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Abstract

Large labeled training sets are the critical building blocks of supervised learning methods and are 

key enablers of deep learning techniques. For some applications, creating labeled training sets is 

the most time-consuming and expensive part of applying machine learning. We therefore propose 

a paradigm for the programmatic creation of training sets called data programming in which users 

express weak supervision strategies or domain heuristics as labeling functions, which are 

programs that label subsets of the data, but that are noisy and may conflict. We show that by 

explicitly representing this training set labeling process as a generative model, we can “denoise” 

the generated training set, and establish theoretically that we can recover the parameters of these 

generative models in a handful of settings. We then show how to modify a discriminative loss 

function to make it noise-aware, and demonstrate our method over a range of discriminative 

models including logistic regression and LSTMs. Experimentally, on the 2014 TAC-KBP Slot 

Filling challenge, we show that data programming would have led to a new winning score, and 

also show that applying data programming to an LSTM model leads to a TAC-KBP score almost 6 

F1 points over a state-of-the-art LSTM baseline (and into second place in the competition). 

Additionally, in initial user studies we observed that data programming may be an easier way for 

non-experts to create machine learning models when training data is limited or unavailable.

1 Introduction

Many of the major machine learning breakthroughs of the last decade have been catalyzed 

by the release of a new labeled training dataset.1 Supervised learning approaches that use 

such datasets have increasingly become key building blocks of applications throughout 

science and industry. This trend has also been fueled by the recent empirical success of 

automated feature generation approaches, notably deep learning methods such as long short 

term memory (LSTM) networks [14], which ameliorate the burden of feature engineering 

given large enough labeled training sets. For many real-world applications, however, large 

hand-labeled training sets do not exist, and are prohibitively expensive to create due to 

requirements that labelers be experts in the application domain. Furthermore, applications’ 

needs often change, necessitating new or modified training sets.

To help reduce the cost of training set creation, we propose data programming, a paradigm 

for the programmatic creation and modeling of training datasets. Data programming 

provides a simple, unifying framework for weak supervision, in which training labels are 

1http://www.spacemachine.net/views/2016/3/datasets-over-algorithms
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noisy and may be from multiple, potentially overlapping sources. In data programming, 

users encode this weak supervision in the form of labeling functions, which are user-defined 

programs that each provide a label for some subset of the data, and collectively generate a 

large but potentially overlapping set of training labels. Many different weak supervision 

approaches can be expressed as labeling functions, such as strategies which utilize existing 

knowledge bases (as in distant supervision [22]), model many individual annotator’s labels 

(as in crowdsourcing), or leverage a combination of domain-specific patterns and 

dictionaries. Because of this, labeling functions may have widely varying error rates and 

may conflict on certain data points. To address this, we model the labeling functions as a 

generative process, which lets us automatically denoise the resulting training set by learning 

the accuracies of the labeling functions along with their correlation structure. In turn, we use 

this model of the training set to optimize a stochastic version of the loss function of the 

discriminative model that we desire to train. We show that, given certain conditions on the 

labeling functions, our method achieves the same asymptotic scaling as supervised learning 

methods, but that our scaling depends on the amount of unlabeled data, and uses only a fixed 

number of labeling functions.

Data programming is in part motivated by the challenges that users faced when applying 

prior programmatic supervision approaches, and is intended to be a new software 

engineering paradigm for the creation and management of training sets. For example, 

consider the scenario when two labeling functions of differing quality and scope overlap and 

possibly conflict on certain training examples; in prior approaches the user would have to 

decide which one to use, or how to somehow integrate the signal from both. In data 

programming, we accomplish this automatically by learning a model of the training set that 

includes both labeling functions. Additionally, users are often aware of, or able to induce, 

dependencies between their labeling functions. In data programming, users can provide a 

dependency graph to indicate, for example, that two labeling functions are similar, or that 

one “fixes” or “reinforces” another. We describe cases in which we can learn the strength of 

these dependencies, and for which our generalization is again asymptotically identical to the 

supervised case.

One further motivation for our method is driven by the observation that users often struggle 

with selecting features for their models, which is a traditional development bottleneck given 

fixed-size training sets. However, initial feedback from users suggests that writing labeling 

functions in the framework of data programming may be easier [12]. While the impact of a 

feature on end performance is dependent on the training set and on statistical characteristics 

of the model, a labeling function has a simple and intuitive optimality criterion: that it labels 

data correctly. Motivated by this, we explore whether we can flip the traditional machine 

learning development process on its head, having users instead focus on generating training 

sets large enough to support automatically-generated features.

Summary of Contributions and Outline

Our first contribution is the data programming framework, in which users can implicitly 

describe a rich generative model for a training set in a more flexible and general way than in 

previous approaches. In Section 3, we first explore a simple model in which labeling 
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functions are conditionally independent. We show here that under certain conditions, the 

sample complexity is nearly the same as in the labeled case. In Section 4, we extend our 

results to more sophisticated data programming models, generalizing related results in 

crowdsourcing [17]. In Section 5, we validate our approach experimentally on large real-

world text relation extraction tasks in genomics, pharmacogenomics and news domains, 

where we show an average 2.34 point F1 score improvement over a baseline distant 

supervision approach—including what would have been a new competition-winning score 

for the 2014 TAC-KBP Slot Filling competition. Using LSTM-generated features, we 

additionally would have placed second in this competition, achieving a 5.98 point F1 score 

gain over a state-of-the-art LSTM baseline [32]. Additionally, we describe promising 

feedback from a usability study with a group of bioinformatics users.

2 Related Work

Our work builds on many previous approaches in machine learning. Distant supervision is 

one approach for programmatically creating training sets. The canonical example is relation 

extraction from text, wherein a knowledge base of known relations is heuristically mapped 

to an input corpus [8,22]. Basic extensions group examples by surrounding textual patterns, 

and cast the problem as a multiple instance learning one [15,25]. Other extensions model the 

accuracy of these surrounding textual patterns using a discriminative feature-based model 

[26], or generative models such as hierarchical topic models [1,27,31]. Like our approach, 

these latter methods model a generative process of training set creation, however in a 

proscribed way that is not based on user input as in our approach. There is also a wealth of 

examples where additional heuristic patterns used to label training data are collected from 

unlabeled data [7] or directly from users [21,29], in a similar manner to our approach, but 

without any framework to deal with the fact that said labels are explicitly noisy.

Crowdsourcing is widely used for various machine learning tasks [13,18]. Of particular 

relevance to our problem setting is the theoretical question of how to model the accuracy of 

various experts without ground truth available, classically raised in the context of 

crowdsourcing [10]. More recent results provide formal guarantees even in the absence of 

labeled data using various approaches [4,9,16,17,24,33]. Our model can capture the basic 

model of the crowdsourcing setting, and can be considered equivalent in the independent 

case (Sec. 3). However, in addition to generalizing beyond getting inputs solely from human 

annotators, we also model user-supplied dependencies between the “labelers” in our model, 

which is not natural within the context of crowdsourcing. Additionally, while crowdsourcing 

results focus on the regime of a large number of labelers each labeling a small subset of the 

data, we consider a small set of labeling functions each labeling a large portion of the 

dataset.

Co-training is a classic procedure for effectively utilizing both a small amount of labeled 

data and a large amount of unlabeled data by selecting two conditionally independent views 
of the data [5]. In addition to not needing a set of labeled data, and allowing for more than 

two views (labeling functions in our case), our approach allows explicit modeling of 

dependencies between views, for example allowing observed issues with dependencies 

between views to be explicitly modeled [19].
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Boosting is a well known procedure for combining the output of many “weak” classifiers to 

create a strong classifier in a supervised setting [28]. Recently, boosting-like methods have 

been proposed which leverage unlabeled data in addition to labeled data, which is also used 

to set constraints on the accuracies of the individual classifiers being ensembled [3]. This is 

similar in spirit to our approach, except that labeled data is not explicitly necessary in ours, 

and richer dependency structures between our “heuristic” classifiers (labeling functions) are 

supported.

The general case of learning with noisy labels is treated both in classical [20] and more 

recent contexts [23]. It has also been studied specifically in the context of label-noise robust 
logistic regression [6]. We consider the more general scenario where multiple noisy labeling 

functions can conflict and have dependencies.

3 The Data Programming Paradigm

In many applications, we would like to use machine learning, but we face the following 

challenges: (i) hand-labeled training data is not available, and is prohibitively expensive to 

obtain in sufficient quantities as it requires expensive domain expert labelers; (ii) related 
external knowledge bases are either unavailable or insufficiently specific, precluding a 

traditional distant supervision or co-training approach; (iii) application specifications are in 

flux, changing the model we ultimately wish to learn.

