and C-termini of the 

enzyme. Additionally, DHHC23, also called neuronal NOS-interacting DHHC domain-

containing protein, interacts with the PDZ domain on neuronal NOS through its PDZ-

interacting EDIV motif.414 Several DHHCs contain PDZ-interacting domains that allow for 

enzyme–substrate interactions, which indicates that these DHHCs use such interactions to 

mediate substrate specificity.396,400 The interactions between a PAT and its substrate can be 

weak and transient, but increasing evidence suggests that stronger interactions exist, such as 

those between the ankyrin repeat of DHHC17 and huntingtin, DHHC3 and the γ-

aminobutyric acid A receptor γ2 subunit,454 and DHHC8 and paralemmin.393

Crystal structures of DHHC–substrate complexes would shed invaluable insight on these 

interactions. Challenges inherent to the crystallization of membrane-bound proteins impede 

progress; however, several non-catalytic domains of DHHCs have been crystalized. The 

interaction of DHHC5 with its substrate, phosphoprotein phospholemman, has been studied 

and the binding site has been mapped to the disordered C-terminal tail of DHHC5.401 

Another study 455 identified a unique ΨβXXQP motif in the substrates of DHHC17. This 

motif centers on glutamine and proline (QP) residues, whereas the other four residues are 

more variable. The motif is found in multiple DHHC17 and DHHC13 substrates and 

interacts with the ankyrin repeat domains found in these DHHCs. Crystal structures 456 of 

the ankyrin repeat domain of DHHC17 and a truncated form of Snap25b have elucidated the 

nature of the interaction, attributing it primarily to hydrogen bondings and hydrophobic 

interactions involving the QP motif of Snap25b. This QP dipeptide motif is present in all of 

the DHHC17 substrates, including Htt, and the loss of the QP motif in Htt disrupts DHHC17 

binding.
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The amino acid sequence in the vicinity of the palmitoylation site on the substrate is also 

important for PAT substrate recognition. The palmitoylation of PSD-95 has been shown to 

depend on the first 13 amino acids, MDCLCIVTTKKYR. The two modified cysteines are 

surrounded by hydrophobic residues (Leu4, Ile6, and Val7), and mutations of these amino 

acids to a hydrophilic serine residue result in mislocalization and much weaker 

palmitoylation, whereas mutations of the hydrophilic residues Asp2, Thr8, or Thr9 to 

alanine do not alter localization.457 SNAP23, which is not a substrate for DHHC15, can be 

acylated by DHHC15 when Cys79 (a residue close to the cysteine residue to be 

palmitoylated) is mutated to phenylalanine, because the resulting Cys79Phe mutant is highly 

similar to SNAP25b (a substrate for DHHC15) in terms of the number and configuration of 

cysteines in its CRD.381 Additional work further highlighted the importance of the 

secondary structure near the palmitoylation site.458 A 21 amino acid sequence enriched in 

aromatic amino acids, predicted to be an amphiphatic α-helix, near the Cys739 

palmitoylation site of the sodium–calcium exchanger (NCX) is essential for NCX acylation. 

The most surprising discovery was the capability of this sequence to convert non-

palmitoylated cysteines to bona fide modification sites when introduced adjacently, which 

demonstrates that fine structural elements exist to ensure that the correct cysteine is modified 

by the relatively promiscuous enzymatic activity of DHHCs. Thus, not only the amino acid 

sequences surrounding the palmitoylation site but also high-order structural elements on the 

substrate are critical.

There is limited evidence supporting the hypothesis that various DHHCs prefer particular 

types of substrates. For example the S. cerevisiae PAT Swf1 targets transmembrane proteins 

with juxtamembrane cysteine residues, whereas the substrates for Akr1 are mainly soluble 

proteins.447 The differential bias may be due simply to the small number of substrates 

identified for Akr1 and Swf1, however, and there is insufficient evidence for a definitive 

conclusion. Mammalian DHHCs may also be biased toward certain substrate types. Not 

surprisingly, substrates of the promiscuous DHHC3 and DHHC2 include both cytoplasmic 

and integral membrane proteins with various numbers of transmembrane domains (Table 2). 

In contrast to the involvement of DHHC2 and DHHC3 in many pathways, both DHHC15 

and DHHC21 are less promiscuous and prefer cytosolic proteins in developmental singaling 

pathways as substrates. Tables 3–9 summarize known S-palmitoylated proteins according to 

whether they are cytoplasmic or transmembrane. Many substrate proteins are either integral 

membrane proteins or undergo prenylation or myristoylation that targets them to membranes 

in which DHHCs are localized. Notably, the reported palmitoylation sites of the majority 

(>95%) of palmitoylated single-pass integral membrane proteins are located either directly 

adjacent to or inside the annotated transmembrane domain. Furthermore, S-palmitoylation 

normally occurs close to the N-glycine myristoylation or C-terminal prenylation site for 

cytoplasmic proteins. The fact that S-palmitoylation occurs next to a transmembrane domain 

or another lipid modification is likely determined by the proximity of these sites to the 

DHHC active site. On the contrary, many S-palmitoylated proteins lack transmembrane 

domains or other lipid modifications that could recruit them to membrane-localized DHHCs 

(Table 8). These proteins may be recruited to membranes via interaction with membrane-

localized proteins. For example, PSD-95 is recruited to synapses by the transmembrane 

protein ephrin-B3.459
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PATs not only have broad specificity for protein substrates but also display broad specificity 

for the acyl-CoA co-substrate. Although palmitoyl-CoA (C16) is the preferred substrate, 

other long-chain acyl-CoAs such as myristoyl-CoA (C14) and stearoyl-CoA (C18) are also 

efficiently transferred by PATs. DHHC2 transfers acyl-CoAs with various chain lengths and 

degrees of saturation. DHHC15 also has a promiscuous fatty acyl-CoA substrate profile.373 

The broad specificity indicates that cells can utilize various fatty acyl-CoA to modify the 

activity of PAT substrates depending on the metabolic state of the cell. DHHC3, however, 

exhibits a more stringent acyl-CoA substrate profile and efficiently transfers only C14 and 

C16 acyl groups.460 This specificity is independent of the protein substrate, which indicates 

a level of control to prevent the incorrect modification of DHHC substrates by other lipids. 

A more in-depth study of acyl-CoA substrate specificity 461 expanded previous studies by 

analyzing a larger number of acyl groups and DHHCs. The results supported the finding that 

each DHHC has individual acyl-CoA preferences. Surprisingly, DHHC3 and DHHC7, which 

have highly similar protein sequence, have different acyl-CoA substrate preferences: 

DHHC7 prefers the longer C18 groups whereas DHHC3 prefers shorter C14 and C16 

groups. The determining factor was isolated through mutagenesis studies to be a single 

isoleucine in the third transmembrane domain of DHHC3. When the isoleucine on DHHC3 

is mutated to serine, as found on DHHC7, the mutant utilizes C18 groups.

Notably, this review and the studies cited generally assume that palmitate is the acyl group 

being attached by the DHHC PATs. Although this attachment is the most likely event, a 

general lack of mass spectrometry (MS) data confirming the identity of the modification 

catalyzed by individual DHHCs leaves open the possibility that other acyl groups are being 

attached by this family of PATs. This possibility is supported by the observation that other 

fatty acids, such as arachidonate, eicosapentaenoate, palmitoleic acid, and stearic acid, 

reportedly attach to protein substrates through thioester bonds.462–465 Cysteines modified 

with 14:0, 18:0, 18:1, and 18:2 fatty acids were detected in bovine heart and liver tissue.466 

S-acylation with stearate and arachidonate also occurs on the Gα subunit, myelin, the G2 

protein of the Rift Valley fever virus, and the asialoglycoprotein receptor.464,465,467–469

Although many proteins are known to be palmitoylated, associating the modifications to the 

actions of specific DHHCs is difficult for several reasons, including PAT redundancy, the 

lack of clearly defined recognition sequences, difficulty associated with obtaining purified 

DHHCs, and the deconvolution of enzymatic versus non-enzymatic protein palmitoylation. 

However, it would not be surprising to find that most, if not all, cysteine S-palmitoylation 

events are mediated by DHHCs.

4.1.4. Mechanism of Palmitoylation—Cysteine palmitoylation forms a thioester bond 

that is similar in energy to the thioester bond in the palmitoyl donor, palmitoyl-CoA. Thus, 

the overall the reaction is energy-neutral, and no energy source (i.e., ATP) is needed. Indeed, 

purified PATs can directly modify their substrate using palmitoyl-CoA in the absence of an 

energy source.373

DHHCs themselves are autoacylated in vivo and in vitro.370,371,373 Incubating 3H-palmitoyl-

CoA with partially purified yeast Erf2/Erf4 in the absence of Ras2 substrate results in the 

formation of 3H-labeled Erf2.370 Heat inactivation before the addition of 3H-palmitoyl-CoA 
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abolishes the acyl-Erf2 intermediate. These results suggest that native Erf2 autoacylates. The 

formation of the intermediate depends on an intact DHHC domain. When the cysteine is 

mutated to serine, the resulting Erf2 C203S mutant cannot be acylated, which suggests that 

the cysteine is the site of palmitoylation.370 The acyl intermediate may be the active enzyme 

intermediate that transfers the acyl group to substrate proteins. Thus, the enzymatic 

mechanism likely has a two-step ping-pong mechanism (Figure 20). The first step is fast 

autoacylation, and in the slower second step, the palmitoyl is transferred to the substrate 

protein. Evidence to support the chemical and kinetic competence of this intermediate has 

been reported.460 In this study, purified DHHC2 and DHHC3 were labeled with 3H-

palmitoyl-CoA in vitro and then re-purified to remove excess radioactive palmitoyl-CoA. 

The PAT was then incubated with a protein substrate. Over time, the signal was transferred 

from the PAT to the substrate protein, thereby directly demonstrating the transfer of the 

palmitoyl group from enzyme to substrate.

Notably, the identity of the autoacylated cysteine remains unknown. Mutagenesis only 

shows that the cysteine in the DHHC domain is necessary for autoacylation because it is 

required for catalytic activity. A radioactive signal on the PAT was observed despite long 

incubation times with substrate proteins, which suggests that either 3H-palmitoyl is also 

located on a cysteine residue not involved in the catalytic transfer or the PAT is inactive.
460,470 Additional results, such as X-ray crystal structures of the catalytic domain in complex 

with substrates, will greatly help to elucidate the catalytic mechanism of DHHCs.

When the His201 in Erf2, the first conserved histidine residue in the DHHC motif, is 

mutated to alanine, the resulting Erf2 H201A–Erf4 complex loses its PAT activity despite the 

formation of the acyl intermediate.370 This outcome suggests that His201 is involved in the 

transfer of the acyl group to the substrate but is not important for the formation of the acyl 

enzyme intermediate, which is not the case for all DHHCs. For example, Swf1 with a 

DQHC motif instead of the DHHC motif has partial activity.471 This motif also exists in the 

human DHHC13 protein that acylates the huntingtin protein. Surprisingly, in the yeast 

system, the overexpression of Swf1 mutants in which the catalytic cysteine of the DHHC 

motif is altered to arginine (DHHR) still results in increased palmitoylation of the Swf1 

substrates Tlg1, Syn8, and Snc1. Most likely, the acyl-DHHC intermediate would not form 

with the Swf1 DHHR mutant.

