
Data Programming: Creating Large Training Sets, Quickly

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré
Stanford University

Abstract

Large labeled training sets are the critical building blocks of supervised learning methods and are

key enablers of deep learning techniques. For some applications, creating labeled training sets is

the most time-consuming and expensive part of applying machine learning. We therefore propose

a paradigm for the programmatic creation of training sets called data programming in which users

express weak supervision strategies or domain heuristics as labeling functions, which are

programs that label subsets of the data, but that are noisy and may conflict. We show that by

explicitly representing this training set labeling process as a generative model, we can “denoise”

the generated training set, and establish theoretically that we can recover the parameters of these

generative models in a handful of settings. We then show how to modify a discriminative loss

function to make it noise-aware, and demonstrate our method over a range of discriminative

models including logistic regression and LSTMs. Experimentally, on the 2014 TAC-KBP Slot

Filling challenge, we show that data programming would have led to a new winning score, and

also show that applying data programming to an LSTM model leads to a TAC-KBP score almost 6

F1 points over a state-of-the-art LSTM baseline (and into second place in the competition).

Additionally, in initial user studies we observed that data programming may be an easier way for

non-experts to create machine learning models when training data is limited or unavailable.

1 Introduction

Many of the major machine learning breakthroughs of the last decade have been catalyzed

by the release of a new labeled training dataset.1 Supervised learning approaches that use

such datasets have increasingly become key building blocks of applications throughout

science and industry. This trend has also been fueled by the recent empirical success of

automated feature generation approaches, notably deep learning methods such as long short

term memory (LSTM) networks [14], which ameliorate the burden of feature engineering

given large enough labeled training sets. For many real-world applications, however, large

hand-labeled training sets do not exist, and are prohibitively expensive to create due to

requirements that labelers be experts in the application domain. Furthermore, applications’

needs often change, necessitating new or modified training sets.

To help reduce the cost of training set creation, we propose data programming, a paradigm

for the programmatic creation and modeling of training datasets. Data programming

provides a simple, unifying framework for weak supervision, in which training labels are

1http://www.spacemachine.net/views/2016/3/datasets-over-algorithms

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

Published in final edited form as:
Adv Neural Inf Process Syst. 2016 December ; 29: 3567–3575.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.spacemachine.net/views/2016/3/datasets-over-algorithms

noisy and may be from multiple, potentially overlapping sources. In data programming,

users encode this weak supervision in the form of labeling functions, which are user-defined

programs that each provide a label for some subset of the data, and collectively generate a

large but potentially overlapping set of training labels. Many different weak supervision

approaches can be expressed as labeling functions, such as strategies which utilize existing

knowledge bases (as in distant supervision [22]), model many individual annotator’s labels

(as in crowdsourcing), or leverage a combination of domain-specific patterns and

dictionaries. Because of this, labeling functions may have widely varying error rates and

may conflict on certain data points. To address this, we model the labeling functions as a

generative process, which lets us automatically denoise the resulting training set by learning

the accuracies of the labeling functions along with their correlation structure. In turn, we use

this model of the training set to optimize a stochastic version of the loss function of the

discriminative model that we desire to train. We show that, given certain conditions on the

labeling functions, our method achieves the same asymptotic scaling as supervised learning

methods, but that our scaling depends on the amount of unlabeled data, and uses only a fixed

number of labeling functions.

Data programming is in part motivated by the challenges that users faced when applying

prior programmatic supervision approaches, and is intended to be a new software

engineering paradigm for the creation and management of training sets. For example,

consider the scenario when two labeling functions of differing quality and scope overlap and

possibly conflict on certain training examples; in prior approaches the user would have to

decide which one to use, or how to somehow integrate the signal from both. In data

programming, we accomplish this automatically by learning a model of the training set that

includes both labeling functions. Additionally, users are often aware of, or able to induce,

dependencies between their labeling functions. In data programming, users can provide a

dependency graph to indicate, for example, that two labeling functions are similar, or that

one “fixes” or “reinforces” another. We describe cases in which we can learn the strength of

these dependencies, and for which our generalization is again asymptotically identical to the

supervised case.

One further motivation for our method is driven by the observation that users often struggle

with selecting features for their models, which is a traditional development bottleneck given

fixed-size training sets. However, initial feedback from users suggests that writing labeling

functions in the framework of data programming may be easier [12]. While the impact of a

feature on end performance is dependent on the training set and on statistical characteristics

of the model, a labeling function has a simple and intuitive optimality criterion: that it labels

data correctly. Motivated by this, we explore whether we can flip the traditional machine

learning development process on its head, having users instead focus on generating training

sets large enough to support automatically-generated features.

Summary of Contributions and Outline

Our first contribution is the data programming framework, in which users can implicitly

describe a rich generative model for a training set in a more flexible and general way than in

previous approaches. In Section 3, we first explore a simple model in which labeling

Ratner et al. Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

functions are conditionally independent. We show here that under certain conditions, the

sample complexity is nearly the same as in the labeled case. In Section 4, we extend our

results to more sophisticated data programming models, generalizing related results in

crowdsourcing [17]. In Section 5, we validate our approach experimentally on large real-

world text relation extraction tasks in genomics, pharmacogenomics and news domains,

where we show an average 2.34 point F1 score improvement over a baseline distant

supervision approach—including what would have been a new competition-winning score

for the 2014 TAC-KBP Slot Filling competition. Using LSTM-generated features, we

additionally would have placed second in this competition, achieving a 5.98 point F1 score

gain over a state-of-the-art LSTM baseline [32]. Additionally, we describe promising

feedback from a usability study with a group of bioinformatics users.

2 Related Work

Our work builds on many previous approaches in machine learning. Distant supervision is

one approach for programmatically creating training sets. The canonical example is relation

extraction from text, wherein a knowledge base of known relations is heuristically mapped

to an input corpus [8,22]. Basic extensions group examples by surrounding textual patterns,

and cast the problem as a multiple instance learning one [15,25]. Other extensions model the

accuracy of these surrounding textual patterns using a discriminative feature-based model

[26], or generative models such as hierarchical topic models [1,27,31]. Like our approach,

these latter methods model a generative process of training set creation, however in a

proscribed way that is not based on user input as in our approach. There is also a wealth of

examples where additional heuristic patterns used to label training data are collected from

unlabeled data [7] or directly from users [21,29], in a similar manner to our approach, but

without any framework to deal with the fact that said labels are explicitly noisy.

Crowdsourcing is widely used for various machine learning tasks [13,18]. Of particular

relevance to our problem setting is the theoretical question of how to model the accuracy of

various experts without ground truth available, classically raised in the context of

crowdsourcing [10]. More recent results provide formal guarantees even in the absence of

labeled data using various approaches [4,9,16,17,24,33]. Our model can capture the basic

model of the crowdsourcing setting, and can be considered equivalent in the independent

case (Sec. 3). However, in addition to generalizing beyond getting inputs solely from human

annotators, we also model user-supplied dependencies between the “labelers” in our model,

which is not natural within the context of crowdsourcing. Additionally, while crowdsourcing

results focus on the regime of a large number of labelers each labeling a small subset of the

data, we consider a small set of labeling functions each labeling a large portion of the

dataset.

Co-training is a classic procedure for effectively utilizing both a small amount of labeled

data and a large amount of unlabeled data by selecting two conditionally independent views
of the data [5]. In addition to not needing a set of labeled data, and allowing for more than

two views (labeling functions in our case), our approach allows explicit modeling of

dependencies between views, for example allowing observed issues with dependencies

between views to be explicitly modeled [19].

Ratner et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boosting is a well known procedure for combining the output of many “weak” classifiers to

create a strong classifier in a supervised setting [28]. Recently, boosting-like methods have

been proposed which leverage unlabeled data in addition to labeled data, which is also used

to set constraints on the accuracies of the individual classifiers being ensembled [3]. This is

similar in spirit to our approach, except that labeled data is not explicitly necessary in ours,

and richer dependency structures between our “heuristic” classifiers (labeling functions) are

supported.

The general case of learning with noisy labels is treated both in classical [20] and more

recent contexts [23]. It has also been studied specifically in the context of label-noise robust
logistic regression [6]. We consider the more general scenario where multiple noisy labeling

functions can conflict and have dependencies.

3 The Data Programming Paradigm

In many applications, we would like to use machine learning, but we face the following

challenges: (i) hand-labeled training data is not available, and is prohibitively expensive to

obtain in sufficient quantities as it requires expensive domain expert labelers; (ii) related
external knowledge bases are either unavailable or insufficiently specific, precluding a

traditional distant supervision or co-training approach; (iii) application specifications are in

flux, changing the model we ultimately wish to learn.

In such a setting, we would like a simple, scalable and adaptable approach for supervising a

model applicable to our problem. More specifically, we would ideally like our approach to

achieve ε expected loss with high probability, given O(1) inputs of some sort from a domain-

expert user, rather than the traditional O
∼(ε−2) hand-labeled training examples required by

most supervised methods (where O
∼

 notation hides logarithmic factors). To this end, we

propose data programming, a paradigm for the programmatic creation of training sets, which

enables domain-experts to more rapidly train machine learning systems and has the potential

for this type of scaling of expected loss. In data programming, rather than manually labeling

each example, users instead describe the processes by which these points could be labeled

by providing a set of heuristic rules called labeling functions.

In the remainder of this paper, we focus on a binary classification task in which we have a

distribution π over object and class pairs (x, y) ∈ 𝒳 × − 1, 1 , and we are concerned with

minimizing the logistic loss under a linear model given some features,

l(w) = E(x, y) ∼ π log(1 + exp(− wT f (x)y)) ,

where without loss of generality, we assume that ‖ f (x)‖ ≤ 1. Then, a labeling function

λi:𝒳 − 1, 0, 1 is a user-defined function that encodes some domain heuristic, which

provides a (non-zero) label for some subset of the objects. As part of a data programming
specification, a user provides some m labeling functions, which we denote in vectorized

form as λi:𝒳 − 1, 0, 1 m.