In such a setting, we would like a simple, scalable and adaptable approach for supervising a 

model applicable to our problem. More specifically, we would ideally like our approach to 

achieve ε expected loss with high probability, given O(1) inputs of some sort from a domain-

expert user, rather than the traditional O
∼(ε−2) hand-labeled training examples required by 

most supervised methods (where O
∼

 notation hides logarithmic factors). To this end, we 

propose data programming, a paradigm for the programmatic creation of training sets, which 

enables domain-experts to more rapidly train machine learning systems and has the potential 

for this type of scaling of expected loss. In data programming, rather than manually labeling 

each example, users instead describe the processes by which these points could be labeled 

by providing a set of heuristic rules called labeling functions.

In the remainder of this paper, we focus on a binary classification task in which we have a 

distribution π over object and class pairs (x, y) ∈ 𝒳 × − 1, 1 , and we are concerned with 

minimizing the logistic loss under a linear model given some features,

l(w) = E(x, y) ∼ π log(1 + exp( − wT f (x)y)) ,

where without loss of generality, we assume that ‖ f (x)‖ ≤ 1. Then, a labeling function 

λi:𝒳 − 1, 0, 1  is a user-defined function that encodes some domain heuristic, which 

provides a (non-zero) label for some subset of the objects. As part of a data programming 
specification, a user provides some m labeling functions, which we denote in vectorized 

form as λi:𝒳 − 1, 0, 1 m.
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Example 3.1

To gain intuition about labeling functions, we describe a simple text relation extraction 

example. In Figure 1, we consider the task of classifying co-occurring gene and disease 

mentions as either expressing a causal relation or not. For example, given the sentence 

“Gene A causes disease B”, the object x = (A, B) has true class y = 1. To construct a training 

set, the user writes three labeling functions (Figure 1a). In λ1, an external structured 

knowledge base is used to label a few objects with relatively high accuracy, and is equivalent 

to a traditional distant supervision rule (see Sec. 2). λ2 uses a purely heuristic approach to 

label a much larger number of examples with lower accuracy. Finally, λ3 is a “hybrid” 

labeling function, which leverages a knowledge base and a heuristic.

A labeling function need not have perfect accuracy or recall; rather, it represents a pattern 

that the user wishes to impart to their model and that is easier to encode as a labeling 

function than as a set of hand-labeled examples. As illustrated in Ex. 3.1, labeling functions 

can be based on external knowledge bases, libraries or ontologies, can express heuristic 

patterns, or some hybrid of these types; we see evidence for the existence of such diversity 

in our experiments (Section 5). The use of labeling functions is also strictly more general 

than manual annotations, as a manual annotation can always be directly encoded by a 

labeling function. Importantly, labeling functions can overlap, conflict, and even have 

dependencies which users can provide as part of the data programming specification (see 

Section 4); our approach provides a simple framework for these inputs.

Independent Labeling Functions—We first describe a model in which the labeling 

functions label independently, given the true label class. Under this model, each labeling 

function λi has some probability βi of labeling an object and then some probability αi of 

labeling the object correctly; for simplicity we also assume here that each class has 

probability 0.5. This model has distribution

μα, β(Λ, Y) = 1
2 ∏

i = 1

m
(βiαi1 Λi = Y

+ βi(1 − αi)1 Λi = − Y
+ (1 − βi)1 Λi = 0 ), (1)

where Λ ∈ {−1, 0, 1}m contains the labels output by the labeling functions, and Y ∈ {−1, 

1}is the predicted class. If we allow the parameters α ∈ ℝm and β ∈ ℝm to vary, (1) 

specifies a family of generative models. In order to expose the scaling of the expected loss as 

the size of the unlabeled dataset changes, we will assume here that 0.3 ≤ βi ≤ 0.5 and 0.8 ≤ 

αi ≤ 0.9. We note that while these arbitrary constraints can be changed, they are roughly 

consistent with our applied experience, where users tend to write high-accuracy and high-

coverage labeling functions.

Our first goal will be to learn which parameters (α, β) are most consistent with our 

observations—our unlabeled training set—using maximum likelihood estimation. To do this 

for a particular training set S ⊂ 𝒳, we will solve the problem

Ratner et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(α, β) = arg max
α, β ∑

x ∈ S
logP(Λ, Y) ∼ μα, β

(Λ = λ(x))

= arg max
α, β ∑

x ∈ S
log ∑

y′ ∈ − 1, 1
μα, β(λ(x), y′)

(2)

In other words, we are maximizing the probability that the observed labels produced on our 

training examples occur under the generative model in (1). In our experiments, we use 

stochastic gradient descent to solve this problem; since this is a standard technique, we defer 

its analysis to the appendix.

Noise-Aware Empirical Loss—Given that our parameter learning phase has successfully 

found some α and β that accurately describe the training set, we can now proceed to estimate 

the parameter w which minimizes the expected risk of a linear model over our feature 

mapping f, given α, β. To do so, we define the noise-aware empirical risk L
α, β

 with 

regularization parameter ρ, and compute the noise-aware empirical risk minimizer

w = arg max
w

L
α, β

(w; S) = arg max
w

1
S ∑

x ∈ S
E(Λ, Y) ∼ μ

α, β
log 1 + e−wT f (x)Y Λ = λ(x)

+ ρ w
2

(3)

This is a logistic regression problem, so it can be solved using stochastic gradient descent as 

well.

We can in fact prove that stochastic gradient descent running on (2) and (3) is guaranteed to 

produce accurate estimates, under conditions which we describe now. First, the problem 

distribution π needs to be accurately modeled by some distribution μ in the family that we 

are trying to learn. That is, for some α* and β*,

∀Λ ∈ − 1, 0, 1 m, Y ∈ − 1, 1 , P(x, y) ∼ π ∗(λ(x) = Λ, y = Y) = μα ∗ , β ∗(Λ, Y) . (4)

Second, given an example (x, y) ∼ π*, the class label y must be independent of the features f 
(x) given the labels λ(x). That is,

(x, y) ∼ π∗ y ⊥ f (x) λ(x) . (5)

This assumption encodes the idea that the labeling functions, while they may be arbitrarily 

dependent on the features, provide sufficient information to accurately identify the class. 

Third, we assume that the algorithm used to solve (3) has bounded generalization risk such 

that for some parameter χ,
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Ew ES L
α, β

(w; S) − min
w

ES L
α, β

(w; S) ≤ χ . (6)

Under these conditions, we make the following statement about the accuracy of our 

estimates, which is a simplified version of a theorem that is detailed in the appendix.

Theorem 1

Suppose that we run data programming, solving the problems in (2) and (3) using stochastic 

gradient descent to produce (α, β) and w. Suppose further that our setup satisfies the 

conditions (4), (5), and (6), and suppose that m ≥ 2000. Then for any ε > 0, if the number of 

labeling functions m and the size of the input dataset S are large enough that

S ≥ 356
ε2 log m

3ε

then our expected parameter error and generalization risk can be bounded by

E α − α∗ 2 ≤ mε2 E β − β∗ 2 ≤ mε2 E l(w) − min
w

l(w) ≤ χ + ε
27ρ .

We select m ≥ 2000 to simplify the statement of the theorem and give the reader a feel for 

how ε scales with respect to |S |. The full theorem with scaling in each parameter (and for 

arbitrary m) is presented in the appendix. This result establishes that to achieve both 

expected loss and parameter estimate error ε, it suffices to have only m = O(1) labeling 

functions and S = O
∼(ε−2) training examples, which is the same asymptotic scaling 

exhibited by methods that use labeled data. This means that data programming achieves the 

same learning rate as methods that use labeled data, while requiring asymptotically less 

work from its users, who need to specify O(1) labeling functions rather than manually label 

O
∼(ε−2) examples. In contrast, in the crowdsourcing setting [17], the number of workers m 
tends to infinity while here it is constant while the dataset grows. These results provide some 

explanation of why our experimental results suggest that a small number of rules with a 

large unlabeled training set can be effective at even complex natural language processing 

tasks.