The conserved CRDs of DHHCs contain many palmitoylated cysteine residues that are 

distinct from the catalytic cysteine. These cysteines are located downstream of the DHHC 

domain and form a unique motif, CCX(7–13)C(S/T).402 This motif is found in DHHC5, 

DHHC6, and DHHC8. The function of this modification on the DHHCs and its formation 

mechanism require further study. It could be a consequence of the auto-catalytic activity or 

the activity of another DHHC on DHHC5, DHHC6, and DHHC8. Indeed, DHHC6 is a 

downstream substrate for DHHC16 and the depalmitoylase APT2.472 When palmitoylated, 

but not when de-palmitoylated, DHHC6 has detectable activity. Notably, DHHC6 exists in 

multiple differentially palmitoylated states with variable activity and stability. This complex 

regulatory mechanism is reminiscent of that of protein phosphorylation and further 

highlights the importance of protein acylation.
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One study demonstrated that DHHC2 and DHHC3 form homodimers that inhibit enzyme 

activity,473 which suggests that oligomerization may be a means to regulate DHHC PAT 

activity. Another potential regulatory mechanism is phosphorylation to turn DHHCs on or 

off. DHHC3 is regulated by the Src and fibroblast growth factor receptor tyrosine kinases. 

Compared with the WT, DHHC3 with the phosphorylated tyrosine sites mutated had a 

stronger interaction with neural cell adhesion molecule and further increased its 

palmitoylation levels.474

The interaction of DHHC with other non-substrate proteins also regulates the function and 

activity of DHHCs. DHHC9 requires Golgi complex-associated protein of 16 kDa (GCP16) 

for proper functioning. DHHC6, through its SH3 domain, reportedly associates with 

Selenoprotein K,404 which serves as a cofactor in a manner similar to that of GCP16. The 

DHHC–cofactor complex increases the palmitoylation of its substrates. The mechanism 

through which SelK interacts with DHHC6 to promote palmitoylation requires further study. 

The cofactor could stabilize the DHHC enzyme, as in the case of DHHC9 and GPCP16,412 

or recruit the substrate to the complex.

The DHHC proteins bind zinc with specific cysteine residues in the CRD.475 Interestingly, 

these conserved cysteine residues can also be palmitoylated, which destabilizes the enzyme.
476 The relationship between the zinc binding and palmitoylation of these cysteines is 

unknown but could be a potential regulatory mechanism.

4.1.5. Biological Function and Disease Relevance of DHHCs—Significant 

progress has been made in elucidating the functional role of palmitoylation, but the role of 

DHHC enzymes remains incompletely understood. Through knockdown and deletion 

studies, various biological functions have been attributed to specific DHHCs (Table 2). In 

general, most mutations are correlated with neurodegenerative diseases such as 

Huntington’s, Alzheimer’s, and schizophrenia. Other diseases such as cancer and 

developmental defects have also been attributed to various DHHCs. The biological functions 

of DHHCs are ultimately determined by the substrate proteins they modify and regulate. 

Because these substrates have not been completely identified in most cases, understanding of 

the biological functions of the DHHC enzymes remains limited. Redundancies among 

DHHCs, poor antibodies against endogenous DHHCs, and weak in vitro DHHC activity are 

a few of the obstacles that must be overcome to further elucidate DHHC function.

The most thoroughly studied case is the role of DHHC17 and HIP14L (DHHC13) in 

Huntington’s disease. These PATs were initially shown to interact and palmitoylate 

huntingtin through their ankyrin repeat domains. Disease mutations of huntingtin diminish 

interaction with PATs, which reduces palmitoylation and and ultimately causes cell death.426 

Notably, when WT huntingtin levels are low, the degree to which DHHC17 itself is 

palmitoylated is significantly reduced. This decrease leads to defective enzymatic activity 

against known substrates SNAP25 and GluR1 in mice lacking one of the alleles coding for 

huntingtin, and the effect is even greater in cells treated with antisense oligos to degrade the 

huntingtin gene.443 Huntingtin likely acts as a protein scaffold to bring together DHHC17 

and its substrates. Because most substrates of DHHC17 are involved in neurological 

processes, it is easy to see how the loss of normal huntingtin or DHHC17 function could 
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result in neurological defects. Furthermore, mice deficient in DHHC17 exhibit a 

neurological and behavioral phenotype similar to that of patients with Huntington’s disease.
477

These studies have generally shown that the palmitoylation of huntingtin is protective and 

that the inhibition of PAT–huntingtin interaction is necessary for the progression of 

Huntington’s disease. Although the exact mechanism through which DHHC17 contributes to 

Huntington’s disease remains to be established, a recent study showed that caspase-6, a 

cysteine protease involved in neurological disorders, is a substrate of DHHC17. Caspase-6 

activity is inhibited by palmitoylation, and in DHHC17 −/− mice, decreased caspase-6 

palmitoylation results in increased caspase-6 activity, which is reportedly required for the 

progression of Huntington’s disease.433 Additional mouse studies have demonstrated 

embryonic lethality in DHHC17 and DHHC13 knockout mice.478 These embryos have 

characteristics similar to those of huntingtin (−/−) embryos, such as a disorganized chorion. 

Although its mechanism remains to be elucidated, the lethality further emphasizes the 

importance of palmitoylation at various stages of development.

DHHC mutations are also associated with X-linked mental retardation,479 including X 

chromosome mutations in zDHHC9 and zDHHC15 (X-linked mental retardation type 91).
421 It is not clear how deficiency in DHHC9 and DHHC15 leads to mental retardation, but it 

is not unexpected, because DHHC15 and DHHC9 substrates are involved in neural 

development (see Table 2).

Two studies have suggested that DHHC2 functions as a tumor suppressor. Reduced 

expression of the corresponding gene (zDHHC2) predicts a poor prognosis in gastric 

adenocarcinoma patients and is associated with lymph node metastasis.480 When zDHHC2 

is knocked down, cytoskeleton-associated protein 4 (CKAP4) palmitoylation is significantly 

reduced, which decreases the capacity of antiproliferative factor to suppress proliferation 

and tumorigenesis. The interaction between CKAP4 and antiproliferative factor is mediated 

by the palmitoylation of CKAP4 by DHHC2, which explains its function as a tumor 

suppressor.481

The overexpression of DHHC14 is linked to gastric cancer. Gastric cancer tissue samples 

with higher levels of DHHC14 messenger RNA (mRNA) are associated with more 

aggressive tumor invasion in vivo. In vitro, DHHC14 activates gastric cancer cell migration 

and invasion, whereas cells with DHHC14 knockdown are relatively less invasive.482

Mice deficient in the zDHHC5 gene show a remarkable defective phenotype. Litter sizes are 

reduced by half, and the survivors are deficient in contextual fear conditioning. DHHC5 is 

also highly expressed in neural tissue and interacts with PSD-95 through the PDZ3 domain 

on PSD-95.396 These observations suggest that DHHC5 may be linked to post-synaptic 

function, learning, and memory. The effect of DHHC5 on learning and memory might be 

explained by the ability of DHHC5 to interact with and palmitoylate SSTR5, a GPCR 

expressed mainly in neural tissue but not in tissues such as the kidneys or liver.399 The exact 

function of palmitoylation on GPCRs is not well understood. Studies on rhodopsin have 

suggested that palmitoylation near the carboxyl-terminal tail at Cys322 and Cys323, which 
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extends into the cytoplasm, induces the formation of a pseudo loop.483 The C-terminus of 

GPCRs is important for interaction with downstream signaling molecules such as receptor 

kinases, and the palmitoylation-dependent formation of the pseudo-loop could be a 

mechanism that regulates GPCR signaling484,485 through DHHCs. A study has also linked 

DHHC5 to non-small cell lung cancer.486 When zDHHC5 was knocked down, the cancer 

cells exhibited reduced cell proliferation, colony formation, and cell invasion, and could be 

rescued by overexpression of the WT DHHC5 but not the catalytically dead DHHS5. The 

phenotype was replicated in a mice tumor xenograft model in which DHHC5 knockdown 

inhibited tumor formation.486

A study in mice showed that a deletion of three base pairs resulting in the loss of a highly 

conserved phenylalanine in DHHC21 was sufficient for hair loss in mice.439 This single 

mutation resulted in the mislocalization and loss of catalytic activity of DHHC21. Re-

introducing WT DHHC21 into the mice rescued the shiny and smooth coat phenotypes. The 

authors then showed that Fyn, a Src-family kinase involved in keratinocyte differentiation, is 

a substrate for DHHC21. The observed effects of Fyn mislocalization and reduced levels of 

Lef1, nuclear β-catenin, and Foxn1 in the DHHC21 mutant keratinocytes may explain the 

hair loss and differentiation phenotypes.439 DHHC21 is also linked to endothelial 

inflammation.487 This enzyme is required for the barrier response, and DHHC21-deficient 

mice are more resistant to injury. These effects are likely mediated by the palmitoylation of 

PLCβ1.487 Another study linked DHHC21 to vascular function in mice through the 

palmitoylation of the α1D adrenoceptor, the palmitoylation of which is required for receptor 

function.395

In mice, a nonsense mutation in the zDHHC13 gene results in the degradation of mRNA and 

phenotypes of amyloidosis, alopecia, and osteoporosis.441 The protein responsible for the 

osteoporosis phenotype is membrane type-1 matrix metalloproteinase (MT1-MMP), a factor 

that controls skeletal development. The palmitoylation of MT1-MMP by DHHC22 (encoded 

by zDHHC13) is required for its proper distribution and function in facilitating vascular 

endothelial growth factor expression. Osteocalcin expression is also associated with 

DHHC22-dependent MT1-MMP palmitoylation, which links DHHC22 to skeletal 

development through its palmitoylation activity on MT1-MMP.442 Other studies have linked 

