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Identification of Misclassified ClinVar Variants
via Disease Population Prevalence

Naisha Shah,1 Ying-Chen Claire Hou,1 Hung-Chun Yu,1 Rachana Sainger,1 C. Thomas Caskey,2

J. Craig Venter,1,3,* and Amalio Telenti3,*

There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from

10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the

disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with

265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassifi-

cation). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5%

of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This

improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated

using public data frommore than 138,000 genomes. The burden of rare variants was amain contributing factor of the observed inflation,

indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar

over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant

proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation

across submitters.
Introduction

Currently, more than 68,000 clinical genetic tests are

offered from more than 1,700 clinics and laboratories ac-

cording to Genetests. While genetic testing is a powerful

diagnostic tool, there are several challenges for interpreta-

tion and reporting of findings. Some of these challenges

include the accuracy of variant calling, identification of

pathogenic variants, and interpretation of low-penetrant

variants.1 Variant selection algorithms have been proposed

to avoid false positive genomic screening results in the

general population.2 In addition, different laboratories

have developed different protocols to handle the chal-

lenges, which leads to inconsistencies in the classification

of variants and a bias toward overestimating pathoge-

nicity.3

For many variants, the assignment of clinical signifi-

cance reflects historical guidelines and evidence available

at the time of the original interpretation. However, as

additional information becomes available, the interpreta-

tion of pathogenicity of genetic variants may change.

Data-sharing efforts have shown that 17% of the variants

with clinical interpretations submitted by more than one

laboratory had conflicting interpretations.4 The American

College of Medical Genetic and Genomics (ACMG) and

the Association for Molecular Pathology (AMP) issued

guidelines to support a standardized approach to variant

classification.5 Initiatives to curate existing knowledge

and improve variant interpretation have been put in

place. The NIH-based partnership between ClinVar and

ClinGen is an example of such an initiative.4,6 ClinVar
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implements a ranking system to denote the quality associ-

ated with each submission to the database. For example, a

three- or four-star submission comes from ‘‘expert panel’’

and ‘‘practice guidelines’’ submitters, which are the most

ClinGen-trusted sources for variant interpretation.

Challenges lie ahead, as even the implementation of

ACMG-AMP guidelines led to only a 34% concordance

on the reporting of 99 variants across laboratories.

After consensus discussions and detailed review of the

ACMG-AMP criteria, concordance increased to 71%.3

Leveraging knowledge from shared data by categorizing

variants based on clinical significance, the number of

submitters, and their assertion criteria is an important

step toward accurate interpretation of variant pathoge-

nicity and diagnosis. However, there is a need for

additional methods to detect misclassified pathogenic

variants. Also, it is crucial to identify variants with low

clinical penetrance (i.e., proportion of individuals with a

variant that develop the disease or clinical symptoms)

for proper clinical reporting. For example, the variant

c.845G>A (rs1800562; p.Cys282Tyr) in HFE (MIM:

613609) associated with hereditary hemochromatosis

was thought to be themain pathogenic variant;7 however,

as more individuals were genotyped, the variant’s high

population frequency appeared more compatible with

low penetrance.8

Here, we revisit the topic of assignment of pathogenicity

to a variant by assessing expected disease prevalence

and observed genetic risk in a population. Genetic risk is

defined here as the number of individuals that are at

disease risk based on the presence of pathogenic variants
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and mode of inheritance. We used recent data from whole-

genome sequencing of 10,495 unrelated subjects (Telenti

et al.9) to identify individuals with clinically significant

variants from ClinVar. We identify disease conditions

with inflated values, i.e., the cumulative frequency of the

disease risk variants in the population far exceeds the ex-

pected prevalence of disease. Here, we jointly considered

several rare ‘‘clinically significant’’ variants to identify

inflation for diseases rather than identifying individual

misclassified variants based on their allele frequency. If

the genetic basis and etiology of a disease is not well under-

stood (incomplete knowledge on associated genes, vari-

ants, and other factors), the currently known variants

will explain only some of the disease prevalence, i.e.,

they will appear deflated.