Ratner et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 3.1

To gain intuition about labeling functions, we describe a simple text relation extraction

example. In Figure 1, we consider the task of classifying co-occurring gene and disease

mentions as either expressing a causal relation or not. For example, given the sentence

“Gene A causes disease B”, the object x = (A, B) has true class y = 1. To construct a training

set, the user writes three labeling functions (Figure 1a). In λ1, an external structured

knowledge base is used to label a few objects with relatively high accuracy, and is equivalent

to a traditional distant supervision rule (see Sec. 2). λ2 uses a purely heuristic approach to

label a much larger number of examples with lower accuracy. Finally, λ3 is a “hybrid”

labeling function, which leverages a knowledge base and a heuristic.

A labeling function need not have perfect accuracy or recall; rather, it represents a pattern

that the user wishes to impart to their model and that is easier to encode as a labeling

function than as a set of hand-labeled examples. As illustrated in Ex. 3.1, labeling functions

can be based on external knowledge bases, libraries or ontologies, can express heuristic

patterns, or some hybrid of these types; we see evidence for the existence of such diversity

in our experiments (Section 5). The use of labeling functions is also strictly more general

than manual annotations, as a manual annotation can always be directly encoded by a

labeling function. Importantly, labeling functions can overlap, conflict, and even have

dependencies which users can provide as part of the data programming specification (see

Section 4); our approach provides a simple framework for these inputs.

Independent Labeling Functions—We first describe a model in which the labeling

functions label independently, given the true label class. Under this model, each labeling

function λi has some probability βi of labeling an object and then some probability αi of

labeling the object correctly; for simplicity we also assume here that each class has

probability 0.5. This model has distribution

μα, β(Λ, Y) = 1
2 ∏

i = 1

m
(βiαi1 Λi = Y

+ βi(1 − αi)1 Λi = − Y
+ (1 − βi)1 Λi = 0), (1)

where Λ ∈ {−1, 0, 1}m contains the labels output by the labeling functions, and Y ∈ {−1,

1}is the predicted class. If we allow the parameters α ∈ ℝm and β ∈ ℝm to vary, (1)

specifies a family of generative models. In order to expose the scaling of the expected loss as

the size of the unlabeled dataset changes, we will assume here that 0.3 ≤ βi ≤ 0.5 and 0.8 ≤

αi ≤ 0.9. We note that while these arbitrary constraints can be changed, they are roughly

consistent with our applied experience, where users tend to write high-accuracy and high-

coverage labeling functions.

Our first goal will be to learn which parameters (α, β) are most consistent with our

observations—our unlabeled training set—using maximum likelihood estimation. To do this

for a particular training set S ⊂ 𝒳, we will solve the problem

Ratner et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(α, β) = arg max
α, β ∑

x ∈ S
logP(Λ, Y) ∼ μα, β

(Λ = λ(x))

= arg max
α, β ∑

x ∈ S
log ∑

y′ ∈ − 1, 1
μα, β(λ(x), y′)

(2)

In other words, we are maximizing the probability that the observed labels produced on our

training examples occur under the generative model in (1). In our experiments, we use

stochastic gradient descent to solve this problem; since this is a standard technique, we defer

its analysis to the appendix.

Noise-Aware Empirical Loss—Given that our parameter learning phase has successfully

found some α and β that accurately describe the training set, we can now proceed to estimate

the parameter w which minimizes the expected risk of a linear model over our feature

mapping f, given α, β. To do so, we define the noise-aware empirical risk L
α, β

 with

regularization parameter ρ, and compute the noise-aware empirical risk minimizer

w = arg max
w

L
α, β

(w; S) = arg max
w

1
S ∑

x ∈ S
E(Λ, Y) ∼ μ

α, β
log 1 + e−wT f (x)Y Λ = λ(x)

+ ρ w
2

(3)

This is a logistic regression problem, so it can be solved using stochastic gradient descent as

well.

We can in fact prove that stochastic gradient descent running on (2) and (3) is guaranteed to

produce accurate estimates, under conditions which we describe now. First, the problem

distribution π needs to be accurately modeled by some distribution μ in the family that we

are trying to learn. That is, for some α* and β*,

∀Λ ∈ − 1, 0, 1 m, Y ∈ − 1, 1 , P(x, y) ∼ π ∗(λ(x) = Λ, y = Y) = μα ∗ , β ∗(Λ, Y) . (4)

Second, given an example (x, y) ∼ π*, the class label y must be independent of the features f
(x) given the labels λ(x). That is,

(x, y) ∼ π∗ y ⊥ f (x) λ(x) . (5)

This assumption encodes the idea that the labeling functions, while they may be arbitrarily

dependent on the features, provide sufficient information to accurately identify the class.

Third, we assume that the algorithm used to solve (3) has bounded generalization risk such

that for some parameter χ,

Ratner et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ew ES L
α, β

(w; S) − min
w

ES L
α, β

(w; S) ≤ χ . (6)

Under these conditions, we make the following statement about the accuracy of our

estimates, which is a simplified version of a theorem that is detailed in the appendix.

Theorem 1

Suppose that we run data programming, solving the problems in (2) and (3) using stochastic

gradient descent to produce (α, β) and w. Suppose further that our setup satisfies the

conditions (4), (5), and (6), and suppose that m ≥ 2000. Then for any ε > 0, if the number of

labeling functions m and the size of the input dataset S are large enough that

S ≥ 356
ε2 log m

3ε

then our expected parameter error and generalization risk can be bounded by

E α − α∗ 2 ≤ mε2 E β − β∗ 2 ≤ mε2 E l(w) − min
w

l(w) ≤ χ + ε
27ρ .

We select m ≥ 2000 to simplify the statement of the theorem and give the reader a feel for

how ε scales with respect to |S |. The full theorem with scaling in each parameter (and for

arbitrary m) is presented in the appendix. This result establishes that to achieve both

expected loss and parameter estimate error ε, it suffices to have only m = O(1) labeling

functions and S = O
∼(ε−2) training examples, which is the same asymptotic scaling

exhibited by methods that use labeled data. This means that data programming achieves the

same learning rate as methods that use labeled data, while requiring asymptotically less

work from its users, who need to specify O(1) labeling functions rather than manually label

O
∼(ε−2) examples. In contrast, in the crowdsourcing setting [17], the number of workers m
tends to infinity while here it is constant while the dataset grows. These results provide some

explanation of why our experimental results suggest that a small number of rules with a

large unlabeled training set can be effective at even complex natural language processing

tasks.

4 Handling Dependencies

In our experience with data programming, we have found that users often write labeling

functions that have clear dependencies among them. As more labeling functions are added as

the system is developed, an implicit dependency structure arises naturally amongst the

labeling functions: modeling these dependencies can in some cases improve accuracy. We

describe a method by which the user can specify this dependency knowledge as a

dependency graph, and show how the system can use it to produce better parameter

estimates.

Ratner et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Label Function Dependency Graph

To support the injection of dependency information into the model, we augment the data

programming specification with a label function dependency graph,

G ⊂ 𝒟 × 1, …m × 1, …m , which is a directed graph over the labeling functions, each of

the edges of which is associated with a dependency type from a class of dependencies 𝒟
appropriate to the domain. From our experience with practitioners, we identified four

commonly-occurring types of dependencies as illustrative examples: similar, fixing,

reinforcing, and exclusive (see Figure 2).

For example, suppose that we have two functions λ1 and λ2, and λ2 typically labels only

when (i) λ1 also labels, (ii) λ1 and λ2 disagree in their labeling, and (iii) λ2 is actually

correct. We call this a fixing dependency, since λ2 fixes mistakes made by λ1. If λ1 and λ2

were to typically agree rather than disagree, this would be a reinforcing dependency, since

λ2 reinforces a subset of the labels of λ1.

Modeling Dependencies

The presence of dependency information means that we can no longer model our labels

using the simple Bayesian network in (1). Instead, we model our distribution as a factor

graph. This standard technique lets us describe the family of generative distributions in

terms of a known factor function h: {−1, 0, 1}m × {−1, 1}↦ {−1, 0, 1}M (in which each

entry hi represents a factor), and an unknown parameter θ ∈ ℝM as

μθ(Λ, Y) = Zθ
−1exp(θTh(Λ, Y)),

where Zθ is the partition function which ensures that μ is a distribution. Next, we will

describe how we define h using information from the dependency graph.

To construct h, we will start with some base factors, which we inherit from (1), and then

augment them with additional factors representing dependencies. For all i ∈ {1,…, m}, we

let

h0(Λ, Y) = Y , hi(Λ, Y) = ΛiY , hm + i(Λ, Y) = Λi, h2m + i(Λ, Y) = Λi
2Y , h3m + i(Λ, Y) = Λi

2 .

These factors alone are sufficient to describe any distribution for which the labels are

mutually independent, given the class: this includes the independent family in (1).

We now proceed by adding additional factors to h, which model the dependencies encoded

in G. For each dependency edge (d, i, j), we add one or more factors to h as follows. For a

near-duplicate dependency on (i, j), we add a single factor hι(Λ, Y) = 1{Λi = Λj}, which

increases our prior probability that the labels will agree. For a fixing dependency, we add

two factors, hι(Λ, Y) = −1{Λi = 0 ∧ Λj ≠ 0} and hι+1(Λ, Y) = 1 {Λi = −Y ˄ Λj = Y}, which

encode the idea that λj labels only when λi does, and that λj fixes errors made by λi. The

factors for a reinforcing dependency are the same, except that hι+1(Λ, Y) = 1{Λi = Y ∧ Λj =

Ratner et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Y}. Finally, for an exclusive dependency, we have a single factor hι(Λ, Y) = −1{Λi ≠ 0 ∧ Λj

≠ 0}.