DHHC22 to mitochondrial function and metabolism in mouse liver cells. A proteomics 

study identified 254 potential DHHC22 substrates. Among them, malonyl-CoA-acyl carrier 

protein transacylase and catenin delta are verified substrates.488 These findings were further 

confirmed in the hepatocytes of zDHHC13 knockout mice, which showed diminished 

mitochondrial function.488 DHHC22 also reportedly plays roles in hair anchoring and skin 

barrier integrity through its substrate cornifelin.444 The loss of zDHHC13 makes mice more 

susceptible to bacteria, which results in skin inflammation.487 Similarly, a spontaneous 

mouse mutation in zDHHC13 reportedly led to increased susceptibility to skin 

carcinogenesis.455

Mice deficient in zDHHC16 (Aph2) exhibit cardiomyopathy and cardiac defects such as 

bradycardia.424 The phenotype functions primarily through the DHHC16 substrate 

phospholamban (PLN). When PLN is palmitoylated, its interactions with protein kinase A 

and protein phosphatase 1 control the pentamer formation of PLN. In zDHHC16-deficient 
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mice, PLN phosphorylation decreases, which inhibits PLN function. Surprisingly, the 

deleterious phenotype is alleviated to a degree in PLN−/− zDHHC16−/− mice. DHHC16 is 

also reportedly involved in the DNA damage response pathway; however, the mechanism 

has not been elucidated, and the effects are observed only when zDHHC16 is knocked out in 

mouse embryonic fibroblast cells.489

Genomic mapping studies in schizophrenia patients have identified multiple gene deletions 

that may be involved. zDHHC8 is a commonly observed deletion located in the chromosome 

22q11 region490 that has been linked with schizophrenia. One potential substrate that may 

mediate the effects of zDHHC8 deletion is the ankyrin-G protein (ANK3). DHHC5 and 

DHHC8 are reportedly required for the palmitoylation and localization of ANK3,491 and 

other studies have linked ANK3 to schizophrenia.492 Another potential substrate is bCDC42, 

the overexpression of which restores dendritic spine cell density in adult 22q11 deletion 

mice.493 However, the association of zDHHC8 mutation with schizophrenia is controversial.
490,494,495

Surprisingly, unlike the deletion of zDHHC17 or zDHHC5, the deletion of the broad-

specificity DHHC3 or DHHC7 in mice does not result in obvious deleterious phenotypes.452 

However, simultaneous knockout of DHHC3 and DHHC7 results in a drastic phenotype of 

reduced body and brain mass and perinatal lethality. This observation confirms to some 

degree the existence of functional redundancies for DHHC3 and DHHC7 and likely other 

DHHCs. DHHC7 knockout mice show increased glucose tolerance and hyperglycemia 

linked to the palmitoylation of Glut4.406 Additional evidence has linked DHHC7 to cell 

polarity and tumorigenesis through the palmitoylation of Scribble409 and to cell migration 

via junction adhesion molecule C.408

The palmitoylation of viral proteins is required for proper protein function as previously 

noted,496 but the transferases for these proteins have yet to be identified. The likelihood that 

viral proteins hijack the DHHCs of their target cells is high because viral proteins are known 

to hijack cellular machinery to ensure the survival of the virus. A recent example is the 

HSV-1 envelope protein UL20, which interacts with and serves as a substrate for 

DHHC3.497 Cells overexpressing catalytically dead DHHS3 have lower viral titers and 

altered UL20 localization. This hijacking is not limited to viruses. Bacterial pathogens have 

also been demonstrated to hijack host cells. The GobX protein from L. pneumophila and 

SspH2 from Salmonella are two examples of bacterial proteins that are palmitoylated inside 

host cells and require palmitoylation for proper localization.498

DHHC-mediated palmitoylation is also critical for calcium flux. IP3R, the receptor for 

inositol 1,4,5-triphosphate, is palmitoylated by the SelK–DHHC6 complex. Knockdown of 

DHHC6 disrupts IP3R-mediated Ca2+ flux, and mutagenesis of the IP3R palmitoylation 

sites decreases the function of the receptor. The electrogenic NCX1 is also regulated by 

palmitoylation.499

Generally, the deletion of a zDHHC gene and subsequent loss of the fine control of 

associated substrate palmitoylation is likely to be deleterious to cell homeostasis in healthy 

normal cells. The disruption of DHHC levels in malignant cells has not been well studied. 
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One study reported that epidermal growth factor receptor (EGFR) signaling is increased in 

DHHC20-deficient cancer cells.436 Palmitoylation-deficient EGFR exhibited increased 

activation and downstream signaling, and the increased EGFR signaling sensitized the cells 

to EGFR inhibition and increased inhibitor-induced cell death.

In conclusion, DHHCs play vital roles in normal cellular functions and are involved in the 

development of neurological disease and cancer. Similar to protein kinases, most DHHCs 

are involved in signaling pathways, but the modifications DHHCs catalyze do not turn on 

their substrates but instead direct them to the correct cellular compartment. This mechanism 

is supported by the deleterious phenotypes observed when DHHCs are deleted or their 

catalytic activity is lost. How DHHCs themselved are regulated to control their catalytic 

activity is poorly understood and remains an exciting area of study.

4.2. Proteins That Catalyze Cysteine Depalmitoylation

Two known cytosolic acyl protein thioesterases, APT1 and APT2 (also called LYPLA1 and 

LYPLA2), are thought to be responsible for depalmitoylating many S-acylated proteins. 

APT1 was first reported to deacylate the α subunit of trimeric G proteins and the small 

GTPase H-Ras in vitro and when overexpressed in cells.500,501 Knockdown of APT1 also 

increases the acylation of overexpressed N-Ras.502 However, as described later in this 

section, APT1 and APT2 knockdown do not affect the acylation of endogenous Ras, which 

suggests that endogenous Ras is not a physiological substrate of APT1 and APT2.503 

Notably, APT1 and APT2 themselves are also palmitoylated.504 APT1 can depalmitoylate 

both itself and APT2. Palmitoylation is proposed to target APT1 and APT2 to the plasma 

membrane, where they can deacylate other substrate proteins.504 However, another report 

suggested that the soluble unpalmitoylated APT deacylates substrate proteins on all 

membranes.505

The development and use of APT1 and APT2 inhibitors have provided further support for 

the roles of these acyl protein thioesterases. The first reported APT1/APT2 inhibitor was 

palmostatin B,502 and a more potent analogue, palmostatin M, has also been developed.506 

However, later studies showed that palmostatin B and M are not specific for APT1 and 

APT2. They also inhibit other serine hydrolases according to the results of activity-based 

protein profiling.507 Thus, previous conclusions about the effects of palmostatins on APT1 

and APT2 must be viewed with caution.

ML348 and ML349, which are more specific inhibitors for APT1 and APT2, respectively, 

have been developed (Figure 21) through high-throughput screening facilitated by activity-

based protein profiling.508–510 Notably, ML348 is highly specific for APT1, and ML349 is 

highly specific for APT2.511,512 Thus, these inhibitors will be highly useful for dissecting 

the roles of APT1 and APT2. One study with ML348 and ML349 showed that APT1 and 

APT2 do not affect signaling downstream of N-Ras, thereby correcting a previous report 

obtained with nonspecific inhibitors.503 These APT1- and APT2-selective inhibitors have 

been used to demonstrate that APT2 depalmitoylates Scribble and affects its membrane 

localization.513
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The α/β-hydrolase domain 17 (ABHD17) family of proteins has been identified as a group 

of depalmitoylases. The knockdown of APT1 and APT2 affects the S-palmitoylation of 

huntingtin but not that of PSD-95 and N-Ras. They used the nonspecific inhibitor 

palmostatin B to profile novel serine hydrolase targets and discovered a family of 

uncharacterized ABHD17 proteins that catalyze the depalmitoylation of PSD-95 and N-Ras.
498 Another group screened 38 mouse serine hydrolases and also found that ABHD17 

members (ABHD17A, ABHD17B, and ABHD17C) are depalmitoylases of PSD-95.514 

These studies broadened the family of depalmitoylase enzymes and suggest that even more 

proteins than previously thought can catalyze cysteine depalmitoylation.

4.3. Palmitoylation Inhibitors

Protein palmitoylation plays key roles in protein trafficking and is related to several diseases. 

Palmitoylation inhibitors can therefore be useful tools with which to study the function of 

palmitoylation or treat related diseases, and interest in their development is increasing. 

Currently available palmitoylation inhibitors can be categorized into two general types: 

lipid-based and non-lipid-based (Figure 22). The most commonly used lipid-based inhibitor 

is the non-selective 2-bromopalmitate (2BP). 2BP inhibits the palmitoylation of Src family 

kinases Fyn and Lck, Rho family kinases, and H-Ras.515–517 Cerulenin, initially discovered 

as a fatty acid synthase inhibitor, is also reportedly an S-palmitoylation inhibitor for 

CD36.518 Tunicamycin, an N-linked glycosylation inhibitor, also inhibits protein 

palmitoylation on substrates such as estrogen receptor α variant and Ca2+ channels.519,520

A high-throughput screening was used to identify several non-lipid-based palmitoylation 

inhibitors, which were reported to inhibit the Raf/Mek signaling pathway and suppress 

cancer cell proliferation.521 However, later studies using purified DHHCs showed that only 

one of the five compounds has inhibition activity and is less potent than 2BP.522

More efficient and selective inhibitors for cysteine palmitoylation are urgently needed. All 

current inhibitors are limited either by low inhibition potency or lack of selectivity. Although 

2BP has historically been the most commonly used “palmitoylation inhibitor”, its noted off-

target activity and toxicity are such that it could equally be considered the worst available 

inhibitor.523,524 In cells, 2BP is converted to its CoA form, which is a substrate for DHHCs 

and can lead to the labeling of substrate proteins.523 Thus, inhibitors that specifically target 

DHHCs are in great demand. Inhibitors that can distinguish different DHHCs would be even 

more useful. More efficient and selective inhibitors will greatly aid elucidation of the 

function of cysteine palmitoylation and its therapeutic potential.

4.4. Functions of Protein S-Palmitoylation

4.4.1. Proteins Known to Be S-Palmitoylated—We summarize proteins that are 

experimentally validated to be S-palmitoylated in Tables 3–9. The proteins are classified into 

these tables according to whether they contain other membrane-targeting signals, such as 

transmembrane domains, N-terminal glycine myristoylation or C-terminal prenylation. The 

tables clearly show that palmitoylation occurs on an extraordinarily diverse set of proteins, 

and unlike glycine myristoylation or cysteine prenylation, no consensus sequence exist for 

predicting which proteins undergo cysteine palmitoylation. The reported functions of S-
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palmitoylation are listed along with their references in the tables. A brief summary of the 

reported functions of cysteine palmitoylation is provided here.

4.4.2. Regulation of Protein Trafficking—Owing to the hydrophobicity of the acyl 

group, palmitoylated proteins normally associate with the membranes of various organelles 

and facilitate trafficking between these organelles. This section reviews two well-studied 

proteins, Ras and Cdc42, to illustrate the regulation of protein trafficking through 

palmitoylation.