We performed the disease prevalence analysis as a

function of pathogenic variants listed in ClinVar sepa-

rately for the well-curated 59 genes and associated condi-

tions recommended by the ACMG for reporting of

secondary findings (SF v2.0) in clinical genome-scale

sequencing10–12 (herein referred to as ACMG-59) and

for genes with available population prevalence informa-

tion reported in OrphaNet/OrphaData, a data source on

rare diseases.13 We then replicate our findings of inflation

in a large public dataset, gnomAD,14 with more than

138,000 exomes and whole genomes.
Material and Methods

We used whole-genome sequences from 10,495 unrelated indi-

viduals sequenced at a 303 median coverage. Details are

described by Telenti et al.:9 participants were representative of

major human populations and ancestries, and the study popula-

tion was not ascertained for a specific health status. To avoid

analyzing potentially inaccurate variant calls that lie within

the areas of the genome prone to sequencing errors,15 the

analysis was focused on variants that fell within the high-confi-

dence sequencing regions of the genome.9,16,17 For the disease

prevalence analysis, we calculated frequencies of individuals at

genetic risk using variants deposited in ClinVar.18 We performed

disease prevalence analysis for two groups of conditions: (1) a

well-curated list of the recommended ACMG 59 gene and asso-

ciated conditions to report for incidental findings (referred to

here as ‘‘ACMG-59’’)10,12 and (2) a list of rare conditions

collected by a consortium in a reference portal called Orpha-

Net/OrphaData.

To compare observed genetic risk and expected population

prevalence, we used only the conditions with two or more at-

risk individuals observed in the study. We calculated fold-change

for genetic risk compared to population prevalence per condi-

tion using the formula: observed/expected. SnpEff19 was used

to annotate effect of the variants in ACMG-59 and OrphaNet

genes using canonical transcripts.

To replicate our findings, we used gnomAD exomes (n ¼
123,136) and genomes (n ¼ 15,496) datasets (v.2.0.1.).14 Since

the datasets do not have sample-level information available, we

calculated the number of individuals at risk for a condition to be

the number of alleles observed for all pathogenic/likely patho-

genic variants (i.e., assuming independent samples).
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ACMG-59 Conditions
For each of the ACMG-59 conditions, we searched OrphaNet,

GeneReview, and other published sources for the available popula-

tion prevalence of disease. In case of multiple prevalence informa-

tion available, we chose the maximum prevalence for the purpose

of the study.

OrphaNet Conditions
We used the OrphaNet v.1.2.4 for this analysis. We selected

OrphaNet conditions that had at least one associated ClinVar

variant and had a defined mode of inheritance and population

prevalence information available (i.e., prevalence type of ‘‘Point

prevalence,’’ ‘‘Lifetime prevalence,’’ and ‘‘Prevalence at birth’’).

Only the conditions that had the following mode of inheritances

were considered: autosomal dominant, autosomal recessive,

X-linked recessive, or X-linked dominant. In case of multiple pop-

ulation prevalence information available, we chose the maximum

prevalence.

ClinVar Variants
We used the newly available ClinVar VCF_2.0 file (version:

clinvar_20170905.vcf.gz; GRCh38 reference) to obtain the dis-

ease-associated variants including single-nucleotide variant and

indels. We filtered out variants that were considered ‘‘included’’

variants; i.e., variants that were interpreted as part of a set of

variants such as a haplotype, and somatic variants. Following

the ACMG guidelines for clinical interpretation, we removed

variants with greater than 5% allele frequency in any ethnic pop-

ulations except in Ashkenazi Jewish population due to founder

effect. For variant allele frequency, we used both our database

and the Genome Aggregation Database (gnomAD; genome and

exome datasets).14 For gnomAD datasets, we filtered out variants

without PASS calls.

We divided variants deposited in ClinVar using ClinVar/

ClinGen’s ranking system4 and its definition of variant classifica-

tion into four sets. Set 1 included pathogenic and likely patho-

genic (P/LP) variants with ClinVar star 2þ (i.e., multiple submitters

with assertion criteria, expert panel or practice guideline).