4 Handling Dependencies

In our experience with data programming, we have found that users often write labeling 

functions that have clear dependencies among them. As more labeling functions are added as 

the system is developed, an implicit dependency structure arises naturally amongst the 

labeling functions: modeling these dependencies can in some cases improve accuracy. We 

describe a method by which the user can specify this dependency knowledge as a 

dependency graph, and show how the system can use it to produce better parameter 

estimates.
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Label Function Dependency Graph

To support the injection of dependency information into the model, we augment the data 

programming specification with a label function dependency graph, 

G ⊂ 𝒟 × 1, …m × 1, …m , which is a directed graph over the labeling functions, each of 

the edges of which is associated with a dependency type from a class of dependencies 𝒟
appropriate to the domain. From our experience with practitioners, we identified four 

commonly-occurring types of dependencies as illustrative examples: similar, fixing, 

reinforcing, and exclusive (see Figure 2).

For example, suppose that we have two functions λ1 and λ2, and λ2 typically labels only 

when (i) λ1 also labels, (ii) λ1 and λ2 disagree in their labeling, and (iii) λ2 is actually 

correct. We call this a fixing dependency, since λ2 fixes mistakes made by λ1. If λ1 and λ2 

were to typically agree rather than disagree, this would be a reinforcing dependency, since 

λ2 reinforces a subset of the labels of λ1.

Modeling Dependencies

The presence of dependency information means that we can no longer model our labels 

using the simple Bayesian network in (1). Instead, we model our distribution as a factor 

graph. This standard technique lets us describe the family of generative distributions in 

terms of a known factor function h: {−1, 0, 1}m × {−1, 1}↦ {−1, 0, 1}M (in which each 

entry hi represents a factor), and an unknown parameter θ ∈ ℝM as

μθ(Λ, Y) = Zθ
−1exp(θTh(Λ, Y)),

where Zθ is the partition function which ensures that μ is a distribution. Next, we will 

describe how we define h using information from the dependency graph.

To construct h, we will start with some base factors, which we inherit from (1), and then 

augment them with additional factors representing dependencies. For all i ∈ {1,…, m}, we 

let

h0(Λ, Y) = Y , hi(Λ, Y) = ΛiY , hm + i(Λ, Y) = Λi, h2m + i(Λ, Y) = Λi
2Y , h3m + i(Λ, Y) = Λi

2 .

These factors alone are sufficient to describe any distribution for which the labels are 

mutually independent, given the class: this includes the independent family in (1).

We now proceed by adding additional factors to h, which model the dependencies encoded 

in G. For each dependency edge (d, i, j), we add one or more factors to h as follows. For a 

near-duplicate dependency on (i, j), we add a single factor hι(Λ, Y) = 1{Λi = Λj}, which 

increases our prior probability that the labels will agree. For a fixing dependency, we add 

two factors, hι(Λ, Y) = −1{Λi = 0 ∧ Λj ≠ 0} and hι+1(Λ, Y) = 1 {Λi = −Y ˄ Λj = Y}, which 

encode the idea that λj labels only when λi does, and that λj fixes errors made by λi. The 

factors for a reinforcing dependency are the same, except that hι+1(Λ, Y) = 1{Λi = Y ∧ Λj = 
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Y}. Finally, for an exclusive dependency, we have a single factor hι(Λ, Y) = −1{Λi ≠ 0 ∧ Λj 

≠ 0}.

Learning with Dependencies

We can again solve a maximum likelihood problem like (2) to learn the parameter θ . Using 

the results, we can continue on to find the noise-aware empirical loss minimizer by solving 

the problem in (3). In order to solve these problems in the dependent case, we typically 

invoke stochastic gradient descent, using Gibbs sampling to sample from the distributions 

used in the gradient update. Under conditions similar to those in Section 3, we can again 

provide a bound on the accuracy of these results. We define these conditions now. First, 

there must be some set Θ ⊂ ℝM that we know our parameter lies in. This is analogous to the 

assumptions on αi and βi we made in Section 3, and we can state the following analogue of 

(4):

∃θ∗ ∈ Θs.t . ∀(Λ, Y) ∈ − 1, 0, 1 m × − 1, 1 , P(x, y) ∼ π ∗(λ(x) = Λ, y = Y) = μθ ∗(Λ, Y) .

(7)

Second, for any θ ∈ Θ, it must be possible to accurately learn θ from full (i.e. labeled) 

samples of μθ. More specifically, there exists an unbiased estimator θ (T) that is a function of 

some dataset T of independent samples from μθ such that, for some c > 0 and for all θ ∈ Θ,

Cov θ (T) ≤ (2c T )−1I . (8)

Third, for any two feasible models θ1 and θ2 ∈ Θ,

E(Λ1, Y1) ∼ μθ1
Var(Λ2, Y2) ∼ μθ2

(Y2 Λ1 = Λ2) ≤ cM−1 . (9)

That is, we’ll usually be reasonably sure in our guess for the value of Y, even if we guess 

using distribution μθ2
 while the the labeling functions were actually sampled from (the 

possibly totally different) μθ1
. We can now prove the following result about the accuracy of 

our estimates.

Theorem 2

Suppose that we run stochastic gradient descent to produce θ  and w, and that our setup 

satisfies the conditions (5)-(9). Then for any ε > 0, if the input dataset S is large enough that
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S ≥ 2
c2ε2log

2 θ0 − θ∗ 2

ε ,

then our expected parameter error and generalization risk can be bounded by

E θ − θ∗ 2 ≤ Mε2 E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

As in the independent case, this shows that we need only S = O
∼(ε−2) unlabeled training 

examples to achieve error O(ε), which is the same asymptotic scaling as supervised learning 

methods. This suggests that while we pay a computational penalty for richer dependency 

structures, we are no less statistically efficient. In the appendix, we provide more details, 

including an explicit description of the algorithm and the step size used to achieve this 

result.

5 Experiments

We seek to experimentally validate three claims about our approach. Our first claim is that 

data programming can be an effective paradigm for building high quality machine learning 

systems, which we test across three real-world relation extraction applications. Our second 

claim is that data programming can be used successfully in conjunction with automatic 

feature generation methods, such as LSTM models. Finally, our third claim is that data 

programming is an intuitive and productive framework for domain-expert users, and we 

report on our initial user studies.

Relation Mention Extraction

Tasks In the relation mention extraction task, our objects are relation mention candidates x = 

(e1, e2), which are pairs of entity mentions e1, e2 in unstructured text, and our goal is to learn 

a model that classifies each candidate as either a true textual assertion of the relation R(e1, 

e2) or not. We examine a news application from the 2014 TAC-KBP Slot Filling challenge2, 

where we extract relations between real-world entities from articles [2]; a clinical genomics 

application, where we extract causal relations between genetic mutations and phenotypes 

from the scientific literature3; and a pharmacogenomics application where we extract 

interactions between genes, also from the scientific literature [21]; further details are 

included in the Appendix.

For each application, we or our collaborators originally built a system where a training set 

was programmatically generated by ordering the labeling functions as a sequence of if-then-

return statements, and for each candidate, taking the first label emitted by this script as the 

training label. We refer to this as the if-then-return (ITR) approach, and note that it often 

2http://www.nist.gov/tac/2014/KBP/
3https://github.com/HazyResearch/dd-genomics
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required significant domain expert development time to tune (weeks or more). For this set of 

experiments, we then used the same labeling function sets within the framework of data 

programming. For all experiments, we evaluated on a blind hand-labeled evaluation set. In 

Table 1, we see that we achieve consistent improvements: on average by 2.34 points in F1 

score, including what would have been a winning score on the 2014 TAC-KBP challenge 

[30].

We observed these performance gains across applications with very different labeling 

function sets. We describe the labeling function summary statistics—coverage is the 

percentage of objects that had at least one label, overlap is the percentage of objects with 

more than one label, and conflict is the percentage of objects with conflicting labels—and 

see in Table 2 that even in scenarios where m is small, and conflict and overlap is relatively 

less common, we still realize performance gains. Additionally, on a disease mention 

extraction task (see Usability Study), which was written from scratch within the data 

programming paradigm, allowing developers to supply dependencies of the basic types 

outlined in Sec. 4 led to a 2.3 point F1 score boost.

Automatically-generated Features

We additionally compare both hand-tuned and automatically-generated features, where the 

latter are learned via an LSTM recurrent neural network (RNN) [14]. Conventional wisdom 

states that deep learning methods such as RNNs are prone to overfitting to the biases of the 

imperfect rules used for programmatic supervision. In our experiments, however, we find 

that using data programming to denoise the labels can mitigate this issue, and we report a 

9.79 point boost to precision and a 3.12 point F1 score improvement on the benchmark 2014 

TAC-KBP (News) task, over the baseline if-then-return approach. Additionally for 

comparison, our approach is a 5.98 point F1 score improvement over a state-of-the-art 

LSTM approach [32].