Ras membrane trafficking is discussed in section 2.4a, but this section provides a more 

detailed picture. H-Ras, N-Ras, and K-Ras are the most well-known Ras genes in humans.
670 Ras is a small GPTase that exists in a GTP-bound active state and a GDP-bound inactive 

state. GEFs activate Ras by catalyzing the exchange of GTP for GDP in Ras,671 whereas 

GAPs inactivate Ras by promoting the hydrolysis of GTP to GDP.672 Among the different 

PTMs that regulate Ras activity,673 lipidation acts mainly by controlling Ras trafficking. Ras 

proteins are prenylated at the C-terminal CaaX motif and subsequently cleaved and 

carboxylmethylated at the cysteine.13,14,674 Biochemical studies suggest that farnesylation 

cannot provide adequate binding affinity for the plasma membrane.110,111 Therefore, a 

second event is needed. This second event differs for the various members in Ras family. For 

H-Ras, N-Ras, and K-Ras4A, palmitoylation is this second event, and it occurs on cysteines 

near the CaaX motif after farnesylation (Figure 23). N-Ras and K-Ras4A each have only one 

cysteine (Cys181 and Cys180, respectively) near the CaaX motif (Figure 23), which is the 

palmitoylation site. H-Ras has two cysteines (Cys181 and Cys184) near the CaaX motif 

(Figure 23) and is dually palmitoylated.142

After farnesylation and palmitoylation (known as dual lipidation), Ras is sorted into the 

vesicle and travel to the plasma membrane.675 In the case of H-Ras, the mono-

palmitoylation of Cys181 is sufficient for plasma membrane localization, whereas the mono-

palmitoylation of Cys184 leads to Golgi localization,676 which indicates that the Cys181 of 

H-Ras is more involved in targeting to the plasma membrane. Another member of the Ras 

family, K-Ras4B, has no cysteines for palmitoylation near the CaaX motif. However, K-

Ras4B has eight lysines near the C-terminus that may interact electrostatically with the 

negatively charged plasma membrane for localization.104 After palmitoylation and 

localization, H-Ras, N-Ras, and K-Ras4A are depalmitoylated by acyl-protein thioesterases 

and return to their mono-lipidation states.502 Weak plasma membrane binding affinity results 

in the localization of Ras to the Golgi (facilitated by PDEδ142), in which it is re-acylated and 

sorted to the plasma membrane. This dynamic acylation–deacylation cycle therefore helps 

maintain the plasma membrane localization of Ras (Figure 23).677

Cdc42 belongs to the Rho GTPase family and regulates cell polarity, migration, and 

progression.678,679 Cdc42 has two isoforms. The ubiquitously expressed isoform 1 (aCdc42) 

contains a CaaX motif and is either farnesylated or geranylgeranylated. There is no 

additional cysteine near the CaaX motif, and thus, aCdc42 is not palmitoylated. Isoform 2 

(bCdc42) is expressed specifically in the brain.680 It contains a unique CCaX motif in which 

the first cysteine is farnesylated. After farnesylation, two processing pathways become 

available. One pathway is the classical CaaX processing pathway. The protein is first 
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farnesylated in the ER, followed by RCE1 and ICMT-mediated cleavage of aaX and 

carboxylmethylation of the terminal prenylcysteine. Then bCdc42 binds to RhoGDIα and 

travels to the plasma membrane.132 The other processing pathway bypasses the proteolysis 

step, and palmitoylation occurs on the second cysteine of the CCaX motif.113,681 Then, 

bCdc42 is localized to the Golgi and travels to the plasma membrane via vesicular transport. 

After plasma membrane localization, bCdc42 can be depalmitoylated and travel back to the 

Golgi via binding to RhoGDIα. In this second pathway, bCdc42 is dually lipidated followed 

by vesicle localization, a process similar to the one that Ras undergoes. However, it is 

unknown what mechanism determines the processing of Cdc42. Only some proteins with the 

CCaX motif undergo dual lipidation,113 which indicates that the CCaX motif is not a general 

feature of dual lipidation.

4.4.3. Regulation of Protein Stability—S-palmitoylation also regulates protein stability. 

The best-studied example is Tlg1 in yeast, which plays key roles in the regulation of protein 

recycling between endosomes and the Golgi.682,683 Tlg1 is palmitoylated by the yeast PAT 

Swf1.684 Palmitoylation retains Tlg1 on the trans Golgi network and endosome membranes 

and inhibits Tlg1 degradation. By contrast, the mutation of palmitoylation sites or 

inactivation of Swf1 results in Tlg1 ubiquitination and degradation, which are mediated by 

the Tlg1 E3 ligase Tul1.685 In this case, the function of palmitoylation is to prevent protein 

ubiquitylation and thus increase Tlg1 half-life and stability. Furthermore, the cellular 

localization of cysteine-mutated Tlg1 is similar to that of WT Tlg1,684 which indicates that 

palmitoylation does not influence the membrane association of Tlg1 but simply blocks Tlg1 

ubiquitylation. However, the mechanism through which palmitoylation inhibits 

ubiquitylation is unknown. One hypothesis is that two contiguous aspartates are located in 

the transmembrane domain, which triggers quality control to ubiquitylate and degrade the 

protein because the negatively charged aspartate is incompatible with the membrane. When 

palmitoylation occurs on two adjacent cysteines, the long-chain fatty acyl group covers two 

aspartates and thus rescues the incompatibility. In addition to the regulation of Tlg1, the 

stability of several other proteins is regulated by S-palmitoylation. The palmitoylation of 

HIV receptor C-C chemokine receptor type 5 stabilizes the membrane expression of the 

receptor.572 The lack of palmitoylation of estrogen receptor-α results in more E2-dependent 

degradation.649 Palmitoylation prolongs the half-life of regulator of G protein signaling 4 

(RGS4) more than 8-fold.390

4.4.4. Prevention of Unfolded Protein Response in the ER and Promotion of 
ER Exit—Low-density lipoprotein receptor-related protein 6 (LRP6) is a single-pass type I 

membrane protein. It is a co-receptor of Wnt and is required for the initiation of the Wnt/β-

catenin signaling pathway.686,687 The palmitoylation of LRP6 occurs on Cys1394 and 

Cys1399 and is required for LRP6 exit from the ER.537 It has been proposed that 

palmitoylation allows LRP6 to avoid triggering ER quality control. Because LRP6 contains 

a 23 amino acid transmembrane domain, which is longer than the usual membrane thickness, 

the hydrophobicity of the extra residues is mismatched with the hydrophilic environment 

and thus can trigger the unfolded protein response. The palmitoylation of two 

juxtamembranous cysteines tilts the extra residues towards the membrane and thus avoids 

the mismatch.537 Yeast chitin synthase Chs3 must also be palmitoylated for ER export,688 
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and a study of amyloid precursor protein (APP) showed that the blocking of its 

palmitoylation causes nearly complete ER retention, which suggests that this reaction is 

required for the ER export of APP.689

4.4.5. Prevention of Protein Aggregation—Knowledge of the function of 

palmitoylation in protein aggregation comes from studies of Huntington’s disease, which is 

caused by the mutation of the huntingtin protein. In healthy individuals, the N-terminal 

region of the huntingtin protein contains 6–35 repeated glutamine residues (known as the 

polyQ region), whereas in patients with Huntington’s disease, the polyQ region expands to 

more than 40 repeated glutamines.690 These excess glutamines cause huntingtin aggregation, 

which is the primary marker of the disease.430 Huntingtin is palmitoylated on Cys214 by 

DHHC17,691 and compared with WT huntingtin, mutated huntingtin is reportedly 

palmitoylated at a much lower level.430 The overexpression of DHHC17 reduces huntingtin 

aggregation efficiently, whereas the knockdown of DHHC17 increases huntingtin 

aggregation and induces neuronal cell death. The involvement of palmitoylation by 

DHHC17 may provide new targets for the treatment of Huntington’s disease.

4.5. Techniques for Detecting Protein Palmitoylation

The study of protein cysteine palmitoylation has benefited significantly from technologies 

that can detect this process. To date, several methods have been developed to detect protein 

S-palmitoylation, thereby enabling the identification of palmitoylated proteins and the 

functional study of palmitoylation.

4.5.1. Radioactive-Isotope-Labeled Palmitic Acid—Using radioactive-isotope-

labeled palmitic acid to label proteins metabolically was the earliest reported method for the 

detection of protein S-palmitoylation.692 After treatment with radiolabeled palmitic acid, 

radiolabeled palmitoyl-CoA forms in cells and used by PATs to modify target proteins. 

Immunoprecipitation followed by radioactivity monitoring allows the detection of 

palmitoylated proteins. Three radiolabeled palmitic acids are commonly used: 3H-, 14C- and 
125I-palmitic acids.412,693,694 3H- and 14C-palmitic acids are structurally the same as 

endogenous palmitic acids and mimic palmitoylation accurately. However, the use of these 

radiolabeled palmitic acids requires long exposure times owing to the weak radioactive 

signals of 3H and 14C. 125I-palmitic acid has higher sensitivity, but the introduction of the 

iodo label significantly changes the structure of palmitic acid, and thus this probe may not be 

ideal.

4.5.2. Bioorthogonal Palmitic Acid Probes—To solve the problem of low sensitivity 

of 3H- and 14C-palmitic acids, bioorthogonal palmitic acid probes which contain a terminal 

azido or alkynyl group have been developed (Figure 24).695 Compared with radiolabeled 

palmitic acid probes, these bioorthogonal probes have high sensitivity and are more 

convenient to handle. Furthermore, combined with click chemistry, affinity probes such as 

biotin can be installed on proteins to allow the affinity purification and identification of 

modified proteins with MS. Currently, this method is broadly used with two types of probes: 

azido palmitic acid probes and alkynyl palmitic acid probes (Figure 24). Azido fatty acids 

with 15 carbons (Az-C15, Figure 24) primarily label S-palmitoylated proteins,327,696 
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whereas azido fatty acids with shorter carbon chains (e.g., Az-C12 and Az-C11) label only 

N-myristoylated proteins.696,697

Compared with radiolabeled probes, the azido fatty acid probes have significantly increased 

detection sensitivity. However, compared with alkyne probes, azido probes reportedly give 

higher background.698,352 Therefore, alkynyl fatty acid probes, which are structurally more 

similar to endogenous palmitic acid, have been developed to minimize background labeling. 

Alkynyl fatty acids with various carbon chain lengths can mimic a range of protein fatty 

acylations. For example, alkynyl fatty acids with 16 or 18 carbons (Alk-C16 or Alk14, Alk-

C18 or Alk16) can label S-palmitoylated proteins,327–329 whereas alkynyl fatty acids with 

12 carbons (Alk-C14 or Alk12) can label N-myristoylated proteins.329,697 However, there is 

overlap among proteins labeled by different probes: Alk12 can also label palmitoylated 

proteins, and Alk14 can also label myristoylated proteins.333,699 Therefore, analytical 

methods that can identify the modification site are helpful in determining which type of 

modification the probe is labeling and which enzymes may be responsible for that 

modification. A cleavable azido molecule was introduced to alkynyl fatty acid labeled 

proteins to facilitate the identification of modification sites.336 This molecule contains 

fluorescence and biotin tags for the visualization and enrichment of fatty-acylated proteins. 

It also bears a protease cleavage site and therefore can leave a hydrophilic and charged tag 

on fatty-acylated peptides after in vitro protease digestion. This method increases the 

hydrophilicity and ionization of fatty-acylated peptides and enables the direct identification 

of sites modified by fatty acid probes.