Learning with Dependencies

We can again solve a maximum likelihood problem like (2) to learn the parameter θ . Using

the results, we can continue on to find the noise-aware empirical loss minimizer by solving

the problem in (3). In order to solve these problems in the dependent case, we typically

invoke stochastic gradient descent, using Gibbs sampling to sample from the distributions

used in the gradient update. Under conditions similar to those in Section 3, we can again

provide a bound on the accuracy of these results. We define these conditions now. First,

there must be some set Θ ⊂ ℝM that we know our parameter lies in. This is analogous to the

assumptions on αi and βi we made in Section 3, and we can state the following analogue of

(4):

∃θ∗ ∈ Θs.t . ∀(Λ, Y) ∈ − 1, 0, 1 m × − 1, 1 , P(x, y) ∼ π ∗(λ(x) = Λ, y = Y) = μθ ∗(Λ, Y) .

(7)

Second, for any θ ∈ Θ, it must be possible to accurately learn θ from full (i.e. labeled)

samples of μθ. More specifically, there exists an unbiased estimator θ (T) that is a function of

some dataset T of independent samples from μθ such that, for some c > 0 and for all θ ∈ Θ,

Cov θ (T) ≤ (2c T)−1I . (8)

Third, for any two feasible models θ1 and θ2 ∈ Θ,

E(Λ1, Y1) ∼ μθ1
Var(Λ2, Y2) ∼ μθ2

(Y2 Λ1 = Λ2) ≤ cM−1 . (9)

That is, we’ll usually be reasonably sure in our guess for the value of Y, even if we guess

using distribution μθ2
 while the the labeling functions were actually sampled from (the

possibly totally different) μθ1
. We can now prove the following result about the accuracy of

our estimates.

Theorem 2

Suppose that we run stochastic gradient descent to produce θ and w, and that our setup

satisfies the conditions (5)-(9). Then for any ε > 0, if the input dataset S is large enough that

Ratner et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

S ≥ 2
c2ε2log

2 θ0 − θ∗ 2

ε ,

then our expected parameter error and generalization risk can be bounded by

E θ − θ∗ 2 ≤ Mε2 E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

As in the independent case, this shows that we need only S = O
∼(ε−2) unlabeled training

examples to achieve error O(ε), which is the same asymptotic scaling as supervised learning

methods. This suggests that while we pay a computational penalty for richer dependency

structures, we are no less statistically efficient. In the appendix, we provide more details,

including an explicit description of the algorithm and the step size used to achieve this

result.

5 Experiments

We seek to experimentally validate three claims about our approach. Our first claim is that

data programming can be an effective paradigm for building high quality machine learning

systems, which we test across three real-world relation extraction applications. Our second

claim is that data programming can be used successfully in conjunction with automatic

feature generation methods, such as LSTM models. Finally, our third claim is that data

programming is an intuitive and productive framework for domain-expert users, and we

report on our initial user studies.

Relation Mention Extraction

Tasks In the relation mention extraction task, our objects are relation mention candidates x =

(e1, e2), which are pairs of entity mentions e1, e2 in unstructured text, and our goal is to learn

a model that classifies each candidate as either a true textual assertion of the relation R(e1,

e2) or not. We examine a news application from the 2014 TAC-KBP Slot Filling challenge2,

where we extract relations between real-world entities from articles [2]; a clinical genomics

application, where we extract causal relations between genetic mutations and phenotypes

from the scientific literature3; and a pharmacogenomics application where we extract

interactions between genes, also from the scientific literature [21]; further details are

included in the Appendix.

For each application, we or our collaborators originally built a system where a training set

was programmatically generated by ordering the labeling functions as a sequence of if-then-

return statements, and for each candidate, taking the first label emitted by this script as the

training label. We refer to this as the if-then-return (ITR) approach, and note that it often

2http://www.nist.gov/tac/2014/KBP/
3https://github.com/HazyResearch/dd-genomics

Ratner et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nist.gov/tac/2014/KBP/
https://github.com/HazyResearch/dd-genomics

required significant domain expert development time to tune (weeks or more). For this set of

experiments, we then used the same labeling function sets within the framework of data

programming. For all experiments, we evaluated on a blind hand-labeled evaluation set. In

Table 1, we see that we achieve consistent improvements: on average by 2.34 points in F1

score, including what would have been a winning score on the 2014 TAC-KBP challenge

[30].

We observed these performance gains across applications with very different labeling

function sets. We describe the labeling function summary statistics—coverage is the

percentage of objects that had at least one label, overlap is the percentage of objects with

more than one label, and conflict is the percentage of objects with conflicting labels—and

see in Table 2 that even in scenarios where m is small, and conflict and overlap is relatively

less common, we still realize performance gains. Additionally, on a disease mention

extraction task (see Usability Study), which was written from scratch within the data

programming paradigm, allowing developers to supply dependencies of the basic types

outlined in Sec. 4 led to a 2.3 point F1 score boost.

Automatically-generated Features

We additionally compare both hand-tuned and automatically-generated features, where the

latter are learned via an LSTM recurrent neural network (RNN) [14]. Conventional wisdom

states that deep learning methods such as RNNs are prone to overfitting to the biases of the

imperfect rules used for programmatic supervision. In our experiments, however, we find

that using data programming to denoise the labels can mitigate this issue, and we report a

9.79 point boost to precision and a 3.12 point F1 score improvement on the benchmark 2014

TAC-KBP (News) task, over the baseline if-then-return approach. Additionally for

comparison, our approach is a 5.98 point F1 score improvement over a state-of-the-art

LSTM approach [32].

Usability Study

One of our hopes is that a user without expertise in ML will be more productive iterating on

labeling functions than on features. To test this, we arranged a hackathon involving a handful

of bioinformatics researchers, using our open-source information extraction framework

Snorkel4 (formerly DDLite). Their goal was to build a disease tagging system which is a

common and important challenge in the bioinformatics domain [11]. The hackathon

participants did not have access to a labeled training set nor did they perform any feature

engineering. The entire effort was restricted to iterative labeling function development and

the setup of candidates to be classified. In under eight hours, they had created a training set

that led to a model which scored within 10 points of F1 of the supervised baseline; the gap

was mainly due to recall issue in the candidate extraction phase. This suggests data

programming may be a promising way to build high quality extractors, quickly.

4snorkel.stanford.edu

Ratner et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://snorkel.stanford.edu

6 Conclusion and Future Work

We introduced data programming, a new approach to generating large labeled training sets.

We demonstrated that our approach can be used with automatic feature generation

techniques to achieve high quality results. We also provided anecdotal evidence that our

methods may be easier for domain experts to use. We hope to explore the limits of our

approach on other machine learning tasks that have been held back by the lack of high-

quality supervised datasets, including those in other domains such imaging and structured

prediction.

Acknowledgments

Thanks to Theodoros Rekatsinas, Manas Joglekar, Henry Ehrenberg, Jason Fries, Percy Liang, the DeepDive
and DDLite users and many others for their helpful conversations. The authors acknowledge the support of:
DARPA FA8750-12-2-0335; NSF IIS-1247701; NSFCCF-1111943; DOE 108845; NSF CCF-1337375; DARPA
FA8750-13-2-0039; NSF IIS-1353606;ONR N000141210041 and N000141310129; NIH U54EB020405; DARPA’s
SIMPLEX program; Oracle; NVIDIA; Huawei; SAP Labs; Sloan Research Fellowship; Moore Foundation;
American Family Insurance; Google; and Toshiba. The views and conclusions expressed in this material are those
of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA, AFRL, NSF, ONR, NIH, or the U.S. Government.

A General Theoretical Results

In this section, we will state the full form of the theoretical results we alluded to in the body

of the paper. First, we restate, in long form, our setup and assumptions.

We assume that, for some function h: {−1, 0, 1}m × {−1, 1} 7↦ {−1, 0, 1}M of sufficient
statistics, we are concerned with learning distributions, over the set Ω = {−1, 0, 1}m × {−1,

1},of the form

πθ(Λ, Y) = 1
Zθ

exp(θTh(Λ, Y)), (10)

where θ ∈ ℝM is a parameter, and Zθ is the partition function that makes this a distribution.

We assume that we are given, i.e. can derive from the data programming specification, some

set Θ of feasible parameters. This set must have the following two properties.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at

least in some sense. More specifically, there exists an unbiased estimator θ that is a function

of some number D samples from πθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ
and for some c > 0,

Cov θ ≤ I
2cD . (11)

Second, for any θ1, θ2 ∈ Θ,

Ratner et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E(λ2, y2) ∼ πθ2
Var(λ1, y1) ∼ πθ1

(y1 λ1 = λ2) ≤ c
M . (12)

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are

totally wrong about the true parameter θ.

On the other hand, we are also concerned with a distribution π* which ranges over the set

𝒳 × − 1, 1 , and represents the distribution of training and test examples we are using to

learn. These objects are associated with a labeling function λ:𝒳 − 1, 0, 1 m and a feature

function f :𝒳 ℝn. We make three assumptions about this distribution. First, we assume

that, given (x, y) ~ π*, the class label y is independent of the features f (x) given the labels

λ(x). That is,

(x, y) ∼ π∗ y ⊥ f (x) λ(x) . (13)

Second, we assume that we can describe the relationship between λ(x) and y in terms of our

family in (10) above. That is, for some parameter θ* ∈ Θ,

P(x, y) ∼ π ∗(λ(x) = Λ, y = Y) = πθ ∗(Λ, Y) . (14)

Third, we assume that the features themselves are bounded; for all x ∈ 𝒳,

f (x) ≤ 1. (15)

Our goal is twofold. First, we want to recover some estimate θ of the true parameter θ*.

Second, we want to produce a parameter w that minimizes the regularized logistic loss

l(w) = E(x, y) ∼ π ∗ log(1 + exp(− wT f (x)y)) + ρ w
2

.