Usability Study

One of our hopes is that a user without expertise in ML will be more productive iterating on 

labeling functions than on features. To test this, we arranged a hackathon involving a handful 

of bioinformatics researchers, using our open-source information extraction framework 

Snorkel4 (formerly DDLite). Their goal was to build a disease tagging system which is a 

common and important challenge in the bioinformatics domain [11]. The hackathon 

participants did not have access to a labeled training set nor did they perform any feature 

engineering. The entire effort was restricted to iterative labeling function development and 

the setup of candidates to be classified. In under eight hours, they had created a training set 

that led to a model which scored within 10 points of F1 of the supervised baseline; the gap 

was mainly due to recall issue in the candidate extraction phase. This suggests data 

programming may be a promising way to build high quality extractors, quickly.

4snorkel.stanford.edu
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6 Conclusion and Future Work

We introduced data programming, a new approach to generating large labeled training sets. 

We demonstrated that our approach can be used with automatic feature generation 

techniques to achieve high quality results. We also provided anecdotal evidence that our 

methods may be easier for domain experts to use. We hope to explore the limits of our 

approach on other machine learning tasks that have been held back by the lack of high-

quality supervised datasets, including those in other domains such imaging and structured 

prediction.
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A General Theoretical Results

In this section, we will state the full form of the theoretical results we alluded to in the body 

of the paper. First, we restate, in long form, our setup and assumptions.

We assume that, for some function h: {−1, 0, 1}m × {−1, 1} 7↦ {−1, 0, 1}M of sufficient 
statistics, we are concerned with learning distributions, over the set Ω = {−1, 0, 1}m × {−1, 

1},of the form

πθ(Λ, Y) = 1
Zθ

exp(θTh(Λ, Y)), (10)

where θ ∈ ℝM is a parameter, and Zθ is the partition function that makes this a distribution. 

We assume that we are given, i.e. can derive from the data programming specification, some 

set Θ of feasible parameters. This set must have the following two properties.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at 

least in some sense. More specifically, there exists an unbiased estimator θ  that is a function 

of some number D samples from πθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ 
and for some c > 0,

Cov θ ≤ I
2cD . (11)

Second, for any θ1, θ2 ∈ Θ,
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E(λ2, y2) ∼ πθ2
Var(λ1, y1) ∼ πθ1

(y1 λ1 = λ2) ≤ c
M . (12)

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are 

totally wrong about the true parameter θ.

On the other hand, we are also concerned with a distribution π* which ranges over the set 

𝒳 × − 1, 1 , and represents the distribution of training and test examples we are using to 

learn. These objects are associated with a labeling function λ:𝒳 − 1, 0, 1 m and a feature 

function f :𝒳 ℝn. We make three assumptions about this distribution. First, we assume 

that, given (x, y) ~ π*, the class label y is independent of the features f (x) given the labels 

λ(x). That is,

(x, y) ∼ π∗ y ⊥ f (x) λ(x) . (13)

Second, we assume that we can describe the relationship between λ(x) and y in terms of our 

family in (10) above. That is, for some parameter θ* ∈ Θ,

P(x, y) ∼ π ∗(λ(x) = Λ, y = Y) = πθ ∗(Λ, Y) . (14)

Third, we assume that the features themselves are bounded; for all x ∈ 𝒳,

f (x) ≤ 1. (15)

Our goal is twofold. First, we want to recover some estimate θ  of the true parameter θ*. 

Second, we want to produce a parameter w that minimizes the regularized logistic loss

l(w) = E(x, y) ∼ π ∗ log(1 + exp( − wT f (x)y)) + ρ w
2

.

We actually accomplish this by minimizing a noise-aware loss function, given our recovered 

parameter θ ,

l
θ

(w) = E(x, y) ∼ π ∗ E(Λ, Y) ∼ π
θ

log(1 + exp( − wT f (x)Y)) Λ = λ(x) + ρ w
2

.

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware 

loss function, which is only this in expectation. Since the analysis of logistic regression is 

not itself interesting, we assume that we are able to run some algorithm that produces an 

estimate w which satisfies, for some χ > 0,
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E l
θ
(w) − min

w
l
θ
(w) θ ≤ χ . (16)

The algorithm chosen can be anything, but in practice, we use stochastic gradient descent.

We learn θ  and w by running the following algorithm.

Under these assumptions, we are able to prove the following theorem about the behavior of 

Algorithm 1.

Algorithm 1

Data Programming

Require: Step size η, dataset S ⊂ 𝒳, and initial parameter θ0 ∈ Θ.

 θ → θ0

 for all x ∈ S do

  Independently sample (Λ, Y) from πθ, and (Λ, Y) from πθ conditionally given Λ = λ(x).

   θ θ + η(h(Λ, Y) − h(Λ, Y)) .
  θ = PΘ(θ) ⊳ Here, PΘ denotes orthogonal projection onto Θ.

 end for

 Compute w using the algorithm described in (15)

 return (θ, w).

Theorem A.1

Suppose that we run Algorithm 1 on a data programming specification that satisfies 

conditions (11), (12), (13), (14), (15), and (16). Suppose further that, for some parameter ε> 

0, we use step size

η = cε2
4

and our dataset is of a size that satisfies

S = 2
c2ε2log

2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M
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and the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

This theorem’s conclusions and assumptions can readily be seen to be identical to those of 

Theorem 2 in the main body of the paper, except that they apply to the slightly more general 

case of arbitrary h, rather than h of the explicit form described in the body. Therefore, in 

order to prove Theorem 2, it suffices to prove Theorem A.1, which we will do in Section C.

B Theoretical Results for Independent Model

For the independent model, we can obtain a more specific version of Theorem A.1. In the 

independent model, the variables are, as before, Λ ∈ {−1, 0, 1}m and Y ∈ {−1, 1}. The 

sufficient statistics are ΛiY and Λi
2.

To produce results that make intuitive sense, we also define the alternate parameterization

Pπ Λi Y =

βi
1 + γi

2 Λi = Y

1 − βi Λ = 0

βi
1 − γi

2 Λi = − Y

.

In comparison to the parameters used in the body of the paper, we have

αi =
1 + γi

2 .

Now, we are concerned with models that are feasible. For a model to be feasible (i.e. for θ ∈ 
Θ), we require that it satisfy, for some constants γmin > 0, γmax > 0, and βmin,

γmin ≤ γi ≤ γmax βmin ≤ βi ≤ 1
2 .

For 0 ≤ β ≤ 1 and − 1≤ γ ≤ 1.

For this model, we can prove the following corollary to Theorem A.1

Corollary B.1

Suppose that we run Algorithm 1 on an independent data programming specification that 

satisfies conditions (13), (14), (15), and (16). Furthermore, assume that the number of 

labeling functions we use satisfies
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m ≥
9.34 artanh(γmax)

(γβ)minγmin
2 log 24m

βmin
.

Suppose further that, for some parameter ε > 0, we use step size

η =
βminε2

16

and our dataset is of a size that satisfies

S = 32
βmin

2 ε2log
2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

and the expected risk with

E l(w) − min
w

l(w) ≤ χ +
βminε

8ρ .

We can see that if, as stated in the body of the paper, βi ≥ 0.3 and 0.8 ≤ αi ≤ 0.9 (which is 

equivalent to 0.6 ≤ γi ≤ 0.8), then

2000 ≥ 1896.13 = 9.34 artanh(0.8)
0.3 · 0.63 log 24 · 2000

0.3 .

This means that, as stated in the paper, m = 2000 is sufficient for this corollary to hold with

S = 32
0.32 · ε2log 2m(artanh(0.8) − artanh(0.6))2

ε = 356
ε2 log m

3ε .

Thus, proving Corollary B.1 is sufficient to prove Theorem 1 from the body of the paper. We 

will prove Corollary B.1 in Section E

C Proof of Theorem A.1

First, we state some lemmas that will be useful in the proof to come.
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Lemma D.1

Given a family of maximum-entropy distributions

πθ(x) = 1
Zθ

exp(θTh(x)),

for some function of sufficient statistics h: Ω ↦ ℝM, if we let J: ℝM ↦ ℝ be the 

maximum log-likelihood objective for some event A ⊆ Ω,

J(θ) = logPx πθ
(x ∈ A),

then its gradient is

∇J(θ) = Ex πθ
[h(x) x ∈ A] − Ex πθ

[h(x)]

and its Hessian is

∇2J(θ) = Covx πθ
(h(x) x ∈ A) − Covx πθ

(h(x)) .