4.5.3. Acyl-Biotin Exchange—Acyl-biotin exchange (ABE) is an indirect method for 

detecting protein S-palmitoylation.700,701 The three-step ABE procedure is shown in Figure 

25. The first step is to use N-ethylmaleimide to block all the free cysteines in proteins. Then, 

hydroxylamine is used to cleave the palmitoyl group from the modified cysteines. The third 

step is the use of biotin-N-[6-(biotinamido)hexyl]-3′-(2′-pyridyldithio)propionamide 

(biotin-HPDP) to label the relieved cysteines, followed by streptavidin pull-down and MS 

identification. Compared with palmitic acid probes, ABE has several advantages. Both the 

radiolabeled and bioorthogonal palmitic acid probes operate via metabolic labeling, which 

interferes with global metabolism status and may disrupt normal cell processes. ABE is not 

metabolic labeling, so it can detect protein S-palmitoylation under any conditions, including 

various stress conditions. In 2006, this method was used to profile global S-palmitoylated 

proteins in yeast, which was the first proteomics study of palmitoylation.447 Thirty-five new 

palmitoylated proteins were identified in this study. Furthermore, ABE is the most ideal 

method developed to date for the study of protein S-palmitoylation in animal tissues because 

it lacks a pre-treatment step and can monitor the dynamics of S-palmitoylation.681 By 

comparison, metabolic labeling with alkyne-tagged fatty acids and pulse-chase method can 

also be used to examine the dynamic of S-palmitoylation in cell culture,702 but it cannot be 

easily applied to study palmitoylation in animals.

ABE also has limitations, however. Its most obvious drawback is the hydroxylamine 

treatment step, which removes the lipidation from cysteines and therefore obscures which 

form of lipidation (myristoylation, palmitoylation, or other acyl groups) is occurring on the 

cysteine residues. Certain S-palmitoylations may also be relatively resistant to 
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hydroxylamine treatment; junction adhesion molecule C is one reported example.408 A 

variation of the ABE method called acyl-PEG exchange has been reported. In this method, a 

5 kD or 10 kD PEG is added to S-acylated proteins instead of biotin. This mass tag allows 

the visualization of S-acylation level with western blots because the modified protein 

migrates more slowly than the unmodified protein.703 Ethylenediaminetetraacetic acid 

(EDTA) is necessary for effective hydroxylamine treatment, likely because it chelates metals 

that could oxidize the liberated cysteine residues.703

4.5.4. Imaging Palmitoylated Proteins in Cells—The three methods described above 

use biochemical approaches to detect protein palmitoylation after the lysing of cells or 

tissues. A fluorescence imaging method for tracking specific palmitoylated proteins in 

mammalian cells has also been developed.704 As shown in Figure 26, the method uses Alk14 

(Alk-C16) metabolic labeling and click chemistry to install a tag on a target protein. Two 

primary antibodies are then used to recognize the target protein and tag, and two distinct 

secondary antibodies conjugated to oligonucleotides are used to bind specifically to the two 

primary antibodies. After this step, the two secondary antibodies form a closed circle 

because they bind to the same protein (distance between two secondary antibodies is <40 

nm). A rolling-circle amplification reaction is performed, and then fluorescent 

oligonucleotide probes are added for hybridization and the signals that depend on the 

distance between the two secondary antibodies can be observed. Non-target proteins or non-

palmitoylated proteins cannot be recognized by the primary antibodies, so the final 

hybridization cannot occur. Using this approach, the authors visualized the O-palmitoylation 

of Wnt3a in cells and successfully tracked the secretion pathway of the protein. However, 

because this method uses antibodies and click chemistry, which requires Cu(I), the cells 

must be fixed.

4.5.5. Other Methods for the Detection of Protein Palmitoylation—Additional 

methods have been developed for the detection of protein palmitoylation. Difference gel 

electrophoresis based proteomics 705 detects slight differences in pI values and the relative 

mobility of palmitoylated and depalmitoylated proteinsMicellar electrokinetic 

chromatography was used identify GAP-43 palmitoylation in vitro.706 The separation of 

palmitoylated and unmodified GAP-43 peptides can be performed in less than 7 min. Gas 

chromatography-MS and liquid chromatography-MS methods have also been developed to 

directly identify and quantify palmitoylation and other lipidations by comparing the 

retention time and mass spectrum with standard samples.707,708 However, these methods 

require a large amount of protein, which limits their capacity to detect protein palmitoylation 

in cell lysates or tissues.

4.5.6. Software for the Prediction of Protein Palmitoylation—Several software 

programs have been developed for the prediction of protein palmitoylation. CSS-Palm 1.0 

(CSS: clustering and scoring strategy) was the first model built for palmitoylation site 

prediction.709 NBA-Palm (NBA: naïve Bayes algorithm) is another program available for 

palmitoylation site prediction.710 CSS-Palm 1.0 has been updated to CSS-Palm 2.0 and used 

to predict the palmitoylation sites of 16 known palmitoylated proteins in budding yeast; 

these sites were subsequently validated experimentally.711 CSS-Palm 2.0 was used in global 
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in silico screening and identifed neurochondrin/norbin as a novel palmitoylated protein.374 

Yet another program for palmitoylation site prediction, CKSAAP-Palm (CKSAAP: 

composition of k-spaced amino acid pairs),712 has a sensitivity higher than that of CSS-Palm 

2.0 for predicting palmitoylated proteins in budding yeast.

5. Lipidation on Other Residues

In addition to cysteine prenylation, N-terminal glycine myristoylation, and cysteine 

palmitoylation, several other lipid modifications of proteins have been reported, including 

serine O-acylation, N-terminal cysteine N-palmitoylation, lysine N-acylation, and C-

terminal cholesterol esterification (Figure 27). Only a few proteins have been determined to 

undergo these modifications. Thus, the preferred sequence motifs and likelihood of these 

modifications occurring in other proteins are unknown. However, these lipid modifications 

clearly play important roles in the biological functions of the known proteins.

5.1. Serine Fatty Acylation of Wnt Proteins

Wnt proteins require acylation for secretion and activity. The Wnt family of secreted 

signaling proteins impacts virtually all aspects of developmental biology and is also essential 

during adulthood.713 In the canonical Wnt signaling pathway, Wnt binds to the Frizzled 

(Fz)–LRP complex, thus transducing a signal to Dishevelled and Axin. This signal leads to 

the inhibition of β-catenin degradation, and accumulated β-catenin then enters the nucleus 

and interacts with T-cell factor to regulate the transcription of certain genes.714

The first pure and active secretory Wnt protein (murine Wnt3a) was successfully isolated 

from cell culture medium in 2003.715 Triton-X-114 phase separation assays showed that 

most of the purified Wnt3a partitioned into the Triton-X-114 phase, which suggested that 

similar to integral membrane proteins, Wnt3a is highly hydrophobic. 3H-palmitate metabolic 

labeling further confirmed that Wnt3a is palmitoylated. MS analysis showed that Cys77 of 

Wnt3a is modified with a palmitate group. This cysteine residue is conserved among the 

Wnt family members. In 2006, it was reported that 3H-palmitate metabolic labeling of both 

the WT and a cysteine mutant (C77A) of Wnt3a were resistant to neutral hydroxylamine (pH 

7.0), which was used to specifically cleave thioester linkages but leave oxyester and amide 

bonds intact.716 These observations suggest that Wnt3a undergoes another type of acylation. 

Truncation together with site-directed mutagenesis demonstrated that the conserved Ser209 

residue of Wnt3a is required for acylation. Unexpectedly, a monounsaturated palmitoleoyl 

(C16:1) moiety was found to be attached to Ser209 via an oxyester linkage. Mutation of 

Ser209 yielded nonfunctional and poorly secreted Wnt3a protein. However, one of the Wnt 

proteins, Wnt8/WntD, lacks the corresponding serine but is secreted normally.716

Subsequently, an imaging method using click chemistry with bioorthogonal fatty acids and 

in situ proximity ligation was developed, which allowed the first visualization of acylated 

Wnt proteins in the cellular context.704 Their results demonstrated that Wnt3a is acylated 

only on Ser209 and not on the originally reported Cys77, consistent with the crystal 

structure of Wnt protein reported in 2012.717
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5.1.1. Wnt Serine Acyltransferase and Its Inhibitors—Porcupine (PORCN), a 

member of the membrane-bound O-acyl-transferase (MBOAT) family,718 is thought to 

catalyze the transfer of acyl groups to the serine residue of Wnt proteins. Mutations in 

PORCN abrogate both the activity and the secretion of Wnt and result in early embryonic 

lethality in mice.719 Mutations in human PORCN lead to focal dermal hypoplasia, an X-

linked developmental disorder.720 The catalytic mechanism of PORCN has not been 

established conclusively partly owing to its hydrophobic nature. However, the highly 

conserved histidine and asparagine residues among all 11 human MBOAT family members 

are considered putative catalytic sites.718 Mutations of the conserved His341 residue ablate 

the activity of PORCN, whereas the conserved Asn306 is not required for PORCN 

acyltransferase activity.721 Truncation of either the N- or C-terminal domain of PORCN 

causes destabilization and inactivity.722 PORCN is palmitoylated mainly at Cys187, which is 

likely catalyzed by DHHCs. A PORCN C187A mutant showed modestly increased fatty 

acylation and signaling activity of Wnt3a.704

Considering the broad biological roles of Wnt signaling, substantial effort has been made to 

develop potent agonists and antagonists of the Wnt signaling pathway. The most widely used 

small-molecule agonist inhibits glycogen synthase kinase 3,723 a component of the β-catenin 

destruction complex, thus leading to the stabilization of β-catenin and activation of its 

downstream gene transcription. To inhibit the Wnt signaling pathway, a synthetic chemical 

library was screened, which led to the identification of two classes of highly selective and 

powerful inhibitors: inhibitor of Wnt production 1 (IWP-1; Figure 28) and inhibitor of Wnt 

response.724 The former interacts with and inhibits PORCN specifically, and the latter 

abolishes the destruction of Axin proteins, which suppress Wnt signaling.724,725 Because 

PORCN is hypothesized to fatty-acylate Wnt proteins exclusively, the development of 

inhibitors similar to IWP-1 will allow the specific targeting of Wnt-involved biological 

processes without affecting others.