We actually accomplish this by minimizing a noise-aware loss function, given our recovered

parameter θ ,

l
θ

(w) = E(x, y) ∼ π ∗ E(Λ, Y) ∼ π
θ

log(1 + exp(− wT f (x)Y)) Λ = λ(x) + ρ w
2

.

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware

loss function, which is only this in expectation. Since the analysis of logistic regression is

not itself interesting, we assume that we are able to run some algorithm that produces an

estimate w which satisfies, for some χ > 0,

Ratner et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E l
θ
(w) − min

w
l
θ
(w) θ ≤ χ . (16)

The algorithm chosen can be anything, but in practice, we use stochastic gradient descent.

We learn θ and w by running the following algorithm.

Under these assumptions, we are able to prove the following theorem about the behavior of

Algorithm 1.

Algorithm 1

Data Programming

Require: Step size η, dataset S ⊂ 𝒳, and initial parameter θ0 ∈ Θ.

 θ → θ0

 for all x ∈ S do

 Independently sample (Λ, Y) from πθ, and (Λ, Y) from πθ conditionally given Λ = λ(x).

 θ θ + η(h(Λ, Y) − h(Λ, Y)) .
 θ = PΘ(θ) ⊳ Here, PΘ denotes orthogonal projection onto Θ.

 end for

 Compute w using the algorithm described in (15)

 return (θ, w).

Theorem A.1

Suppose that we run Algorithm 1 on a data programming specification that satisfies

conditions (11), (12), (13), (14), (15), and (16). Suppose further that, for some parameter ε>

0, we use step size

η = cε2
4

and our dataset is of a size that satisfies

S = 2
c2ε2log

2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

Ratner et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

This theorem’s conclusions and assumptions can readily be seen to be identical to those of

Theorem 2 in the main body of the paper, except that they apply to the slightly more general

case of arbitrary h, rather than h of the explicit form described in the body. Therefore, in

order to prove Theorem 2, it suffices to prove Theorem A.1, which we will do in Section C.

B Theoretical Results for Independent Model

For the independent model, we can obtain a more specific version of Theorem A.1. In the

independent model, the variables are, as before, Λ ∈ {−1, 0, 1}m and Y ∈ {−1, 1}. The

sufficient statistics are ΛiY and Λi
2.

To produce results that make intuitive sense, we also define the alternate parameterization

Pπ Λi Y =

βi
1 + γi

2 Λi = Y

1 − βi Λ = 0

βi
1 − γi

2 Λi = − Y

.

In comparison to the parameters used in the body of the paper, we have

αi =
1 + γi

2 .

Now, we are concerned with models that are feasible. For a model to be feasible (i.e. for θ ∈
Θ), we require that it satisfy, for some constants γmin > 0, γmax > 0, and βmin,

γmin ≤ γi ≤ γmax βmin ≤ βi ≤ 1
2 .

For 0 ≤ β ≤ 1 and − 1≤ γ ≤ 1.

For this model, we can prove the following corollary to Theorem A.1

Corollary B.1

Suppose that we run Algorithm 1 on an independent data programming specification that

satisfies conditions (13), (14), (15), and (16). Furthermore, assume that the number of

labeling functions we use satisfies

Ratner et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

m ≥
9.34 artanh(γmax)

(γβ)minγmin
2 log 24m

βmin
.

Suppose further that, for some parameter ε > 0, we use step size

η =
βminε2

16

and our dataset is of a size that satisfies

S = 32
βmin

2 ε2log
2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

and the expected risk with

E l(w) − min
w

l(w) ≤ χ +
βminε

8ρ .

We can see that if, as stated in the body of the paper, βi ≥ 0.3 and 0.8 ≤ αi ≤ 0.9 (which is

equivalent to 0.6 ≤ γi ≤ 0.8), then

2000 ≥ 1896.13 = 9.34 artanh(0.8)
0.3 · 0.63 log 24 · 2000

0.3 .

This means that, as stated in the paper, m = 2000 is sufficient for this corollary to hold with

S = 32
0.32 · ε2log 2m(artanh(0.8) − artanh(0.6))2

ε = 356
ε2 log m

3ε .

Thus, proving Corollary B.1 is sufficient to prove Theorem 1 from the body of the paper. We

will prove Corollary B.1 in Section E

C Proof of Theorem A.1

First, we state some lemmas that will be useful in the proof to come.

Ratner et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma D.1

Given a family of maximum-entropy distributions

πθ(x) = 1
Zθ

exp(θTh(x)),

for some function of sufficient statistics h: Ω ↦ ℝM, if we let J: ℝM ↦ ℝ be the

maximum log-likelihood objective for some event A ⊆ Ω,

J(θ) = logPx πθ
(x ∈ A),

then its gradient is

∇J(θ) = Ex πθ
[h(x) x ∈ A] − Ex πθ

[h(x)]

and its Hessian is

∇2J(θ) = Covx πθ
(h(x) x ∈ A) − Covx πθ

(h(x)) .

Lemma D.2

Suppose that we are looking at a distribution from a data programming label model. That is,

our maximum-entropy distribution can now be written in terms of two variables, the labeling

function values λ ∈ {−1, 0, 1} and the class y ∈ {−1, 0, 1}, as

πθ(λ, y) = 1
Zθ

exp(θTh(λ, y)),

where we assume without loss of generality that for some M, h(λ, y) ∈ ℝM and ‖h(λ, y)‖∞
≤ 1. If we let J: ℝM ↦ ℝ be the maximum expected log-likelihood objective, under another

distribution π*, for the event associated with the observed labeling function values λ,

J(θ) = E
(λ∗, y∗) π∗ logP(λ, y) πθ

(λ = λ∗) ,

then its Hessian can be bounded with

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ),

where ℐ(θ) is the Fisher information.

Ratner et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma D.3

Suppose that we are looking at a data programming distribution, as described in the text of

Lemma D.2. Suppose further that we are concerned with some feasible set of parameters Θ
⊂ ℝM, such that the any model with parameters in this space satisfies the following two

conditions.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at

least in some sense. More specifically, there exists an unbiased estimator θ that is a function

of some number D samples from πθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ
and for some c > 0,

Cov θ ≤ 1
2cD .

Second, for any θ, θ* ∈ Θ,

E
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) ≤ c
M .

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are

totally wrong about the true parameter θ*.

Under these conditions, the function J is strongly concave on Θ with parameter of strong

convexity c.

Lemma D.4

Suppose that we are looking at a data programming maximum likelihood estimation

problem, as described in the text of Lemma D.2. Suppose further that the objective function

J is strongly concave with parameter c > 0.

If we run stochastic gradient descent on objective J, using unbiased samples from a true

distribution πθ*, where θ* ∈ Θ, then if we use step size

η = cε2
4

and run (using a fresh sample at each iteration) for T steps, where

T = 2
c2ε2log

2 θ0 − θ∗ 2

ε

then we can bound the expected parameter estimation error with

Ratner et al. Page 18

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E θ − θ∗ 2 ≤ ε2M .

Lemma D.5

Assume in our model that, without loss of generality, ‖f (x)‖ ≤ 1 for all x, and that in our true

model π*, the class y is independent of the features f (x) given the labels λ(x).

Suppose that we now want to solve the expected loss minimization problem wherein we

minimize the objective

l(w) = E
(x, y) π∗ log(1 + exp(− wT f (x)y)) + ρ w

2
.

We actually accomplish this by minimizing our noise-aware loss function, given our chosen

parameter θ ,

l
θ

(w) = E
(x, y) π∗ E(Λ, Y) π

θ
log(1 + exp(− wT f (x)Y)) Λ = λ(x) + ρ w

2
.

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware

loss function, which is only this in expectation. Suppose that doing so produces an estimate

w which satisfies, for some χ > 0,

E l
θ

(w) − min
w

l
θ

(w) θ ≤ χ .

(Here, the expectation is taken with respect to only the random variable w.) Then, we can

bound the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

Now, we restate and prove our main theorem.

Theorem A.1

Suppose that we run Algorithm 1 on a data programming specification that satisfies

conditions (11), (12), (13), (14), (15), and (16). Suppose further that, for some parameter ε >

0, we use step size

η = cε2
4

and our dataset is of a size that satisfies

Ratner et al. Page 19

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

S = 2
c2ε2log

2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

and the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

Proof

The bounds on the expected parameter estimation error follow directly from Lemma D.4,

and the remainder of the theorem follows directly from Lemma D.5. □

D Proofs of Lemmas

Lemma D.1

Given a family of maximum-entropy distributions

πθ(x) = 1
Zθ

exp(θTh(x)),

for some function of sufficient statistics h: Ω ↦ ℝM, if we let J: ℝM ↦ ℝ be the

maximum log-likelihood objective for some event A ⊆ Ω,

J(θ) = logPx πθ
(x ∈ A),

then its gradient is

∇J(θ) = Ex πθ
[h(x) x ∈ A] − Ex πθ

[h(x)]

and its Hessian is

∇2J(θ) = Covx πθ
(h(x) x ∈ A) − Covx πθ

(h(x)) .

Proof

For the gradient,

Ratner et al. Page 20

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∇J(θ) = ∇logPπθ
(A)

= ∇log
∑x ∈ Aexp(θTh(x))

∑x ∈ Ωexp(θTh(x))

= ∇log ∑
x ∈ A

exp(θTh(x)) − ∇log ∑
x ∈ Ω

exp(θTh(x))

=
∑x ∈ Ah(x)exp(θTh(x))

∑x ∈ Aexp(θTh(x))
−

∑x ∈ Ωh(x)exp(θTh(x))

∑x ∈ Ωexp(θTh(x))

= Ex πθ
[h(x) x ∈ A] − Ex πθ

[h(x)] .