Lemma D.2

Suppose that we are looking at a distribution from a data programming label model. That is, 

our maximum-entropy distribution can now be written in terms of two variables, the labeling 

function values λ ∈ {−1, 0, 1} and the class y ∈ {−1, 0, 1}, as

πθ(λ, y) = 1
Zθ

exp(θTh(λ, y)),

where we assume without loss of generality that for some M, h(λ, y) ∈ ℝM and ‖h(λ, y)‖∞ 
≤ 1. If we let J: ℝM ↦ ℝ be the maximum expected log-likelihood objective, under another 

distribution π*, for the event associated with the observed labeling function values λ,

J(θ) = E
(λ∗, y∗) π∗ logP(λ, y) πθ

(λ = λ∗) ,

then its Hessian can be bounded with

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ),

where ℐ(θ) is the Fisher information.
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Lemma D.3

Suppose that we are looking at a data programming distribution, as described in the text of 

Lemma D.2. Suppose further that we are concerned with some feasible set of parameters Θ 
⊂ ℝM, such that the any model with parameters in this space satisfies the following two 

conditions.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at 

least in some sense. More specifically, there exists an unbiased estimator θ  that is a function 

of some number D samples from πθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ 
and for some c > 0,

Cov θ ≤ 1
2cD .

Second, for any θ, θ* ∈ Θ,

E
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) ≤ c
M .

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are 

totally wrong about the true parameter θ*.

Under these conditions, the function J is strongly concave on Θ with parameter of strong 

convexity c.

Lemma D.4

Suppose that we are looking at a data programming maximum likelihood estimation 

problem, as described in the text of Lemma D.2. Suppose further that the objective function 

J is strongly concave with parameter c > 0.

If we run stochastic gradient descent on objective J, using unbiased samples from a true 

distribution πθ*, where θ* ∈ Θ, then if we use step size

η = cε2
4

and run (using a fresh sample at each iteration) for T steps, where

T = 2
c2ε2log

2 θ0 − θ∗ 2

ε

then we can bound the expected parameter estimation error with
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E θ − θ∗ 2 ≤ ε2M .

Lemma D.5

Assume in our model that, without loss of generality, ‖f (x)‖ ≤ 1 for all x, and that in our true 

model π*, the class y is independent of the features f (x) given the labels λ(x).

Suppose that we now want to solve the expected loss minimization problem wherein we 

minimize the objective

l(w) = E
(x, y) π∗ log(1 + exp( − wT f (x)y)) + ρ w

2
.

We actually accomplish this by minimizing our noise-aware loss function, given our chosen 

parameter θ ,

l
θ

(w) = E
(x, y) π∗ E(Λ, Y) π

θ
log(1 + exp( − wT f (x)Y)) Λ = λ(x) + ρ w

2
.

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware 

loss function, which is only this in expectation. Suppose that doing so produces an estimate 

w which satisfies, for some χ > 0,

E l
θ

(w) − min
w

l
θ

(w) θ ≤ χ .

(Here, the expectation is taken with respect to only the random variable w.) Then, we can 

bound the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

Now, we restate and prove our main theorem.

Theorem A.1

Suppose that we run Algorithm 1 on a data programming specification that satisfies 

conditions (11), (12), (13), (14), (15), and (16). Suppose further that, for some parameter ε > 

0, we use step size

η = cε2
4

and our dataset is of a size that satisfies
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S = 2
c2ε2log

2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

and the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

Proof

The bounds on the expected parameter estimation error follow directly from Lemma D.4, 

and the remainder of the theorem follows directly from Lemma D.5. □

D Proofs of Lemmas

Lemma D.1

Given a family of maximum-entropy distributions

πθ(x) = 1
Zθ

exp(θTh(x)),

for some function of sufficient statistics h: Ω ↦ ℝM, if we let J: ℝM ↦ ℝ be the 

maximum log-likelihood objective for some event A ⊆ Ω,

J(θ) = logPx πθ
(x ∈ A),

then its gradient is

∇J(θ) = Ex πθ
[h(x) x ∈ A] − Ex πθ

[h(x)]

and its Hessian is

∇2J(θ) = Covx πθ
(h(x) x ∈ A) − Covx πθ

(h(x)) .

Proof

For the gradient,
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∇J(θ) = ∇logPπθ
(A)

= ∇log
∑x ∈ Aexp(θTh(x))

∑x ∈ Ωexp(θTh(x))

= ∇log ∑
x ∈ A

exp(θTh(x)) − ∇log ∑
x ∈ Ω

exp(θTh(x))

=
∑x ∈ Ah(x)exp(θTh(x))

∑x ∈ Aexp(θTh(x))
−

∑x ∈ Ωh(x)exp(θTh(x))

∑x ∈ Ωexp(θTh(x))

= Ex πθ
[h(x) x ∈ A] − Ex πθ

[h(x)] .

And for the Hessian

∇2J(θ) = ∇
∑x ∈ Ah(x)exp(θTh(x))

∑x ∈ Aexp(θTh(x))
− ∇

∑x ∈ Ωh(x)exp(θTh(x))

∑x ∈ Ωexp(θTh(x))

=
∑x ∈ Ah(x)h(x)Texp(θTh(x))

∑x ∈ Aexp(θTh(x))
−

‘∑x ∈ Ah(x)exp(θTh(x))’‘∑x ∈ Ah(x)exp(θTh(x))’T

(∑x ∈ Aexp(θTh(x)))2

− ‘
∑x ∈ Ωh(x)exp(θTh(x))

∑x ∈ Ωexp(θTh(x))
−

‘∑x ∈ Ωh(x)exp(θTh(x))’‘∑x ∈ Ωh(x)exp(θTh(x))’T

(∑x ∈ Ωexp(θTh(x)))2
’

= Ex πθ
h(x)h(x)T x ∈ A − Ex πθ

[h(x) x ∈ A]Ex πθ
[h(x) [h(x)] ∈ A]T

− ‘Ex xθ
[h(x)h(x)T] − Ex πθ

[h(x)][Ex πθ
]T’

= Covx πθ
(h(x) x ∈ A) − Covx πθ

(h(x)) .

Lemma D.2

Suppose that we are looking at a distribution from a data programming label model. That is, 

our maximum-entropy distribution can now be written in terms of two variables, the labeling 

function values λ ∈ {−1, 0, 1} and the class y ∈ {−1, 1}, as

πθ(λ, y) = 1
Zθ

exp(θTh(λ, y)),
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where we assume without loss of generality that for some M, h(λ, y) ∈ ℝM and ‖h(λ, y)‖∞ 
≤ 1. If we let J: ℝM ↦ ℝ be the maximum expected log-likelihood objective, under another 

distribution π*, for the event associated with the observed labeling function values λ,

J(θ) = E
(λ∗, y∗) π∗ logP(λ, y) πθ

(λ = λ∗) ,

then its Hessian can be bounded with

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ),

where ℐ(θ) is the Fisher information.

Proof

From the result of Lemma D.1, we have that

∇2J(θ) = E
(λ∗, y∗) π∗ Cov(λ, y) πθ

(h(λ, y) λ = λ∗) − Cov(λ, y) πθ
(h(λ, y)) . (17)

We start byu defining h0(λ) and h1(λ) such that

h(λ, y) = h(λ, 1)1 + y
2 + h(λ, − 1)1 − y

2 = h(λ, 1) + h(λ, − 1)
2 + yh(λ, 1) − h(λ, − 1)

2 = h0(λ) + yh1(λ) .

This allows us to reduce (17) to

∇2J(θ) = E
(λ∗, y∗) π∗ h1(λ∗)h1(λ∗)TVar(λ, y) πθ

(y λ = λ∗) − Cov(λ, y) πθ
(h(λ, y)) .

On the other hand, the Fisher information of this model at θ is
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ℐ(θ) = E (∇θlogπθ(x))2

= E ∇θlog exp(θTh(x))
∑z ∈ Ωexp(θTh(z))

2

= E ∇θlog exp(θTh(x)) − ∇θlog ∑
z ∈ Ω

exp(θTh(z))
2

= E h(x) −
∑z ∈ Ωh(z)exp(θTh(z))

∑z ∈ Ωexp(θTh(z))

2

= E (h(x) − E[h(z)])2

= Cov(h(x)) .

Therefore, we can write the second derivative of J as

∇2J(θ) = E
(λ∗, y∗) π∗ h1(λ∗)h1(λ∗)TVar(λ, y) πθ

(y λ = λ∗) − ℐ(θ) .