Additional PORCN inhibitors have been developed, including IWP-L6,726 LGK974,727 and 

IWP-O1728 (Figure 28). IWP-L6 potently inhibited Wnt-mediated branching morphogenesis 

in cultured embryonic kidneys.726 LGK974 potently inhibited tumor growth in a murine 

mouse mammary tumor virus–Wnt1 breast cancer model and a human HN30 head and neck 

squamous cell carcinoma model, but it had no effect on cells from several other human 

cancer cell lines, such as brain cancer and colon cancer.727 GNF-6231 (Figure 28), a 

compound similar to LGK974, has also been reported.729

5.1.2. Extracellular Wnt Serine Deacylase—Unlike cysteine palmitoylation which 

usually undergoes multiple cycles of acylation and deacylation, the O-palmitoleate 

modification of Wnt was long thought to be irreversible given the presence of the more 

stable ester bond compared with a more labile thioester bond. In 2015, Notum, a secreted 

Wnt antagonist, was identified as the enzyme that deacylates the O-palmitoleic group of 

secreted Wnt protein.730 The crystal structure of catalytically inactive human Notum S232A 

in complex with a palmitoleoylated peptide derived from human Wnt7a shows that a large 

hydrophobic pocket accommodates the palmitoleoyl group. A “kink” in the 

monounsaturated hydrocarbon chain is positioned at the base of the cavity surrounded by 

Notum Ile291, Phe319, and Phe320. Notably, the lipid-binding cavity of Notum seems 
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unable to accommodate saturated fatty acids (C14:0/C16:0). Kinetic and MS analyses 

further proved that Notum is an esterase using both Wnt peptide and protein substrates. 

Notum has a canonical α/β-hydrolase fold bearing the hallmark serine–histidine–aspartic 

acid catalytic triad, and it inactivates Wnt signaling by deacylating Wnt protein 

extracellularly and causing Wnt3a and Wnt5a to form oxidized oligomers.731 During 

development, Notum is required for neural and head induction via the inactivation of Wnt 

signaling pathway.

5.1.3. Functions of Wnt Serine Acylation—Wnt serine acylation is crucial for the 

binding of Wnt to its receptor. The structure of Xenopus Wnt8 in complex with its co-

receptor Fz8 CRD in mice suggested that serine acylation is required for high-affinity 

interaction between Wnt and Fz8 (Figure 29). 717 Their study revealed two extending 

domains, an N-terminal domain and a C-terminal domain (see Figure 29) of Wnt. Ser187 is 

located at the tip of the N-terminal domain and is modified by a palmitoleoyl group, 

consistent with the results of a previous MS study. The palmitoleoyl group inserts deeply 

into a hydrophobic tunnel of the Fz8 CRD (see Figure 29). The conserved C-terminal 

domain of Wnt also interacts with a hydrophobic core of the Fz8 CRD. Notably, this 

structure revealed that instead of being palmitoylated, the conserved Cys77 residue forms a 

disulfide linkage, which supports the hypothesis that instead of being dually lipidated, Wnt 

proteins are lipidated only on the conserved serine residue.

Wnt serine acylation is critical for intracellular trafficking. Wnt is translated in the rough ER 

and then translocates into the ER lumen, in which glycosylation and fatty acylation are 

catalyzed by an oligosaccharyl transferase complex and PORCN, respectively. The 

acquisition of membrane-association allows modified Wnt to exit the ER for anterograde 

transport. In the Golgi complex, two cargo receptors, Wntless732–734 and p24,735,736 bind 

Wnt and escort it to the cell surface. Serine acylation is required for the interaction between 

Wntless and Wnt proteins.737,738 Wntless is recycled from the plasma membrane to the 

Golgi complex via endosome trafficking mediated by a retromer complex for the next round 

of Wnt secretion.739

Wnt serine acylation may also be important for extracellular transport. Lipoprotein particles 

are hypothesized to be long-range transporters of Wnt morphogen.740 In mammalian cells, 

Wnt3a co-fractionates with ApoB100 and associates with high- and low-density 

lipoproteins.741 The lipid modification on Wnt may contribute to the interaction with 

lipoproteins and further assembly into secretory particles.

5.2. N-terminal Cysteine N-Palmitoylation of Hedgehog

Hedgehog (Hh) signaling plays major roles in embryonic development and malignant 

tumorigenesis in pancreatic, gastric, and lung cancers. Mammals have three Hh family 

members, Sonic Hedgehog (Shh), Indian Hedgehog, and desert Hedgehog, among which 

Shh is the best studied. The Hh ligand binds to its transmembrane receptor, Patched, which 

then activates Smoothened, leading to the nuclear translocation of Gli transcription factors 

and activation of downstream gene expression. Hh proteins are initially synthesized as 45 

kDa precursor proteins. Upon cleavage of an N-terminal signal peptide, Hh protein 
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undergoes both C-terminal autoprocessing to incorporate a cholesterol modification and N-

terminal cysteine palmitoylation via an amide linkage, thus generating a 19 kDa mature form 

of the Hh signaling molecule.742

Unlike the extensively studied cysteine palmitoylation via a labile thioester bond, Hh 

proteins are modified with a palmitoyl group at the N-terminal cysteine through a stable 

amide linkage. Two possible mechanisms have been proposed for this unique reaction 

(Figure 30). The first posits that palmitoylation initially occurs on the sulfhydryl group of 

the cysteine side chain. The thioester intermediate then rearranges to an amide linkage via an 

intramolecular S-to-N shift.743 The second mechanism proposes that N-terminal 

palmitoylation occurs directly via an enzymatic reaction similar to that of N-terminal 

myristoylation. The second model is supported by evidence that N-terminal-blocked Shh 

proteins cannot be palmitoylated and, more importantly, no thioester-linked palmitoylated 

intermediate has been detected.744 The first six amino acids of Hh are reportedly sufficient 

for palmitoylation by Hedgehog acyltransferase (Hhat).745 When the N-terminal cysteine is 

mutated to alanine, no acylation occurs, but the cysteine-to-serine mutant is acylated at 

reduced levels.745

5.2.1. Hh Acyltransferase and Its Inhibitors—In 2001, three research groups 

discovered that in Drosophila melanogaster, the palmitoylation of Hh protein is catalyzed by 

a member of the MBOAT family called Skinny Hedgehog, Sightless Hedgehog, Central 

missing, or Rasp.746–748 The mammalian homolog of the corresponding Hh 

palmitoyltransferase is called Hhat. In Hhat-deficient mice, Hh proteins are not 

palmitoylated, and the mice exhibit impaired signaling activity evidenced by defects in 

neural tube formation and limb development.749 Moreover, the depletion of Hhat has been 

shown to reduce tumor growth in a mouse xenograft model of pancreatic cancer.750 Hhat is a 

~50 kDa multiple-span transmembrane protein of the MBOAT family, and its enzymatic 

activity has been demonstrated with in vitro biochemical assays.744 A biochemical study 

also showed that the N- and C-terminal variable regions are central to Hhat stability and 

activity.751 Later studies showed that Hhat has 10 transmembrane domains and two re-entry 

loops. The catalytic histidine residue is in the loop on the luminal side, whereas the 

conserved aspartate residue is on a cytosolic loop.752,753

Several inhibitors have been developed to suppress the Hh signaling pathway, mostly by 

targeting downstream components including the Smoothened or Gli proteins.754 A high-

throughput screen identified small-molecule inhibitors for Hhat, such as RU-SKI 43 (see 

Figure 28),755 which inhibits Hhat palmitoyl transferase activity specifically on Shh proteins 

both in vitro and in cells. However, later studies showed that RU-SKI 43 has off-target 

effects and that its cellular toxicity is unrelated to its effect on Hhat. By contrast, a new 

analogue, RU-SKI 201, is a specific inhibitor of Hhat with no off-target effects reported.756

5.2.2. Functions of Hh Palmitoylation—Hh palmitoylation is key for the proper 

secretion and signaling activity of Hh. Although mutation of the Shh N-terminal cysteine to 

serine (C25S) does not affect Shh localization in the lipid raft, the C25S mutant cannot form 

a soluble multimeric protein complex thought to be the major active component for Hh 

signaling.749 Notably, apart from lipidation, a conserved lysine/arginine residue in a 
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predicted interaction interface has also been demonstrated to be crucial for Hh multimeric 

complex formation by contributing to electrostatic interactions.757 Furthermore, Hh 

oligomers co-localize with heparan sulfate proteoglycans on the surface of Hh-producing 

cells and assemble with lipoprotein particles, which mediate long-range Hh signaling 

activity and contribute to the formation of a morphogen concentration gradient during 

embryonic development.740,757

5.3. Cholesterol Modification of Hh

Apart from unusual N-terminal cysteine palmitoylation, Hedgehog proteins also undergo a 

unique auto-cleavage process that incorporates a cholesterol modification and releases the C-

terminal domain.758,759 The two-step mechanism for Hh autoprocessing is similar to that of 

intein self-splicing proteins (Figure 31). First, the sulfhydryl group of a cysteine residue 

attacks the carbonyl of the preceding glycine residue to form a thioester linkage. Then, the 

labile thioester intermediate is attacked by the 3β-hydroxyl group of a cholesterol molecule 

to generate an oxyester bond and liberate the C-terminal autoprocessing domain.

Both azido- and alkyne-modified cholesterol analogues have been synthesized and used to 

label modified Hh proteins.760,761 Compared with the azido analogue, the alkyne analogue is 

more efficient for labeling Hh.761 These analogues allow the installation of fluorescence or 

affinity probes for in-gel visualization and affinity purification.

C-terminal cholesterol modification is mainly responsible for the release of dually lipidated 

Hh proteins from the cell surface with the aid of Dispatched, a 12-pass transmembrane 

protein, and a secreted protein, Scube.762,763 Notably, Dispatched and Scube recognize 

different parts of the cholesterol molecule, which suggests a hand-off mechanism 

reminiscent of the transfer of free cholesterol between Niemann-Pick disease proteins NPC1 

and NPC2 during the exit of cholesterol from late endosomes.762 However, cholesterol is not 

absolutely required for Hh signaling activity even though the absence of the modification 

reduces signaling potency.763 Moreover, several lines of evidence have shown that the 

cholesterol moiety is required for the short- and long-range distribution of Hh morphogen. 

Cholesterol incorporation restricts Hh diffusion by enhancing hydrophobic interactions with 

the plasma membranes of adjacent cells and thus increases short-range distribution.758 On 

the contrary, for long-range transport mediated by lipoprotein particle carriers,740 cholesterol 

modification contributes to the partitioning of Hh into particles and the formation of the 

soluble multimeric complex.764

5.4. Serine Octanoylation on Ghrelin

In 1999, the search for the ligand of growth hormone secretagogues receptor (GHSR) led to 

the discovery of a polypeptide ghrelin known as the “hunger hormone.”765 By binding to 

GHSR, ghrelin stimulates growth hormone release from the anterior pituitary and helps 

regulate energy homeostasis. The ghrelin gene is first transcribed into the 117-residue 

preproghrelin, which is then cleaved into the 94-residue proghrelin via the loss of the N-

terminal signal peptide. Further processing of proghrelin yields a 28-residue ghrelin peptide 

that is released into the circulation.766
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Ghrelin is the only mammalian peptide hormone known to be modified with an octanoyl 

group on the third serine residue,765 which is conserved from rats to humans. The initial 

report of ghrelin peptide indicated that only acylated ghrelin is functional and able to 

activate GHSR. Des-acyl ghrelin has long been considered a degradation product of acylated 

ghrelin. However, studies have shown that des-acyl ghrelin can antagonize acylated ghrelin 

and act as an independent hormone, likely via binding to its own receptor.766

In 2008, two research groups independently discovered the acyl transferase, ghrelin 

octanoyltransferase (GOAT), that adds the octanoyl group onto ghrelin. Similar to PORCN 

and Hhat, this enzyme belongs to the MBOAT family that resides in the ER.718 One group 

overexpressed all 16 mouse MBOAT family members and found that only the 

overexpression of GOAT dramatically increased the hydrophobicity of ghrelin.767 Another 

group discovered GOAT by knocking down potential MBOAT family proteins and 

monitoring the reduction in ghrelin octanoylation with matrix-assisted laser desorption 

ionization time-of-flight MS.768

Mutation of the conserved histidine or asparagine residue of GOAT completely abolishes its 

enzymatic activity. GOAT exhibits promiscuity toward various fatty acyl groups varying 

from C2 to C14.768 GOAT contains 11 transmembrane domains and one reentrant loop. 