And for the Hessian

∇2J(θ) = ∇
∑x ∈ Ah(x)exp(θTh(x))

∑x ∈ Aexp(θTh(x))
− ∇

∑x ∈ Ωh(x)exp(θTh(x))

∑x ∈ Ωexp(θTh(x))

=
∑x ∈ Ah(x)h(x)Texp(θTh(x))

∑x ∈ Aexp(θTh(x))
−

‘∑x ∈ Ah(x)exp(θTh(x))’‘∑x ∈ Ah(x)exp(θTh(x))’T

(∑x ∈ Aexp(θTh(x)))2

− ‘
∑x ∈ Ωh(x)exp(θTh(x))

∑x ∈ Ωexp(θTh(x))
−

‘∑x ∈ Ωh(x)exp(θTh(x))’‘∑x ∈ Ωh(x)exp(θTh(x))’T

(∑x ∈ Ωexp(θTh(x)))2
’

= Ex πθ
h(x)h(x)T x ∈ A − Ex πθ

[h(x) x ∈ A]Ex πθ
[h(x) [h(x)] ∈ A]T

− ‘Ex xθ
[h(x)h(x)T] − Ex πθ

[h(x)][Ex πθ
]T’

= Covx πθ
(h(x) x ∈ A) − Covx πθ

(h(x)) .

Lemma D.2

Suppose that we are looking at a distribution from a data programming label model. That is,

our maximum-entropy distribution can now be written in terms of two variables, the labeling

function values λ ∈ {−1, 0, 1} and the class y ∈ {−1, 1}, as

πθ(λ, y) = 1
Zθ

exp(θTh(λ, y)),

Ratner et al. Page 21

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where we assume without loss of generality that for some M, h(λ, y) ∈ ℝM and ‖h(λ, y)‖∞
≤ 1. If we let J: ℝM ↦ ℝ be the maximum expected log-likelihood objective, under another

distribution π*, for the event associated with the observed labeling function values λ,

J(θ) = E
(λ∗, y∗) π∗ logP(λ, y) πθ

(λ = λ∗) ,

then its Hessian can be bounded with

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ),

where ℐ(θ) is the Fisher information.

Proof

From the result of Lemma D.1, we have that

∇2J(θ) = E
(λ∗, y∗) π∗ Cov(λ, y) πθ

(h(λ, y) λ = λ∗) − Cov(λ, y) πθ
(h(λ, y)) . (17)

We start byu defining h0(λ) and h1(λ) such that

h(λ, y) = h(λ, 1)1 + y
2 + h(λ, − 1)1 − y

2 = h(λ, 1) + h(λ, − 1)
2 + yh(λ, 1) − h(λ, − 1)

2 = h0(λ) + yh1(λ) .

This allows us to reduce (17) to

∇2J(θ) = E
(λ∗, y∗) π∗ h1(λ∗)h1(λ∗)TVar(λ, y) πθ

(y λ = λ∗) − Cov(λ, y) πθ
(h(λ, y)) .

On the other hand, the Fisher information of this model at θ is

Ratner et al. Page 22

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ℐ(θ) = E (∇θlogπθ(x))2

= E ∇θlog exp(θTh(x))
∑z ∈ Ωexp(θTh(z))

2

= E ∇θlog exp(θTh(x)) − ∇θlog ∑
z ∈ Ω

exp(θTh(z))
2

= E h(x) −
∑z ∈ Ωh(z)exp(θTh(z))

∑z ∈ Ωexp(θTh(z))

2

= E (h(x) − E[h(z)])2

= Cov(h(x)) .

Therefore, we can write the second derivative of J as

∇2J(θ) = E
(λ∗, y∗) π∗ h1(λ∗)h1(λ∗)TVar(λ, y) πθ

(y λ = λ∗) − ℐ(θ) .

If we apply the fact that

h1(λ∗)h1(λ∗)T ≤ I h1(λ∗) 2 ≤ MI h1(λ∗) ∞
2 ≤ MI,

then we can reduce this to

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ) .

This is the desired result. □

Lemma D.3

Suppose that we are looking at a data programming distribution, as described in the text of

Lemma D.2. Suppose further that we are concerned with some feasible set of parameters Θ
⊂ ℝM, such that the any model with parameters in this space satisfies the following two

conditions.

First, for any θ ∈ Θ, learning the parameter θ from (full) samples from πθ is possible, at

least in some sense. More specifically, there exists an unbiased estimator θ that is a function

of some number D samples from πθ (and is unbiased for all θ ∈ Θ) such that, for all θ ∈ Θ
and for some c > 0,

Ratner et al. Page 23

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cov θ ≤ I
2cD .

Second, for any θ, θ* ∈ Θ,

E
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) ≤ c
M .

That is, we’ll always be reasonably certain in our guess for the value of y, even if we are

totally wrong about the true parameter θ*.

Under these conditions, the function J is strongly concave on Θ with parameter of strong

convexity c.

Proof

From the Cramér-Rao bound, we know in general that the variance of any unbiased

estimator is bounded by the reciprocal of the Fisher information

Cov θ ≥ (ℐ(θ))−1 .

Since for the estimator described in the lemma statement, we have D independent samples

from the distribution, it follows that the Fisher information of this experiment is D times the

Fisher information of a single sample. Combining this with the bound in the lemma

statement on the covariance, we get

I
2cD ≥ Cov θ ≥ (Dℐ(θ))−1 .

It follows that

ℐ(θ) ≥ 2cI .

On the other hand, also from the lemma statement, we can conclude that

MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) ≤ cI .

Therefore, for all θ ∈ Θ,

∇2J(θ) ≤ MIE
(λ∗, y∗) π∗ Var(λ, y) πθ

(y λ = λ∗) − ℐ(θ) ≤ − cI .

This implies that J is strongly concave over Θ, with constant c, as desired. □

Ratner et al. Page 24

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma D.4

Suppose that we are looking at a data programming maximum likelihood estimation

problem, as described in the text of Lemma D.2. Suppose further that the objective function

J is strongly concave with parameter c > 0.

If we run stochastic gradient descent on objective J, using unbiased samples from a true

distribution πθ*, where θ* ∈ Θ, then if we use step size

η = cε2
4

and run (using a fresh sample at each iteration) for T steps, where

T = 2
c2ε2log

2 θ0 − θ∗ 2

ε

then we can bound the expected parameter estimation error with

E θ − θ∗ 2 ≤ ε2M .

Proof

First, we note that, in the proof to follow, we can ignore the projection onto the feasible set

Θ, since this projection always takes us closer to the optimum θ*.

If we track the expected distance to the optimum θ*, then at the next timestep,

θt + 1 − θ∗ 2 = θt − θ∗ 2 + 2γ(θt − θ∗)∇J∼(θt) + γ2 ∇J∼t(θt)
2 .

Since we can write our stochastic samples in the form

∇J∼t(θt) = h(λt, yt) − h(λt, yt),

for some samples λt, yt, λt, and yt, we can conclude that

∇J∼t(θt)
2 ≤ M ∇J∼t(θt) ∞

2 ≤ 4M .

Therefore, taking the expected value conditioned on the filtration,

E θt + 1 − θ∗ 2 ℱt = θt − θ∗ 2 + 2γ(θt − θ∗)∇J(θt) + 4γ2M .

Ratner et al. Page 25

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Since J is strongly concave,

(θt − θ∗)∇J(θt) ≤ − c θt − θ∗ 2;

and so,

E θt + 1 − θ∗ 2 ℱt ≤ (1 − 2γc) θt − θ∗ 2
+ 4γ2M .

If we take the full expectation and subtract the fixed point from both sides,

E θt + 1 − θ∗ 2 − 2γM
c ≤ (1 − 2γc)E θt − θ∗ 2 + 4γ2M − 2γM

c = (1 − 2γc) E θt − θ∗ 2 − 2γM
c .

Therefore,

E θt − θ∗ 2 − 2γM
c ≤ (1 − 2γc)t θ0 − θ∗ 2

− 2γM
c ,

and so

E θt − θ∗ 2 ≤ exp(− 2γct) θ0 − θ∗ 2
+ 2γM

c .

In order to ensure that

E θt − θ∗ 2 ≤ ε2,

it therefore suffices to pick

γ = cε2
4M

and

t = 2M

c2ε2log
2 θ0 − θ∗ 2

ε .

Substituting ε2 → ε2M produces the desired result. □

Ratner et al. Page 26

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma D.5

Assume in our model that, without loss of generality, ‖f(x)‖ ≤ 1 for all x, and that in our true

model π*, the class y is independent of the features f (x) given the labels λ(x).

Suppose that we now want to solve the expected loss minimization problem wherein we

minimize the objective

l(w) = E(x, y) π ∗ log(1 + exp(− wT f (x)y)) + ρ w
2 .

We actually accomplish this by minimizing our noise-aware loss function, given our chosen

parameter θ ,

l
θ

(w) = E(x, y) π ∗ E(Λ, Y) π
θ

log(1 + exp(− wT f (x)Y)) Λ = λ(x) + ρ w
2

.

In fact we can’t even minimize this; rather, we will be minimizing the empirical noise-aware

loss function, which is only this in expectation. Suppose that doing so produces an estimate

w which satisfies, for some χ > 0,

E l
θ

(w) − min
w

l
θ

(w) θ ≤ χ .

(Here, the expectation is taken with respect to only the random variable w.) Then, we can

bound the expected risk with

E l(w) − min
w

l(w) ≤ χ + cε
2ρ .

Proof

(To simplify the symbols in this proof, we freely use θ when we mean θ .)

The loss function we want to minimize is, in expectation,

l(w) = E(x, y) π ∗ log(1 + exp(− wT f (x)y)) + ρ w
2 .

By the law of total expectation,

l(w) = E(x, y) π ∗ E(x, y) π ∗ log(1 + exp(− wT f (x)y)) x = x + ρ w
2,

and by our conditional independence assumption,

Ratner et al. Page 27

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

l(w) = E(x, y) π ∗ E(x, y) π ∗ log(1 + exp(− wT f (x)y)) λ(x) = λ(x) + ρ w
2 .