If we apply the fact that

h1(λ∗)h1(λ∗)T ≤ I h1(λ∗) 2 ≤ MI h1(λ∗) ∞
2 ≤ MI,

then we can reduce this to

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ) .

This is the desired result. □

Lemma D.3

Suppose that we are looking at a data programming distribution, as described in the text of 

Lemma D.2. Suppose further that we are concerned with some feasible set of parameters Θ 
⊂ ℝM, such that the any model with parameters in this space satisfies the following two 

conditions.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at 

least in some sense. More specifically, there exists an unbiased estimator θ  that is a function 

of some number D samples from πθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ 
and for some c > 0,
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Cov θ ≤ I
2cD .

Second, for any θ, θ* ∈ Θ,

E
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) ≤ c
M .

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are 

totally wrong about the true parameter θ*.

Under these conditions, the function J is strongly concave on Θ with parameter of strong 

convexity c.

Proof

From the Cramér-Rao bound, we know in general that the variance of any unbiased 

estimator is bounded by the reciprocal of the Fisher information

Cov θ ≥ (ℐ(θ))−1 .

Since for the estimator described in the lemma statement, we have D independent samples 

from the distribution, it follows that the Fisher information of this experiment is D times the 

Fisher information of a single sample. Combining this with the bound in the lemma 

statement on the covariance, we get

I
2cD ≥ Cov θ ≥ (Dℐ(θ))−1 .

It follows that

ℐ(θ) ≥ 2cI .

On the other hand, also from the lemma statement, we can conclude that

MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) ≤ cI .

Therefore, for all θ ∈ Θ,

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ) ≤ − cI .

This implies that J is strongly concave over Θ, with constant c, as desired. □
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Lemma D.4

Suppose that we are looking at a data programming maximum likelihood estimation 

problem, as described in the text of Lemma D.2. Suppose further that the objective function 

J is strongly concave with parameter c > 0.

If we run stochastic gradient descent on objective J, using unbiased samples from a true 

distribution πθ*, where θ* ∈ Θ, then if we use step size

η = cε2
4

and run (using a fresh sample at each iteration) for T steps, where

T = 2
c2ε2log

2 θ0 − θ∗ 2

ε

then we can bound the expected parameter estimation error with

E θ − θ∗ 2 ≤ ε2M .

Proof

First, we note that, in the proof to follow, we can ignore the projection onto the feasible set 

Θ, since this projection always takes us closer to the optimum θ*.

If we track the expected distance to the optimum θ*, then at the next timestep,

θt + 1 − θ∗ 2 = θt − θ∗ 2 + 2γ(θt − θ∗)∇J∼(θt) + γ2 ∇J∼t(θt)
2 .

Since we can write our stochastic samples in the form

∇J∼t(θt) = h(λt, yt) − h(λt, yt),

for some samples λt, yt, λt, and yt, we can conclude that

∇J∼t(θt)
2 ≤ M ∇J∼t(θt) ∞

2 ≤ 4M .

Therefore, taking the expected value conditioned on the filtration,

E θt + 1 − θ∗ 2 ℱt = θt − θ∗ 2 + 2γ(θt − θ∗)∇J(θt) + 4γ2M .
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Since J is strongly concave,

(θt − θ∗)∇J(θt) ≤ − c θt − θ∗ 2;

and so,

E θt + 1 − θ∗ 2 ℱt ≤ (1 − 2γc) θt − θ∗ 2
+ 4γ2M .

If we take the full expectation and subtract the fixed point from both sides,

E θt + 1 − θ∗ 2 − 2γM
c ≤ (1 − 2γc)E θt − θ∗ 2 + 4γ2M − 2γM

c = (1 − 2γc) E θt − θ∗ 2 − 2γM
c .

Therefore,

E θt − θ∗ 2 − 2γM
c ≤ (1 − 2γc)t θ0 − θ∗ 2

− 2γM
c ,

and so

E θt − θ∗ 2 ≤ exp( − 2γct) θ0 − θ∗ 2
+ 2γM

c .

In order to ensure that

E θt − θ∗ 2 ≤ ε2,

it therefore suffices to pick

γ = cε2
4M

and

t = 2M

c2ε2log
2 θ0 − θ∗ 2

ε .

Substituting ε2 → ε2M produces the desired result. □
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Lemma D.5

Assume in our model that, without loss of generality, ‖f(x)‖ ≤ 1 for all x, and that in our true 

model π*, the class y is independent of the features f (x) given the labels λ(x).

Suppose that we now want to solve the expected loss minimization problem wherein we 

minimize the objective

l(w) = E(x, y) π ∗ log(1 + exp( − wT f (x)y)) + ρ w
2 .

We actually accomplish this by minimizing our noise-aware loss function, given our chosen 

parameter θ ,

l
θ

(w) = E(x, y) π ∗ E(Λ, Y) π
θ

log(1 + exp( − wT f (x)Y)) Λ = λ(x) + ρ w
2

.

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware 

loss function, which is only this in expectation. Suppose that doing so produces an estimate 

w which satisfies, for some χ > 0,

E l
θ

(w) − min
w

l
θ

(w) θ ≤ χ .

(Here, the expectation is taken with respect to only the random variable w.) Then, we can 

bound the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

Proof

(To simplify the symbols in this proof, we freely use θ when we mean θ .)

The loss function we want to minimize is, in expectation,

l(w) = E(x, y) π ∗ log(1 + exp( − wT f (x)y)) + ρ w
2 .

By the law of total expectation,

l(w) = E(x, y) π ∗ E(x, y) π ∗ log(1 + exp( − wT f (x)y)) x = x + ρ w
2,

and by our conditional independence assumption,
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l(w) = E(x, y) π ∗ E(x, y) π ∗ log(1 + exp( − wT f (x)y)) λ(x) = λ(x) + ρ w
2 .

Since we know from our assumptions that, for the optimum parameter θ*,

P(x, y) π ∗(λ(x) = Λ, y = Y) = P(λ, y) πθ ∗
(λ = Λ, y = Y),

we can rewrite this as

l(w) = E(x, y) π ∗ E(Λ, Y) πθ ∗ log(1 + exp( − wT f (x)Y)) Λ = λ(x) + ρ w
2

.

On the other hand, if we are minimizing the model we got from the previous step, we will be 

actually minimizing

lθ(w) = E(x, y) π ∗ E(Λ, Y) πθ
log(1 + exp( − wT f (x)Y)) Λ = λ(x) + ρ w

2
.

We can reduce this further by noticing that

E(Λ, Y) πθ
log(1 + exp( − wT f (x)Y)) Λ = λ(x)

= E(Λ, Y) πθ
log(1 + exp( − wT f (x)))1 + Y

2 + log(1 + exp(wT f (x)))1 − Y
2 Λ = λ(x)

= log(1 + exp( − wT f (x))) + log(1 + exp(wT f (x)))
2

+ log(1 + exp( − wT f (x))) − log(1 + exp(wT f (x)))
2 E(Λ, Y) πθ

[Y Λ = λ(x)]

= log(1 + exp( − wT f (x))) + log(1 + exp(wT f (x)))
2

− wT f (x)
2 E(Λ, Y) πθ

[Y Λ = λ(x)] .

It follows that the difference between the loss functions will be

|l(w) − lθ(w) | = |E
(x∼, y∼) π∗

wT f (x)
2 (E(Λ, Y) πθ

[Y |Λ = λ(x)] − E(Λ, Y) πθ ∗
[Y |Λ = λ(x)]) | .

Now, we can compute that
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∇θE(Λ, Y) πθ
[Y |Λ = λ] = ∇θ

exp(θTh(λ, 1)) − exp(θTh(λ, − 1))
exp(θTh(λ, 1)) + exp(θTh(λ, − 1))

= ∇θ
exp(θTh1(λ)) − exp( − θTh1(λ))

exp(θTh1(λ)) + exp(θTh1(λ))

= ∇θtanh(θTh1(λ))

= h1(λ)(1 − tanh2(θTh1(λ)))

= h1(λ)Var(Λ, Y) πθ
(Y | Λ = λ) .

It follows by the mean value theorem that for some ψ, a linear combination of θ and θ*,

|l(w) − lθ(w) | = E
(x, y) π∗

wT f (x)
2 (θ − θ∗)Th1(λ)Var(Λ, Y) πψ

(Y Λ = λ) .