Similar to Hhat, GOAT has a catalytic histidine in the ER lumen, whereas the asparagine 

residue is on a cytoplasmic loop.769 Purified GOAT can accept a minimal five-residue 

ghrelin peptide as a substrate, and the N-terminal glycine is required for recognition by 

GOAT.770

The identification of GOAT allowed the mechanism-based development of antagonists that 

could potentially prevent obesity. A pentapeptide inhibitor derived from the first five N-

terminal amino acids of proghrelin was developed and further improved by replacing the 

oxyester linkage with a more stable amide linkage on the third serine residue.771 Later, 

developed a bi-substrate mimic peptide-based inhibitor, Go-CoA-Tat, was developed, which 

integrated the binding affinity of both substrates, octanoyl-CoA and ghrelin peptide, by 

linking them with a non-cleavable bridge.772 Go-CoA-Tat inhibited GOAT efficiently and 

selectively in mice, and the intraperitoneal administration of GO-CoA-Tat improved glucose 

intolerance and reduced weight gain in WT mice but not in ghrelin-deficient mice. Several 

non-peptide small-molecule inhibitors for GOAT have also been reported, including some 

triterpenoid compounds that act as covalent reversible inhibitors.773,774 However, the in vivo 

effects of these compounds have not been reported.

5.5. MBOATs

Members of the MBOAT enzyme family transfer fatty acyl groups to the hydroxyl moiety of 

either protein side chains or small hydrophobic lipid molecules. In 2000, Hofmann 

discovered the MBOAT family through bioinformatics analysis,718 thus leading to the 

subsequent identification of several other family members at the biochemical level. MBOAT 

family members contain multiple transmembrane domains and share two common putative 

catalytic residues: histidine and asparagine (Table 10). The active histidine residue is 

surrounded by a stretch of hydrophobic amino acids, whereas the asparagine site is 

embedded within a hydrophilic region. Both residues are highly conserved among MBOAT 
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family members and required for enzymatic activities, with the exception of PORCN, in 

which the conserved asparagine is not required for activity.721 Human MBOAT family 

members can be characterized into three subclasses. Class I enzymes, including acyl-CoA 

cholesterol acyltransferase 1 and 2 (ACAT1/2)775,776 and diacylglycerol acyltransferase 1 

(DGAT1), are mainly involved in neutral lipid biosynthesis.777 ACAT1/2 catalyze 

cholesterol esterification using oleoyl-coA and are potential drug targets for the treatment of 

Alzheimer’s disease. DGAT1 catalyzes the biosynthesis of retinyl esters, wax esters, and 

triacylglycerol.778 Class II MBOAT enzymes acylate protein substrates and consist of 

PORCN, Hhat, Hhat-like,779 and GOAT (see sections 5.1 and 5.2). The third subgroup 

belongs to the lysophospholipid acyltransferases (LPAT) family, which is involved in the 

phospholipid remodeling process. The fatty acid motif at the C2 position of a 

glycerolphospholipid can be cleaved by phospholipase A2 to produce lysophospholipid, 

which is reacylated by LPATs to diversify fatty acids at the C2 position. 

Lysophosphatidylethanolamine acyltransferase 1 (LPEAT1), lysophosphatidylcholine 

acyltransferase (LPCAT) 3, LPCAT4, and lysophosphatidylinositol acyltransferase 1 

(LPIAT1) constitute the third class of MBOATs.780

5.6. Histone Serine Palmitoylation

Histone H4 is reportedly palmitoylated on Ser47. Histone H4 serine palmitoylation occurs in 

a Ca2+-dependent manner, and LPCAT1 is the acyltransferase of histone serine 

palmitoylation.694 LPCAT1 acylates lysophosphatidylcholine to generate the pulmonary 

surfactant dipalmitoylphosphatidylcholine. Even though its name is similar to some of the 

MBOAT proteins mentioned above, LPCAT1 belongs to a different group of enzymes that 

contain only one transmembrane domain. Under normal conditions, LPCAT1 is found 

mainly in the cytosol. When the intracellular Ca2+ concentration increases, LPCAT1 

translocates to the nucleus and promotes H4 palmitoylation, which is proposed to increase 

mRNA synthesis through an unknown mechanism.694

5.7. Lysine Acylation

Protein lysine residues are modified by many acyl groups from various acyl-CoA molecules 

produced during cellular metabolism, such as acetyl-CoA, propionyl-CoA, butyryl-CoA, 

succinyl-CoA, crotonyl-CoA, and long-chain fatty acyl-CoA.781 These modifications 

regulate various aspects of cell biology, most prominently epigenetics and metabolism. This 

section discusses the long-chain fatty acylation of protein lysine residues.

Escherichia coli hemolysin, a pore-forming toxin, undergoes lysine myristoylation,782 and 

this reaction is necessary for toxin activity. The myristoylation of hemolysin requires a 

specific acyl transferase that uses a myristoyl group tethered to the acyl carrier protein as the 

myristoyl donor.

In mammalian cells, the first protein reported to contain myristoyl lysine was tumor necrosis 

factor-alpha (TNFα).783 This discovery was made during the study of proteins that are 

myristoylated but lack an N-terminal glycine, which is the site for the well-known N-

terminal glycine myristoylation. TNFα is a type II membrane protein with a single 

transmembrane domain. Lysine myristoylation occurs on Lys19 and Lys20 in the 
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intracellular N-terminal domain. Similarly, interleukin-1 alpha is myristoylated on Lys82 

and Lys83 in the propiece, catalyzed by an unidentified enzyme in monocyte lysate.784 Lens 

integral membrane protein aquaporin-0 reportedly undergoes lysine palmitoylation and 

oleylation. At present, the lysine acyltransferases remain unidentified.

The function of lysine fatty acylation in mammalian cells has been increasingly recognized 

owing to studies of a class of enzymes called sirtuins, which have begun to shed light on the 

function of this acylation. Sirtuins regulate many important biological processes, including 

transcription, metabolism, genome stability, and aging.785–787 They were thought to be NAD
+-dependent protein lysine deacetylases.788 However, several of the seven mammalian 

sirtuins lack efficient deacetylase activity. Among them, SIRT5 is found to be an efficient 

desuccinylase and demalonylase,789 whereas SIRT6 can remove long-chain fatty acyl groups 

efficiently.790 One of the physiological substrates for the defatty-acylase activity of SIRT6 is 

TNFα.790 Defatty-acylation of TNFα on Lys19 and Lys20 by SIRT6 promotes the secretion 

of TNFα, which provides the first clue about the physiological function of lysine fatty 

acylation. One study has shown that the lysine fatty acylation of TNFα targets TNFα 
primarily to the lysosomes for degradation.791 However, the exact mechanism through which 

fatty acylation promotes this targeting remains unknown. Notably, although the original 

report suggested that TNFα is myristoylated, later studies of SIRT6-TNFα have suggested 

that palmitoylation might be more abundant because Alk14 produces stronger labeling than 

Alk12.

A more notable development is the finding that Ras-related protein R-Ras2 is fatty-acylated 

on lysine residues near the C-terminal, where the prenylated and palmitoylated cysteines 

reside.792 Similar to cysteine palmitoylation, lysine acylation promotes the plasma 

membrane targeting of R-Ras2. At the plasma membrane, R-Ras2 is more active and turns 

on the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, which leads to 

increased cell proliferation. Furthermore, R-Ras2 lysine fatty acylation can be reversed by 

SIRT6, a known tumor suppressor.792,793 The regulation of R-Ras2 and thus PI3K/AKT 

signaling may underlie this tumor suppressor role.792 The R-Ras2 lysine acylation study650 

suggests that similar to cysteine acylation, lysine fatty acylation may have key biological 

functions.

Studies of sirutins have also suggested that lysine fatty acylation may be more abundant than 

previously thought. Data from our laboratory and others have shown that several mammalian 

sirtuins, such as SIRT1, SIRT2, and SIRT3, can remove long-chain fatty acyl groups with 

reasonable catalytic efficiency.794 A zinc-dependent histone deacetylase, HDAC8, also 

shows defatty-acylation activity in vitro.795 These sirtuins and HDAC may remove fatty acyl 

groups from various protein lysine residues in vivo, although the exact substrate proteins 

remain to be identified. A sirtuin from the malaria parasite was also demonstrated to prefer 

fatty acyl lysine over acetyl lysine, which suggests that protein lysine fatty acylation also 

occurs in this parasite.796
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6. Concluding Remarks and Perspectives

This section highlights unaddressed fundamental questions in protein lipidation, the 

difficulties associated with addressing these questions, and potential solutions to overcoming 

these difficulties. Protein lipidation is clearly abundant and plays critical roles in biology. 

However, the detailed mechanistic understanding of the functions of lipidation is incomplete. 

Remarkable phenotypic observations have been made in many cases, but the fundamental 

mechanisms underlying these observations is lacking. When a lipid modification affects the 

activity of the protein being modified, the underlying mechanism is unknown in most cases. 

Does membrane association increase the chances of the protein interacting with its binding 

partners or substrates that are also membrane-associated? Or does the modification change 

the conformation of the protein, thereby affecting the binding of its partners or catalysis? Or 

is the modification directly involved in the binding interaction? Answering these questions 

requires structural information that may be difficult to obtain because many of the targets are 

membrane proteins or membrane-associated proteins. Although acquiring the structures of 

membrane proteins is becoming more tractable, it still requires tremendous effort. Therefore 

techniques such as hydrogen exchange MS797 may be more applicable. Technology that 

facilitates the preparation of membrane proteins, such as nanodiscs,798 will also be helpful 

for these studies.

Even for membrane targeting, specific questions must still be answered. For example, how 

can the same modification target different proteins to different organelles (e.g., N-terminal 

glycine myristoylation targets certain proteins to the mitochondria and others to the plasma 

membrane)? Do lipid modification and its local environment have intrinsic affinity for 

different membranes, or are different trafficking machineries engaged by the modified 

proteins? We do not think significant technical challenges are associated with addressing 

these questions. By contrast, the difficulty might be the complexity of the situation (e.g., the 

existence of different trafficking machineries).