Since we know from our assumptions that, for the optimum parameter θ*,

P(x, y) π ∗(λ(x) = Λ, y = Y) = P(λ, y) πθ ∗
(λ = Λ, y = Y),

we can rewrite this as

l(w) = E(x, y) π ∗ E(Λ, Y) πθ ∗ log(1 + exp(− wT f (x)Y)) Λ = λ(x) + ρ w
2

.

On the other hand, if we are minimizing the model we got from the previous step, we will be

actually minimizing

lθ(w) = E(x, y) π ∗ E(Λ, Y) πθ
log(1 + exp(− wT f (x)Y)) Λ = λ(x) + ρ w

2
.

We can reduce this further by noticing that

E(Λ, Y) πθ
log(1 + exp(− wT f (x)Y)) Λ = λ(x)

= E(Λ, Y) πθ
log(1 + exp(− wT f (x)))1 + Y

2 + log(1 + exp(wT f (x)))1 − Y
2 Λ = λ(x)

= log(1 + exp(− wT f (x))) + log(1 + exp(wT f (x)))
2

+ log(1 + exp(− wT f (x))) − log(1 + exp(wT f (x)))
2 E(Λ, Y) πθ

[Y Λ = λ(x)]

= log(1 + exp(− wT f (x))) + log(1 + exp(wT f (x)))
2

− wT f (x)
2 E(Λ, Y) πθ

[Y Λ = λ(x)] .

It follows that the difference between the loss functions will be

|l(w) − lθ(w) | = |E
(x∼, y∼) π∗

wT f (x)
2 (E(Λ, Y) πθ

[Y |Λ = λ(x)] − E(Λ, Y) πθ ∗
[Y |Λ = λ(x)]) | .

Now, we can compute that

Ratner et al. Page 28

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∇θE(Λ, Y) πθ
[Y |Λ = λ] = ∇θ

exp(θTh(λ, 1)) − exp(θTh(λ, − 1))
exp(θTh(λ, 1)) + exp(θTh(λ, − 1))

= ∇θ
exp(θTh1(λ)) − exp(− θTh1(λ))

exp(θTh1(λ)) + exp(θTh1(λ))

= ∇θtanh(θTh1(λ))

= h1(λ)(1 − tanh2(θTh1(λ)))

= h1(λ)Var(Λ, Y) πθ
(Y | Λ = λ) .

It follows by the mean value theorem that for some ψ, a linear combination of θ and θ*,

|l(w) − lθ(w) | = E
(x, y) π∗

wT f (x)
2 (θ − θ∗)Th1(λ)Var(Λ, Y) πψ

(Y Λ = λ) .

Since Θ is convex, clearly ψ ∈ Θ. From our assumption on the bound of the variance, we

can conclude that

E
(x, y) π∗ Var(Λ, Y) πψ

(Y Λ = λ) ≤ c
M .

By the Cauchy-Schwarz inequality,

l(w) − lθ(w) ≤ 1
2 E

(x, y) π∗ w f (x) θ − θ∗ h1(λ) Var(Λ, Y) πψ
(Y Λ = λ) .

Since (by assumption) ‖f(x)‖ ≤ 1 and h1(λ) ≤ M,

l(w) − lθ(w) ≤
w θ − θ∗ M

2 E
(x, y) π∗ Var(Λ, Y) πψ

(Y Λ = λ)

≤
w θ − θ∗ M

2 ⋅ c
M

=
c w θ − θ∗

2 M
.

Now, for any w that could conceivably be a solution, it must be the case that

w ≤ 1
2ρ ,

Ratner et al. Page 29

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

since otherwise the regularization term would be too large Therefore, for any possible

solution w,

l(w) − lθ(w) ≤ c θ − θ∗
4ρ M

.

Now, we apply the assumption that we are able to solve the empirical problem, producing an

estimate w that satisfies

E[lθ(w) − lθ(wθ
∗)] ≤ χ,

where wθ
∗ is the true solution to

wθ
∗ = arg min

w
lθ(w) .

Therefore,

E[l(w) − l(w∗)] = E[lθ(w) − lθ(wθ
∗) + lθ(wθ

∗) − lθ(w) + l(w) − l(w∗)]

≤ χ + E[lθ(w∗) − lθ(w) + l(w) − l(w∗)]

≤ χ + E[lθ(w∗) − l(w∗) + lθ(w) − l(w)]

≤ χ + E c θ − θ∗
2ρ M

= χ + c
2ρ M

E[θ − θ∗]

≤ χ + c
2ρ M

E θ − θ∗ 2 .

We can now bound this using the result of Lemma D.4, which results in

E[l(w) − l(w∗)] ≤ χ + c
2ρ M

Mε2

= χ + cε
2ρ .

This is the desired result. □

E Proofs of Results for the Independent Model

To restate, in the independent model, the variables are, as before, Λ ∈ {−1, 0, 1}m and Y ∈
{−1, 1} The sufficient statistics are ΛiY and Λi

2. That is, for expanded parameter θ = (ψ, ϕ),

Ratner et al. Page 30

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

πθ(Λ, Y) = 1
Z exp(ΨTΛY + ϕTΛ2) .

This can be combined with the simple assumption that P(Y) = 1
2 to complete a whole

distribution. Using this, we can prove the following simple result about the moments of the

sufficient statistics.

Lemma E.1

The expected values and covariances of the sufficient statistics are, for all i ≠ j,

E[ΛiY] = βiγi
E[Λi

2] = βi
Var[ΛiY] = βi − βi

2γi
2

Var(Λi
2) = βi − βi

2

Cov(ΛiY , Λ jY) = 0

Cov(Λi
2, Λ j

2) = 0

Cov(ΛiY , Λ j
2) = 0.

We also prove the following basic lemma that relates ψi to γi.

Lemma E.2

It holds that

γi = tanh(ψi)

We also make the following claim about feasible models.

Lemma E.3

For any feasible model, it will be the case that, for any other feasible parameter vector ψ ,

P ψTΛY ≤ m
2 γmin(γβ)min ≤ −

m(γβ)minγmin
2

9.34artanh(γmax) .

We can also prove the following simple result about the conditional covariances

Lemma E.4

The covariances of the sufficient statistics, conditioned on Λ, are for all i ≠ j,

Ratner et al. Page 31

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cov ΛiY , ΛiY Λ = ΛiΛ jsech2 ψTΛ

Cov Λi
2, Λ j

2 Λ = 0.

We can combine these two results to bound the expected variance of these conditional

statistics.

Lemma E.5

If θ and θ* are two feasible models, then for any u,

Eθ ∗ Varθ Y Λ ≤ 3exp −
mβmin

2 γmin
3

8 artanh γmax
.

We can now proceed to restate and prove the main corollary of Theorem A.1 that applies in

the independent case.

Corollary B.1

Suppose that we run Algorithm 1 on an independent data programming specification that

satisfies conditions (13), (14), (15), and (16). Furthermore, assume that the number of

labeling functions we use satisfies

m ≥
9.34 artanh γmax

γβ minγmin
2 log 24m

βmin
.

Suppose further that, for some parameter ε > 0, we use step size

η =
βminε2

16

and our dataset is of a size that satisfies

S = 32
βmin

2 ε2log
2 θ0 − θ∗ 2

ε .

Then, we can bound the expected parameter error with

E θ − θ∗ 2 ≤ ε2M

and the expected risk with

Ratner et al. Page 32

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E l w − min
w

l w ≤ χ +
βminε

8ρ .

Proof

In order to apply Theorem A.1, we have to verify all its conditions hold in the independent

case.

First, we notice that (11) is used only to bound the covariance of the sufficient statistics.

From Lemma E.1, we know that these can be bounded by βi − βi
2γi

2 ≥
βmin

2 . It follows that

we can choose

c =
βmin

4 ,

and we can consider (11) satisfied, for the purposes of applying the theorem.

Second, to verify (12), we can use Lemma E.5. For this to work, we need

3exp −
m γβ minγmin

2

9.34 artanh γmax
≤ c

M =
βmin
8m .

This happens whenever the number of labeling functions satisfies

m ≥
9.34 artanh γmax

γβ minγmin
2 log 24m

βmin
.

The remaining assumptions, (13), (14), (15), and (16), are satisfied directly by the

assumptions of this corollary. So, we can apply Theorem A.1, which produces the desired

result. □

F Proofs of Independent Model Lemmas

Lemma E.1

The expected values and covariances of the sufficient statistics are, for all i ≠ j,

Ratner et al. Page 33

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E ΛiY = βiγi
E Λi

2 = βi
Var ΛiY = βi − βi

2γi
2

Var Λi
2 = βi − βi

2

Cov ΛiY , Λ jY = 0

Cov Λi
2, Λ j

2 = 0

Cov ΛiY , Λ j
2 = 0.

Proof

We prove each of the statements in turn. For the first statement,

E ΛiY = P Λi = Y − P Λi = − Y

= βi
1 + γi

2 − βi
1 − γi

2

= βiγi .

For the second statement,

E Λi
2 = P Λ = Y + P Λ = − Y

= βi
1 + γi

2 + βi
1 − γi

2

= βi .

For the remaining statements, we derive the second moments; converting these to an

expression of the covariance is trivial. For the third statement,

E ΛiY
2 = E Λi

2Y2 = E Λi
2 = βi .

For the fourth statement,

E Λi
2 2 = E Λi

4 = E Λi
2 = βi .

For subsequent statements, we first derive that

E ΛiY Y = βi
1 + γi

2 − βi
1 − γi

2 = βiγi

and

Ratner et al. Page 34

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E Λi
2 Y = βi

1 + γi
2 + βi

1 − γi
2 = βi .

Now, for the fifth statement,

E ΛiY Λ jY = E E ΛiY Y E Λ jY Y = βiγiβ jγ j .