Since Θ is convex, clearly ψ ∈ Θ. From our assumption on the bound of the variance, we 

can conclude that

E
(x, y) π∗ Var(Λ, Y) πψ

(Y Λ = λ) ≤ c
M .

By the Cauchy-Schwarz inequality,

l(w) − lθ(w) ≤ 1
2 E

(x, y) π∗ w f (x) θ − θ∗ h1(λ) Var(Λ, Y) πψ
(Y Λ = λ) .

Since (by assumption) ‖f(x)‖ ≤ 1 and h1(λ) ≤ M,

l(w) − lθ(w) ≤
w θ − θ∗ M

2 E
(x, y) π∗ Var(Λ, Y) πψ

(Y Λ = λ)

≤
w θ − θ∗ M

2 ⋅ c
M

=
c w θ − θ∗

2 M
.

Now, for any w that could conceivably be a solution, it must be the case that

w ≤ 1
2ρ ,
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since otherwise the regularization term would be too large Therefore, for any possible 

solution w,

l(w) − lθ(w) ≤ c θ − θ∗
4ρ M

.

Now, we apply the assumption that we are able to solve the empirical problem, producing an 

estimate w that satisfies

E[lθ(w) − lθ(wθ
∗)] ≤ χ,

where wθ
∗ is the true solution to

wθ
∗ = arg min

w
lθ(w) .

Therefore,

E[l(w) − l(w∗)] = E[lθ(w) − lθ(wθ
∗) + lθ(wθ

∗) − lθ(w) + l(w) − l(w∗)]

≤ χ + E[lθ(w∗) − lθ(w) + l(w) − l(w∗)]

≤ χ + E[ lθ(w∗) − l(w∗) + lθ(w) − l(w) ]

≤ χ + E c θ − θ∗
2ρ M

= χ + c
2ρ M

E[ θ − θ∗ ]

≤ χ + c
2ρ M

E θ − θ∗ 2 .

We can now bound this using the result of Lemma D.4, which results in

E[l(w) − l(w∗)] ≤ χ + c
2ρ M

Mε2

= χ + cε
2ρ .

This is the desired result. □

E Proofs of Results for the Independent Model

To restate, in the independent model, the variables are, as before, Λ ∈ {−1, 0, 1}m and Y ∈ 
{−1, 1} The sufficient statistics are ΛiY and Λi

2. That is, for expanded parameter θ = (ψ, ϕ),
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πθ(Λ, Y) = 1
Z exp(ΨTΛY + ϕTΛ2) .

This can be combined with the simple assumption that P(Y) = 1
2  to complete a whole 

distribution. Using this, we can prove the following simple result about the moments of the 

sufficient statistics.

Lemma E.1

The expected values and covariances of the sufficient statistics are, for all i ≠ j,

E[ΛiY] = βiγi
E[Λi

2] = βi
Var[ΛiY] = βi − βi

2γi
2

Var(Λi
2) = βi − βi

2

Cov(ΛiY , Λ jY) = 0

Cov(Λi
2, Λ j

2) = 0

Cov(ΛiY , Λ j
2) = 0.

We also prove the following basic lemma that relates ψi to γi.

Lemma E.2

It holds that

γi = tanh(ψi)

We also make the following claim about feasible models.

Lemma E.3

For any feasible model, it will be the case that, for any other feasible parameter vector ψ ,

P ψTΛY ≤ m
2 γmin(γβ)min ≤ −

m(γβ)minγmin
2

9.34artanh(γmax) .

We can also prove the following simple result about the conditional covariances

Lemma E.4

The covariances of the sufficient statistics, conditioned on Λ, are for all i ≠ j,
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Cov ΛiY , ΛiY Λ = ΛiΛ jsech2 ψTΛ

Cov Λi
2, Λ j

2 Λ = 0.

We can combine these two results to bound the expected variance of these conditional 

statistics.

Lemma E.5

If θ and θ* are two feasible models, then for any u,

Eθ ∗ Varθ Y Λ ≤ 3exp −
mβmin

2 γmin
3

8 artanh γmax
.

We can now proceed to restate and prove the main corollary of Theorem A.1 that applies in 

the independent case.

Corollary B.1

Suppose that we run Algorithm 1 on an independent data programming specification that 

satisfies conditions (13), (14), (15), and (16). Furthermore, assume that the number of 

labeling functions we use satisfies

m ≥
9.34 artanh γmax

γβ minγmin
2 log 24m

βmin
.

Suppose further that, for some parameter ε > 0, we use step size

η =
βminε2

16

and our dataset is of a size that satisfies

S = 32
βmin

2 ε2log
2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

and the expected risk with
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E l w − min
w

l w ≤ χ +
βminε

8ρ .

Proof

In order to apply Theorem A.1, we have to verify all its conditions hold in the independent 

case.

First, we notice that (11) is used only to bound the covariance of the sufficient statistics. 

From Lemma E.1, we know that these can be bounded by βi − βi
2γi

2 ≥
βmin

2 . It follows that 

we can choose

c =
βmin

4 ,

and we can consider (11) satisfied, for the purposes of applying the theorem.

Second, to verify (12), we can use Lemma E.5. For this to work, we need

3exp −
m γβ minγmin

2

9.34 artanh γmax
≤ c

M =
βmin
8m .

This happens whenever the number of labeling functions satisfies

m ≥
9.34 artanh γmax

γβ minγmin
2 log 24m

βmin
.

The remaining assumptions, (13), (14), (15), and (16), are satisfied directly by the 

assumptions of this corollary. So, we can apply Theorem A.1, which produces the desired 

result. □

F Proofs of Independent Model Lemmas

Lemma E.1

The expected values and covariances of the sufficient statistics are, for all i ≠ j,
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E ΛiY = βiγi
E Λi

2 = βi
Var ΛiY = βi − βi

2γi
2

Var Λi
2 = βi − βi

2

Cov ΛiY , Λ jY = 0

Cov Λi
2, Λ j

2 = 0

Cov ΛiY , Λ j
2 = 0.

Proof

We prove each of the statements in turn. For the first statement,

E ΛiY = P Λi = Y − P Λi = − Y

= βi
1 + γi

2 − βi
1 − γi

2

= βiγi .

For the second statement,

E Λi
2 = P Λ = Y + P Λ = − Y

= βi
1 + γi

2 + βi
1 − γi

2

= βi .

For the remaining statements, we derive the second moments; converting these to an 

expression of the covariance is trivial. For the third statement,

E ΛiY
2 = E Λi

2Y2 = E Λi
2 = βi .

For the fourth statement,

E Λi
2 2 = E Λi

4 = E Λi
2 = βi .

For subsequent statements, we first derive that

E ΛiY Y = βi
1 + γi

2 − βi
1 − γi

2 = βiγi

and
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E Λi
2 Y = βi

1 + γi
2 + βi

1 − γi
2 = βi .

Now, for the fifth statement,

E ΛiY Λ jY = E E ΛiY Y E Λ jY Y = βiγiβ jγ j .

For the sixth statement,

E Λi
2 Λ j

2 = E E Λi
2 Y E Λi

2 Y = βiβ j .

Finally, for the seventh statement,

E ΛiY Λ j
2 = E E ΛiY Y E Λi

2 Y = βiγiβ j .

This completes the proof. □

Lemma E.2

It holds that

γi = tanh(ψi) .

Proof

From the definitions,

βi =
exp ψi + ϕi + exp −ψi + ϕi

exp ψi + ϕi + exp −ψi + ϕi + 1

and

βiγi =
exp ψi + ϕi − exp −ψi + ϕi

exp ψi + ϕi + exp −ψi + ϕi + 1
.

Therefore,

γi =
exp ψi + ϕi − exp −ψi + ϕi

exp ψi + ϕi + exp −ψi + ϕi + 1
= tanh ψi ,

which is the desired result. □
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Lemma E.3

For any feasible model, it will be the case that, for any other feasible parameter vector ψ ,

P ψTΛY ≤ m
2 γmin γβ min ≤ exp −

m γβ minγmin
2

9.34artanh γmax
.

Proof

We start by noticing that

ψTΛY = ∑
i = 1

m
ψiΛiY .

Since in this model, all the ΛiY are independent of each other, we can bound this sum using 

a concentration bound. First, we note that

ψiΛiY ≤ ψi

Second, we note that

E ψiΛiY = ψiβiγi

and

Var ψiΛiY = ψi
2 βi − βi

2γi
2

but

ψiΛiY ≤ ψi ≤ artanh γmax ≜ ψmax

because, for feasible models, by definition

γmin ≤ artanh γmin ≤ ψi ≤ artanh γmax .