The dynamic regulation of lipid modification is another area that has not been thoroughly 

investigated. For example, can the metabolic or nutritional status of a cell affect protein 

lipidation? Can certain signaling pathways affect lipid modifications? This area is a key 

research direction because it may provide another level of understanding of the 

physiological processes involving protein lipidation. As a reference point, the importance of 

protein phosphorylation would not have been appreciated without knowing the dynamics of 

protein phosphorylation. Our investigation of TNFα lysine fatty acylation indicates that the 

level of fatty acids in the cell medium can affect the secretion of TNFα, which suggests that 

the metabolic or nutritional status of cells can affect protein lipidation and therefore protein 

function.790 Currently, the most widely adapted technology to detect protein lipidation is 

metabolic labeling with chemical probes. However, this approach is difficult to apply to 

studies of the dynamic regulation of protein lipidation by metabolic or nutritional status. The 

use of chemical probes unavoidably changes the metabolic status of the cells, and these 

probes are challenging to use in whole animals. From this perspective, the most urgently 

needed tools are antibodies or their equivalents that can be used to detect protein lipidation. 

Currently, no antibodies are available for any of the lipid modifications discussed in this 

review, perhaps because the antigens used to immunize animals might nonspecifically 
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associate with cell membranes and therefore cannot be effectively seen by the immune 

system. If this is true, then certain in vitro systems for antibody development (aptamers 

SELEX or phage display) may be useful alternatives to the development of such antibodies.

In addition to questions that are general to all lipid modifications, questions specific to 

certain lipidations also remain. Cysteine palmitoylation, by far the most complex of all 

protein lipid modifications, still requires elucidation. For example, the substrates and 

functions of each DHHC are largely unknown. No efficient inhibitors have been developed 

to determine whether any DHHCs can be pharmacologically targeted to treat human diseases 

(the most commonly used inhibitor to date is 2-BP, which has multiple 

drawbacks515,522,799,800). The reversibility of cysteine palmitoylation is also of great 

interest. Even though depalmitoylases have been reported, the extent to which cysteine 

palmitoylation is regulated by enzymatic depalmitoylation is unknown. For the MBOAT 

family of protein O-acyltransferases, a particularly compelling question is whether, similar 

to other lipidation enzymes, they have multiple substrate proteins. For lysine fatty acylation, 

pressing questions include how it occurs, how abundant it is, what biological functions it 

has, and how it achieves these functions.

Since the late 1990s, tremendous progress has been made in elucidating protein lipidation. 

Given the enormous body of knowledge accumulated and the availability of numerous tools 

and technologies in this field, progress in the coming decades will be even more impressive, 

and many of the questions raised in this review will be satisfactorily addressed.
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Figure 1. 
Lipid modifications of proteins. GPI, glycosylphosphatidylinositol.
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Figure 2. 
Protein prenylation.
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Figure 3. 
(A) Protein structures of FT (PDB ID 1FT1), GTT-1 (PDB ID 1N4P), and RGGT (PDB ID 

1DCE). The α subunits (green) of FT and GTT-1 are identical. There are extra leucine-rich 

repeats (LRRs) and immunoglobulin (Ig)-like domains in the α subunit of RGGT (α-helices 

in cyan and β-sheets in red). (B) Superimposition of the β subunits of FT (cyan), GGT-1 

(yellow), and RGGT (magenta) to show the structural homology. (C) The binding of 

substrates versus product in GGT-1. Geranylgeranyl diphosphate (GGPP; indicated by a 

GGPP analogue in magenta) rotates toward the cysteine in the CaaX peptide (PDB ID 

1N4Q) to form the prenylated product (green; PDB ID 1N4R). (D) Simultaneous binding of 

GGPP (magenta) and the translocated prenylated product (green) at the active site of GGT-1 

(PDB ID 1N4S). (E) The zinc binding site in the β subunit of FT (PDB ID 1D8D). (F) In FT, 

GGT-1, and RGGT, conserved residues in the β subunits of prenyltransferases bind to zinc, 

including an aspartate residue (Asp297β, Asp269β, and Asp238β, respectively), a cysteine 

residue (Cys299β, Cys271β, and Cys240β, respectively), and a histidine residue (His362β, 

His321β, and His290β, respectively). The zinc also coordinates with the cysteine residue of 

CaaX peptides. (G) Binding position of isoprenoid diphosphate in prenyltransferases, 

including FPP in FT (PDB ID 1FT2) and GGPP in GGT-1 (PDB ID 1N4P) and RGGT (PDB 

ID 3DST). (H) Comparison of isoprenoid diphosphate binding in FT (PDB ID 1FT2), GGT-I 
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(PDB ID 1N4P), and RGGT (PDB ID 3DST). FPP (pink) with Trp102β and Tyr361β (pink) 

in FT, GGPP (green) with Thr49β and Phe324β (green) in GGT-1, and GGPP (yellow) with 

Ser48β and Phe293β (yellow) in RGGT. In FT, the bulky Trp102β residue occupies the 

space in which the fourth isoprene unit of GGPP binds in GGT-1 and RGGT. This residue 

determines the isoprenoid specificity. (I) Protein structure of the RGGT-REP-1 complex 

(PDB ID 1LTX). REP-1 is yellow. (J) Protein structure of the prenylated Rab7-REP-1 

complex (PDB ID 1VG0). REP-1 is yellow and Rab7 is blue. All protein structures were 

made using PyMol with the PDB files.
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Figure 4. 
General reaction scheme with an ordered sequential kinetic mechanism for prenylation 

catalyzed by FT and GGT-1. The kinetics data for farnesylation and geranylgeranylation are 

from reference 22a and 23, respectively.
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Figure 5. 
Reaction pathway of Rab digeranylgeranylation catalyzed by RGGT.
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Figure 6. 
Chemical probes used to study protein prenylation.
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Figure 7. 
Plasma membrane targeting involving prenylation and a second signal, including (I) 

upstream palmitoylation, (II) downstream palmitoylation, and (III) upstream polybasic 

domain (typically six lysine residues).
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Figure 8. 
Protein structures of guanosine diphosphate dissociation inhibitors (GDIs) in complex with 

prenylated proteins. (A) Prenylated Cdc42 (green)-RhoGDI (cyan) complex (PDB ID 

1DOA), (B) prenylated Rac1 (green)–RhoGDI (cyan) complex (PDB ID 1HH4), (C) 

prenylated RhoA (green)-RhoGDI (cyan) complex (PDB ID 4F38), (D) prenylated Rheb 

(green)-PDEδ (cyan) complex (PDB ID 3T5G), (E) prenylated YPT1 (green)-RabGDI 

(cyan) complex (PDB ID 1UKV), and (F) doubly prenylated YPT1 (green)-RabGDI (cyan) 

complex (PDB ID 2BCG). CBR, C-terminal-binding region. The prenyl moiety is shown in 

purple or red. All protein structures were made using PyMOL with PDB files.
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Figure 9. 
Mechanism of RhoA membrane extraction by RhoGDI. GG, geranylgeranyl group.
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Figure 10. 
Farnesyltransferase inhibitors.
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Figure 11. 
Specific inhibitors of GGT-1 and RGGT and dual inhibitors of FT and GGT-1. IC50, half-

maximal inhibitory concentration.
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Figure 12. 
(A) Myristoyl modification at an N-terminal glycine residue. (B) Co-translational N-

myristoyl modification. (C) Post-translational N-myristoyl modification.
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Figure 13. 
(A) Crystal structure of S. cerevisiae NMT in complex with a non-hydrolyzable myristoyl-

CoA analogue and a peptide substrate (PDB ID 1IID). (B) Phe170 and Leu171 form the 

oxyanion hole to stabilize the negative charge developed on the carbonyl oxygen of 

myristoyl-CoA during catalysis. (C) The hydrophobic myristoyl group binds in a deep 

pocket in NMT. (D) The peptide substrate recognition site of NMT, which explains the 

peptide sequence specificity of NMT. All protein structures were made using PyMOL with 

PDB files.
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Figure 14. 
Myristoyl switch mechanisms. (A) The phosphorylation of N-glycine myristoylated protein 

stimulates membrane dissociation by interrupting the electrostatic interaction between 

proteins and the phospholipid. (B) Ligand binding enhances the membrane association of N-

glycine myristoylated proteins. (C) Proteolysis triggers the release of N-glycine 

myristoylated protein from the membrane.
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Figure 15. 
N-Glycine myristoylation may facilitate the trans interaction between Golgi reassembly 

stacking proteins by limiting conformational flexibility.
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Figure 16. 
The myristoyl switch that regulates c-Abl activity. The c-Abl structure (PDB ID 1OPL) in 

complex with myristoyl and a kinase inhibitor is superimposed on the c-Abl structure 

without bound myristoyl (PDB ID 1M52). In the absence of myristoyl, an extended α-helix 

(αI, grey) prevents the binding of the SH2 domain to the kinase domain. In the myristoyl-

bound state, the αI helix is separated into two shorter helices, αI (magenta) and αI′ (blue). 

The αI′ helix makes an abrupt turn to bind to the myristoyl group. This conformational 

change leads to the docking of the SH2 domain at the kinase domain and subsequent 

autoinhibition.
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Figure 17. 
Structures and half-maximal inhibitory concentration (IC50) values of representative 

inhibitors developed for NMTs in various species (CaNMT: Candida albicans NMT; 

HsNMT1/2, Homo sapiens NMT1/2; PfNMT, Plasmodium falciparum NMT; PvNMT, 

Plasmodium vivax NMT; and TbNMT: Trypanosoma brucei NMT).
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Figure 18. 
Reversible cysteine palmitoylation.
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Figure 19. 
Predicted topology and domain structure of DHHCs. TMD, transmembrane domain.
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Figure 20. 
Mechanism of DHHC-catalyzed cysteine palmitoylation.
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Figure 21. 
Inhibitors for cysteine depalmitoylases APT1, APT2, and ABHD17.
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Figure 22. 
Structures of reported palmitoylation inhibitors.
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Figure 23. 
C-terminal sequences of Ras family members and Ras trafficking.
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Figure 24. 
Bioorthogonal palmitic acid probes for the detection of protein palmitoylation.
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Figure 25. 
Procedure of ABE method for the detection of protein S-palmitoylation.
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Figure 26. 
Method for imaging palmitoylated proteins in cells.
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Figure 27. 
Protein O- and N-acylation and protein C-terminal cholesterol esterification.
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Figure 28. 
Inhibitors targeting Porcupine (PORCN) and Hedgehog acyltransferase (Hhat).
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Figure 29. 
Crystal structure of Xenopus Wnt8 in complex with the Frizzled-8 (Fz8) cysteine-rich 

domain (CRD; PDB 4F0A). CTD, C-terminal domain; NTD, N-terminal domain.
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Figure 30. 
Two proposed mechanism for the N-palmitoylation of Hedgehog (Hh) proteins.
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Figure 31. 
Mechanism of C-terminal autoprocessing of Hh proteins.
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