For the sixth statement,

E Λi
2 Λ j

2 = E E Λi
2 Y E Λi

2 Y = βiβ j .

Finally, for the seventh statement,

E ΛiY Λ j
2 = E E ΛiY Y E Λi

2 Y = βiγiβ j .

This completes the proof. □

Lemma E.2

It holds that

γi = tanh(ψi) .

Proof

From the definitions,

βi =
exp ψi + ϕi + exp −ψi + ϕi

exp ψi + ϕi + exp −ψi + ϕi + 1

and

βiγi =
exp ψi + ϕi − exp −ψi + ϕi

exp ψi + ϕi + exp −ψi + ϕi + 1
.

Therefore,

γi =
exp ψi + ϕi − exp −ψi + ϕi

exp ψi + ϕi + exp −ψi + ϕi + 1
= tanh ψi ,

which is the desired result. □

Ratner et al. Page 35

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma E.3

For any feasible model, it will be the case that, for any other feasible parameter vector ψ ,

P ψTΛY ≤ m
2 γmin γβ min ≤ exp −

m γβ minγmin
2

9.34artanh γmax
.

Proof

We start by noticing that

ψTΛY = ∑
i = 1

m
ψiΛiY .

Since in this model, all the ΛiY are independent of each other, we can bound this sum using

a concentration bound. First, we note that

ψiΛiY ≤ ψi

Second, we note that

E ψiΛiY = ψiβiγi

and

Var ψiΛiY = ψi
2 βi − βi

2γi
2

but

ψiΛiY ≤ ψi ≤ artanh γmax ≜ ψmax

because, for feasible models, by definition

γmin ≤ artanh γmin ≤ ψi ≤ artanh γmax .

Therefore, applying Bernstein’s inequality gives us, for any t,

P ∑
i = 1

m
ψiΛiY − ∑

i = 1

m
ψiβiγi ≤ − t ≤ exp − 3t2

6∑i = 1
m ψi

2γiβiγi + 2ψmaxt
.

It follows that, if we let

Ratner et al. Page 36

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

t = 1
2 ∑

i = 1

m
ψiβiγi,

then we get

P ∑
i = 1

m
ψiΛiY − ∑

i = 1

m
ψiβiγi ≤ − t ≤ exp −

3 1
2 ∑i = 1

m ψiβiγi
2

6∑i = 1
m ψi

2γiβiγi + 2ψmax
1
2 ∑i = 1

m ψiβiγi

≤ exp −
3∑i = 1

m ψiβiγi
24γmaxψmax + 4ψmax

≤ exp −
3m 1 − γmax

28ψmax

≤ exp −
3 ∑i = 1

m ψiβiγi
2

24∑i = 1
m ψi

2βi + 4ψmax ∑i = 1
m ψiβiγi

≤ exp −
3γmin ∑i = 1

m ψiβi ∑i = 1
m ψiβiγi

24ψmax∑i = 1
m ψiβi + 4ψmax ∑i = 1

m ψiβi

≤ exp −
3γmin ∑i = 1

m ψiβiγi
28ψmax

≤ exp −
mγmin

2 γβ min
9.34ψmax

.

This is the desired expression. □

Lemma E.4

The covariances of the sufficient statistics, conditioned on Λ, are for all i ≠ j,

Cov ΛiY , Λ jY Λ = ΛiΛ jsech2 ψTΛ

Cov Λi
2, Λ j

2 Λ = 0.

Proof

The second result is obvious, so it suffices to prove only the first result. Clearly,

Cov ΛiY , Λ jY Λ = ΛiΛ jVar Y Λ = ΛiΛ j 1 − E Y Λ 2 .

Plugging into the distribution formula lets us conclude that

Ratner et al. Page 37

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E Y Λ =
exp ψTΛ + ϕTΛ2 − exp −ψTΛ + ϕTΛ2

exp ψTΛ + ϕTΛ2 + exp −ψTΛ + ϕTΛ2 = tanh2 ψTΛ ,

and so

Cov ΛiY , Λ jY Λ = ΛiΛ j 1 − tanh2 ψTΛ = ΛiΛ jsech2 ψTΛ ,

which is the desired result. □

Lemma E.5

If θ and θ* are two feasible models, then for any u

E
θ∗ Varθ Y Λ ≤ 3exp −

mβmin
2 γmin

3

8 artanh γmax
.

Proof

First, we note that, by the result of Lemma E.4,

Varθ Y Λ = sech2 ψTΛ .

Therefore,

E
θ∗ Varθ Y Λ = E

θ∗ sech2 ψTΛ .

Applying Lemma E.3, we can bound this with

Eθ ∗ Varθ uTΛY Λ ≤ sech2 m
2 γβ minγmin

2 + exp −
m γβ minγmin

2

9.34 artanh γmax

≤ 2exp − m
2 γβ minγmin

2 + exp −
m γβ minγmin

2

9.34 artanh γmax

≤ 3exp −
m γβ minγmin

2

9.34 artanh γmax
.

This is the desired expression. □

Ratner et al. Page 38

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

G Additional Experimental Details

G.1 Relation Extraction Experiments

G.1.1 Systems

The original distantly-supervised experiments which we compare against as baselines–which

we refer to as using the if-then-return (ITR) approach of distant or programmatic

supervision–were implemented using DeepDive, an open-source system for building

extraction systems.5 For our primary experiments, we adapted these programs to the

framework and approach described in this paper, directly utilizing distant supervision rules

as labeling functions.

In the disease tagging user experiments, we used an early version of our new lightweight

extraction framework based around data programming, formerly called DDLite [12], now

Snorkel.6 Snorkel is based around a Jupyter-notebook based interface, allowing users to

iteratively develop labeling functions in Python for basic extraction tasks involving simple

models. Details of the basic discriminative models used can be found in the Snorkel

repository; in particular, Snorkel uses a simple logistic regression model with generic

features defined in part over dependency paths7, and a basic LSTM model implemented

using the Theano library.8 Snorkel is currently under continued development, and all

versions are open-source.

G.1.2 Applications

We consider three primary applications which involve the extraction of binary relation

mentions of some specific type from unstructured text input data. At a high level, all three

system pipelines consist of an initial candidate extraction phase which leverages some

upstream model or suite of models to extract mentions of involved entities, and then

considers each pair of such mentions that occurs within the same local neighborhood in a

document as a candidate relation mention to be potentially extracted. In each case, the

discriminative model that we are aiming to train–and that we evaluate in this paper–is a

binary classifier over these candidate relation mentions, which will decide which ones to

output as final true extractions. In all tasks, we preprocessed raw input text with Stanford

CoreNLP9, and then either used CoreNLP’s NER module or our own entity-extraction

models to extract entity mentions. Further details of the basic information extraction pipeline

utilized can be seen in the tutorials of the systems used, and in the referenced papers below.

In the 2014 TAC-KBP Slot Filling task, which we also refer to as the News application, we

train a set of extraction models for a variety of relation types from news articles [30]. In

reported results in this paper, we average over scores from each relation type. We utilized

CoreNLP’s NER module for candidate extraction, and utilized CoreNLP outputs in

developing the distant supervision rules/labeling functions for these tasks. We also

5http://deepdive.stanford.edu
6http://snorkel.stanford.edu
7https://github.com/HazyResearch/treedlib
8http://deeplearning.net/software/theano/
9stanfordnlp.github.io/CoreNLP/

Ratner et al. Page 39

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://deepdive.stanford.edu
http://snorkel.stanford.edu
https://github.com/HazyResearch/treedlib
http://deeplearning.net/software/theano/
http://stanfordnlp.github.io/CoreNLP/

considered a slightly simpler discriminative model than the one submitted in the 2014

competition, as reported in [2]: namely, we did not include any joint factors in our model in

this paper.

In the Genomics application, our goal with our collaborators at Stanford Medicine was to

extract mentions of genes that if mutated may cause certain phenotypes (symptoms) linked

to Mendelian diseases, for use in a clinical diagnostic setting. The code for this project is

online, although it remains partially under development and thus some material from our

collaborators is private.10

In the Pharmacogenomics application, our goal was to extract interactions between genes for

use in downstream pharmacogenomics research analyses; full results and system details are

reported in [21].

In the Disease Tagging application, which we had our collaborators work on during a set of

short hackathons as a user study, the goal was to tag mentions of human diseases in PubMed

abstracts. We report results of this hackathon in [12], as well as in our Snorkel tutorial

online.

G.1.3 Labeling Functions

In general, we saw two broad types of labeling functions in both prior applications (when

they were referred to as “distant supervision rules”) and in our most recent user studies. The

first type of labeling function leverages some weak supervision signal, such as an external

knowledgebase (as in traditional distant supervision), very similar to the example illustrated

in Fig. 1(a). All of the applications studied in this paper used some such labeling function or

set of labeling functions.

The second type of labeling function uses simple heuristic patterns as positive or negative

signals. For our text extraction examples, these heuristic patterns primarily consisted of

regular expressions, also similar to the example pseudocode in Fig. 1(a). Further specific

details of both types of labeling functions, as well as others used, can be seen in the linked

code repositories and referenced papers.

G.2 Synthetic Experiments

In Fig. 3(a–b), we ran synthetic experiments with labeling functions having constant

coverage β = 0.1, and accuracy drawn from α ∼ Uniform(μα − 0.25, μα + 0.25) where μα =

0.75 in the above plots. In both cases we used 1000 normally-drawn features having mean

correlation with the true label class of 0.5.

In this case we compare data programming (DP-Pipelined) against two baselines. First, we

compare against an if-then-return setup where the ordering is optimal (ITR-Oracle). Second,

we compare against simple majority vote (MV).