Therefore, applying Bernstein’s inequality gives us, for any t,

P ∑
i = 1

m
ψiΛiY − ∑

i = 1

m
ψiβiγi ≤ − t ≤ exp − 3t2

6∑i = 1
m ψi

2γiβiγi + 2ψmaxt
.

It follows that, if we let
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t = 1
2 ∑

i = 1

m
ψiβiγi,

then we get

P ∑
i = 1

m
ψiΛiY − ∑

i = 1

m
ψiβiγi ≤ − t ≤ exp −

3 1
2 ∑i = 1

m ψiβiγi
2

6∑i = 1
m ψi

2γiβiγi + 2ψmax
1
2 ∑i = 1

m ψiβiγi

≤ exp −
3∑i = 1

m ψiβiγi
24γmaxψmax + 4ψmax

≤ exp −
3m 1 − γmax

28ψmax

≤ exp −
3 ∑i = 1

m ψiβiγi
2

24∑i = 1
m ψi

2βi + 4ψmax ∑i = 1
m ψiβiγi

≤ exp −
3γmin ∑i = 1

m ψiβi ∑i = 1
m ψiβiγi

24ψmax∑i = 1
m ψiβi + 4ψmax ∑i = 1

m ψiβi

≤ exp −
3γmin ∑i = 1

m ψiβiγi
28ψmax

≤ exp −
mγmin

2 γβ min
9.34ψmax

.

This is the desired expression. □

Lemma E.4

The covariances of the sufficient statistics, conditioned on Λ, are for all i ≠ j,

Cov ΛiY , Λ jY Λ = ΛiΛ jsech2 ψTΛ

Cov Λi
2, Λ j

2 Λ = 0.

Proof

The second result is obvious, so it suffices to prove only the first result. Clearly,

Cov ΛiY , Λ jY Λ = ΛiΛ jVar Y Λ = ΛiΛ j 1 − E Y Λ 2 .

Plugging into the distribution formula lets us conclude that
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E Y Λ =
exp ψTΛ + ϕTΛ2 − exp −ψTΛ + ϕTΛ2

exp ψTΛ + ϕTΛ2 + exp −ψTΛ + ϕTΛ2 = tanh2 ψTΛ ,

and so

Cov ΛiY , Λ jY Λ = ΛiΛ j 1 − tanh2 ψTΛ = ΛiΛ jsech2 ψTΛ ,

which is the desired result. □

Lemma E.5

If θ and θ* are two feasible models, then for any u

E
θ∗ Varθ Y Λ ≤ 3exp −

mβmin
2 γmin

3

8 artanh γmax
.

Proof

First, we note that, by the result of Lemma E.4,

Varθ Y Λ = sech2 ψTΛ .

Therefore,

E
θ∗ Varθ Y Λ = E

θ∗ sech2 ψTΛ .

Applying Lemma E.3, we can bound this with

Eθ ∗ Varθ uTΛY Λ ≤ sech2 m
2 γβ minγmin

2 + exp −
m γβ minγmin

2

9.34 artanh γmax

≤ 2exp − m
2 γβ minγmin

2 + exp −
m γβ minγmin

2

9.34 artanh γmax

≤ 3exp −
m γβ minγmin

2

9.34 artanh γmax
.

This is the desired expression. □
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G Additional Experimental Details

G.1 Relation Extraction Experiments

G.1.1 Systems

The original distantly-supervised experiments which we compare against as baselines–which 

we refer to as using the if-then-return (ITR) approach of distant or programmatic 

supervision–were implemented using DeepDive, an open-source system for building 

extraction systems.5 For our primary experiments, we adapted these programs to the 

framework and approach described in this paper, directly utilizing distant supervision rules 

as labeling functions.

In the disease tagging user experiments, we used an early version of our new lightweight 

extraction framework based around data programming, formerly called DDLite [12], now 

Snorkel.6 Snorkel is based around a Jupyter-notebook based interface, allowing users to 

iteratively develop labeling functions in Python for basic extraction tasks involving simple 

models. Details of the basic discriminative models used can be found in the Snorkel 

repository; in particular, Snorkel uses a simple logistic regression model with generic 

features defined in part over dependency paths7, and a basic LSTM model implemented 

using the Theano library.8 Snorkel is currently under continued development, and all 

versions are open-source.

G.1.2 Applications

We consider three primary applications which involve the extraction of binary relation 

mentions of some specific type from unstructured text input data. At a high level, all three 

system pipelines consist of an initial candidate extraction phase which leverages some 

upstream model or suite of models to extract mentions of involved entities, and then 

considers each pair of such mentions that occurs within the same local neighborhood in a 

document as a candidate relation mention to be potentially extracted. In each case, the 

discriminative model that we are aiming to train–and that we evaluate in this paper–is a 

binary classifier over these candidate relation mentions, which will decide which ones to 

output as final true extractions. In all tasks, we preprocessed raw input text with Stanford 

CoreNLP9, and then either used CoreNLP’s NER module or our own entity-extraction 

models to extract entity mentions. Further details of the basic information extraction pipeline 

utilized can be seen in the tutorials of the systems used, and in the referenced papers below.

In the 2014 TAC-KBP Slot Filling task, which we also refer to as the News application, we 

train a set of extraction models for a variety of relation types from news articles [30]. In 

reported results in this paper, we average over scores from each relation type. We utilized 

CoreNLP’s NER module for candidate extraction, and utilized CoreNLP outputs in 

developing the distant supervision rules/labeling functions for these tasks. We also 

5http://deepdive.stanford.edu
6http://snorkel.stanford.edu
7https://github.com/HazyResearch/treedlib
8http://deeplearning.net/software/theano/
9stanfordnlp.github.io/CoreNLP/
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considered a slightly simpler discriminative model than the one submitted in the 2014 

competition, as reported in [2]: namely, we did not include any joint factors in our model in 

this paper.

In the Genomics application, our goal with our collaborators at Stanford Medicine was to 

extract mentions of genes that if mutated may cause certain phenotypes (symptoms) linked 

to Mendelian diseases, for use in a clinical diagnostic setting. The code for this project is 

online, although it remains partially under development and thus some material from our 

collaborators is private.10

In the Pharmacogenomics application, our goal was to extract interactions between genes for 

use in downstream pharmacogenomics research analyses; full results and system details are 

reported in [21].

In the Disease Tagging application, which we had our collaborators work on during a set of 

short hackathons as a user study, the goal was to tag mentions of human diseases in PubMed 

abstracts. We report results of this hackathon in [12], as well as in our Snorkel tutorial 

online.

G.1.3 Labeling Functions

In general, we saw two broad types of labeling functions in both prior applications (when 

they were referred to as “distant supervision rules”) and in our most recent user studies. The 

first type of labeling function leverages some weak supervision signal, such as an external 

knowledgebase (as in traditional distant supervision), very similar to the example illustrated 

in Fig. 1(a). All of the applications studied in this paper used some such labeling function or 

set of labeling functions.

The second type of labeling function uses simple heuristic patterns as positive or negative 

signals. For our text extraction examples, these heuristic patterns primarily consisted of 

regular expressions, also similar to the example pseudocode in Fig. 1(a). Further specific 

details of both types of labeling functions, as well as others used, can be seen in the linked 

code repositories and referenced papers.

G.2 Synthetic Experiments

In Fig. 3(a–b), we ran synthetic experiments with labeling functions having constant 

coverage β = 0.1, and accuracy drawn from α ∼ Uniform(μα − 0.25, μα + 0.25) where μα = 

0.75 in the above plots. In both cases we used 1000 normally-drawn features having mean 

correlation with the true label class of 0.5.

In this case we compare data programming (DP-Pipelined) against two baselines. First, we 

compare against an if-then-return setup where the ordering is optimal (ITR-Oracle). Second, 

we compare against simple majority vote (MV).

10https://github.com/HazyResearch/dd-genomics
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In Fig. 3(c), we show an experiment where we add dependent labeling functions to a set of 

mind = 50 independent labeling functions, and either provided this dependency structure 

(LDM-Aware) or did not (Independent). In this case, the independent labeling functions had 

the same configurations as in (a-b), and the dependent labeling functions corresponded to 

“fixes” or “reinforces”-type dependent labeling functions.
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Figure 1. 
An example of extracting mentions of gene-disease relations from the scientific literature.
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Figure 2. 
Examples of labeling function dependency predicates.
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Figure 3. 
Comparisons of data programming to two oracle methods on synthetic data.
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