10https://github.com/HazyResearch/dd-genomics

Ratner et al. Page 40

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/HazyResearch/dd-genomics

In Fig. 3(c), we show an experiment where we add dependent labeling functions to a set of

mind = 50 independent labeling functions, and either provided this dependency structure

(LDM-Aware) or did not (Independent). In this case, the independent labeling functions had

the same configurations as in (a-b), and the dependent labeling functions corresponded to

“fixes” or “reinforces”-type dependent labeling functions.

References

1. Alfonseca E, Filippova K, Delort JY, Garrido G. Pattern learning for relation extraction with a
hierarchical topic model. Proceedings of the ACL.

2. Angeli G, Gupta S, Jose M, Manning CD, Ré C, Tibshirani J, Wu JY, Wu S, Zhang C. Stanford’s
2014 slot filling systems. TAC KBP. 2014:695.

3. Balsubramani A, Freund Y. Scalable semi-supervised aggregation of classifiers. Advances in Neural
Information Processing Systems. 2015:1351–1359.

4. Berend D, Kontorovich A. Consistency of weighted majority votes. NIPS. 2014

5. Blum, A., Mitchell, T. Proceedings of the eleventh annual conference on Computational learning
theory. ACM; 1998. Combining labeled and unlabeled data with co-training; p. 92-100.

6. Bootkrajang, J., Kabán, A. Machine Learning and Knowledge Discovery in Databases. Springer;
2012. Label-noise robust logistic regression and its applications; p. 143-158.

7. Bunescu R, Mooney R. Learning to extract relations from the web using minimal supervision.
Annual meeting-association for Computational Linguistics. 2007; 45:576.

8. Craven M, Kumlien J, et al. Constructing biological knowledge bases by extracting information
from text sources. ISMB. 1999; 1999:77–86.

9. Dalvi N, Dasgupta A, Kumar R, Rastogi V. Aggregating crowdsourced binary ratings. Proceedings
of the 22Nd International Conference on World Wide Web, WWW ’. 2013; 13:285–294.

10. Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates using the em
algorithm. Applied statistics. 1979:20–28.

11. Doğan RI, Lu Z. An improved corpus of disease mentions in pubmed citations. Proceedings of the
2012 workshop on biomedical natural language processing.

12. Ehrenberg HR, Shin J, Ratner AJ, Fries JA, Ré C. Data programming with ddlite: putting humans
in a different part of the loop. HILDA@ SIGMOD. 2016:13.

13. Gao H, Barbier G, Goolsby R, Zeng D. Harnessing the crowdsourcing power of social media for
disaster relief. Technical report, DTIC Document. 2011

14. Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation. 1997; 9(8):1735–
1780. [PubMed: 9377276]

15. Hoffmann R, Zhang C, Ling X, Zettlemoyer L, Weld DS. Knowledge-based weak supervision for
information extraction of overlapping relations. Proceedings of the ACL.

16. Joglekar M, Garcia-Molina H, Parameswaran A. Comprehensive and reliable crowd assessment
algorithms. Data Engineering (ICDE), 2015 IEEE 31st International Conference on.

17. Karger DR, Oh S, Shah D. Iterative learning for reliable crowdsourcing systems. Advances in
neural information processing systems. 2011:1953–1961.

18. Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li LJ, Shamma
DA, et al. Visual genome: Connecting language and vision using crowdsourced dense image
annotations. arXiv preprint arXiv: 1602.07332. 2016

19. Krogel MA, Scheffer T. Multi-relational learning, text mining, and semi-supervised learning for
functional genomics. Machine Learning. 2004; 57(1–2):61–81.

20. Lugosi G. Learning with an unreliable teacher. Pattern Recognition. 1992; 25(1):79–87.

21. Mallory EK, Zhang C, Ré C, Altman RB. Large-scale extraction of gene interactions from full-text
literature using deepdive. Bioinformatics. 2015

22. Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled
data. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL. 2009

Ratner et al. Page 41

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

23. Natarajan N, Dhillon IS, Ravikumar PK, Tewari A. Learning with noisy labels. Advances in Neural
Information Processing Systems. 26

24. Parisi F, Strino F, Nadler B, Kluger Y. Ranking and combining multiple predictors without labeled
data. Proceedings of the National Academy of Sciences. 2014; 111(4):1253–1258.

25. Riedel, S., Yao, L., McCallum, A. Machine Learning and Knowledge Discovery in Databases.
Springer; 2010. Modeling relations and their mentions without labeled text; p. 148-163.

26. Roth B, Klakow D. Feature-based models for improving the quality of noisy training data for
relation extraction. Proceedings of the 22nd ACM Conference on Knowledge management.

27. Roth B, Klakow D. Combining generative and discriminative model scores for distant supervision.
EMNLP. 2013:24–29.

28. Schapire, RE., Freund, Y. Boosting: Foundations and algorithms. MIT press; 2012.

29. Shin J, Wu S, Wang F, De Sa C, Zhang C, Ré C. Incremental knowledge base construction using
deepdive. Proceedings of the VLDB Endowment. 2015; 8(11):1310–1321. [PubMed: 27144081]

30. Surdeanu M, Ji H. Overview of the english slot filling track at the tac2014 knowledge base
population evaluation. Proc Text Analysis Conference (TAC2014). 2014

31. Takamatsu S, Sato I, Nakagawa H. Reducing wrong labels in distant supervision for relation
extraction. Proceedings of the ACL.

32. Verga P, Belanger D, Strubell E, Roth B, McCallum A. Multilingual relation extraction using
compositional universal schema. arXiv preprint arXiv: 1511.06396. 2015

33. Zhang Y, Chen X, Zhou D, Jordan MI. Spectral methods meet em: A provably optimal algorithm
for crowdsourcing. Advances in Neural Information Processing Systems. 2014; 27:1260–1268.

Ratner et al. Page 42

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
An example of extracting mentions of gene-disease relations from the scientific literature.

Ratner et al. Page 43

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Examples of labeling function dependency predicates.

Ratner et al. Page 44

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Comparisons of data programming to two oracle methods on synthetic data.

Ratner et al. Page 45

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratner et al. Page 46

Ta
b

le
 1

Pr
ec

is
io

n/
R

ec
al

l/F
1

sc
or

es
 u

si
ng

 d
at

a
pr

og
ra

m
m

in
g

(D
P)

, a
s

co
m

pa
re

d
to

 d
is

ta
nt

 s
up

er
vi

si
on

 I
T

R
 a

pp
ro

ac
h,

 w
ith

 b
ot

h
ha

nd
-t

un
ed

 a
nd

 L
ST

M
-g

en
er

at
ed

fe
at

ur
es

.

K
B

P
 (

N
ew

s)
G

en
om

ic
s

P
ha

rm
ac

og
en

om
ic

s

F
ea

tu
re

s
M

et
ho

d
P

re
c.

R
ec

.
F

1
P

re
c.

R
ec

.
F

1
P

re
c.

R
ec

.
F

1

IT
R

51
.1

5
26

.7
2

35
.1

0
83

.7
6

41
.6

7
55

.6
5

68
.1

6
49

.3
2

57
.2

3

H
an

d-
tu

ne
d

D
P

50
.5

2
29

.2
1

37
.0

2
83

.9
0

43
.4

3
57

.2
4

68
.3

6
54

.8
0

60
.8

3

L
ST

M
IT

R
37

.6
8

28
.8

1
32

.6
6

69
.0

7
50

.7
6

58
.5

2
32

.3
5

43
.8

4
37

.2
3

D
P

47
.4

7
27

.8
8

35
.7

8
75

.4
8

48
.4

8
58

.9
9

37
.6

3
47

.9
5

42
.1

7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratner et al. Page 47

Ta
b

le
 2

L
ab

el
in

g
fu

nc
tio

n
(L

F)
 s

um
m

ar
y

st
at

is
tic

s,
 s

iz
es

 o
f

ge
ne

ra
te

d
tr

ai
ni

ng
 s

et
s

S λ
≠0

 (
on

ly
 c

ou
nt

in
g

no
n-

ze
ro

 la
be

ls
),

 a
nd

 r
el

at
iv

e
F1

 s
co

re
 im

pr
ov

em
en

t o
ve

r

ba
se

lin
e

IR
T

 m
et

ho
ds

 f
or

 h
an

d-
tu

ne
d

(H
T

)
an

d
L

ST
M

-g
en

er
at

ed
 (

L
ST

M
)

fe
at

ur
e

se
ts

.

A
pp

lic
at

io
n

of

 L
F

s
C

ov
er

ag
e

|S
λ

≠0
|

O
ve

rl
ap

C
on

fl
ic

t
F

1
Sc

or
e

Im
pr

ov
em

en
t

H
T

L
ST

M

K
B

P
(N

ew
s)

40
29

.3
9

2.
03

M
1.

38
0.

15
1.

92
3.

12

G
en

om
ic

s
14

6
53

.6
1

25
6K

26
.7

1
2.

05
1.

59
0.

47

Ph
ar

m
ac

og
en

om
ic

s
7

7.
70

12
9K

0.
35

0.
32

3.
60

4.
94

D
is

ea
se

s
12

53
.3

2
41

8K
31

.8
1

0.
98

N
/A

N
/A

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2018 June 03.

	Abstract
	1 Introduction
	Summary of Contributions and Outline

	2 Related Work
	3 The Data Programming Paradigm
	Example 3.1
	Independent Labeling Functions
	Noise-Aware Empirical Loss

	Theorem 1

	4 Handling Dependencies
	Label Function Dependency Graph
	Modeling Dependencies
	Learning with Dependencies
	Theorem 2

	5 Experiments
	Relation Mention Extraction
	Automatically-generated Features
	Usability Study

	6 Conclusion and Future Work
	A General Theoretical Results
	Algorithm 1
	B Theoretical Results for Independent Model
	C Proof of Theorem A.1
	D Proofs of Lemmas
	E Proofs of Results for the Independent Model
	F Proofs of Independent Model Lemmas
	G Additional Experimental Details
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