Set 2 included P/LP variants with ClinVar star 1 (i.e., one submitter

with assertion criteria). Set 3 included P/LP variants with ClinVar

star 0 (i.e., submitter without assertion criteria). Set 4 included

variants with conflicting clinical significance with assertion

criteria provided. We used clinical significance values from

CLNSIG to group ‘‘Pathogenic,’’ ‘‘Likely pathogenic,’’ and ‘‘Patho-

genic/Likely pathogenic’’ as P/LP variants and to select set 4

variants with ‘‘Conflicting interpretations of pathogenicity.’’ For

categorizing variants with ClinVar star 0 to 4, we used values in

CLNREVSTAT. Values ‘‘criteria_provided,_multiple_submitters,_

no_conflicts,’’ ‘‘reviewed_by_expert_panel,’’ or ‘‘practice_

guideline’’ were grouped as star 2þ, ‘‘criteria_provided,_single_

submitter’’ as star 1, and ‘‘no_assertion_criteria_provided’’ as

star 0. Each of the sets of variants was used separately to perform

the disease prevalence analysis for ACMG-59 and OrphaNet

conditions.

Disease-Specific Minor Allele Frequency Threshold
To identify and remove potentially benign variants from the sets

above, we applied disease-specific minor allele frequency (dMAF)

threshold per condition. We defined the dMAF threshold as

follows. (1) For autosomal/X-linked-dominant conditions,

assuming there is one highly penetrant variant causing 100% of
2018



the disease cases, then the frequency of heterozygous should not

be greater than the disease prevalence. Thus, the AF for the variant

should not exceed 1/2*(disease prevalence). (2) For autosomal/

X-linked-recessive conditions, assuming there is one highly pene-

trant variant causing 100%of the disease cases, then the frequency

of homozygous recessive should not be greater than the disease

prevalence. Thus, the AF for the variant should not exceed the

square root of the disease prevalence.

To account for penetrance, these formulas can be generalized as

follows. (1) For dominant conditions, dMAF threshold ¼ 1/2*(dis-

ease prevalence)*(1/penetrance). (2) For recessive conditions,

dMAF threshold ¼ sqrt(disease prevalence*(1/penetrance)).

However, for the study, since one of our goals is to highlight

conditions with inflated genetic risk compared to disease popula-

tion prevalence, we use a more stringent threshold assuming

100% penetrance. To avoid by chance occurrences, we applied

the threshold to variants observed in more than one individual

in the study.
Change in ClinVar Variant Classification
To investigate how ClinVar variant classification changed over

time, we compared September 2017 (the version used in our

analysis) to the May 2016 version. For this, we used

ClinVar XML files (ClinVarFullRelease_2017-09.xml.gz and

ClinVarFullRelease_2016-05.xml.gz) instead of VCF_2.0 version,

which was available only for the September 2017 version. We

observed an artifact in the XML file where ClinVar’s clinical

significance for some records (‘‘RCV’’) was mislabeled ‘‘conflicting

interpretations of pathogenicity’’ (e.g., RCV000036715.4). To

avoid this, using ClinVar’s guidelines, we aggregate clinical signif-

icance from all records per variant by extracting each submitter’s

clinical significance.

We selected variants that were common between the two

versions and that had clinical significance terms recommended

by ACMG (i.e., pathogenic, likely pathogenic, benign, likely

benign, and VUS). We grouped together variants that had a clin-

ical significance of pathogenic and/or likely pathogenic as P/LP.

Similarly, we grouped together variants with clinical significance

of benign and/or likely benign as B/LB.
Results

For genetic screening, we used disease-associated variants

deposited in ClinVar.4 We divided the variants into four

sets based on ClinGen’s ranking system using clinical

significance and review stars (see Material and Methods

for more details). Set 1 included 9,638 pathogenic and

likely pathogenic (P/LP) variants with ClinVar star 2þ
(i.e., multiple submitters with assertion criteria,

expert panel, or practice guideline). Set 2 included

26,873 P/LP variants with ClinVar star 1 (i.e., one sub-

mitter with assertion criteria). Set 3 included

18,978 P/LP variants with ClinVar star 0 (i.e., submitter

without assertion criteria). Set 4 included 11,529 variants

with conflicting clinical significance. In total, our study

would consider 67,018 variants described in ClinVar

(Table S1).

We performed genetic screening of 10,495 unrelated

individuals, whose whole genomes were sequenced with
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a mean coverage of 303. Below we present the analyses

for ACMG-59 and for OrphaNet genes and conditions.

ACMG-59

Twenty-six sets of medical conditions and 59 genes are rep-

resented in ACMG-59. There are 16,781 ClinVar variants

associated with the ACMG-59 genes (nset-1 ¼ 6,415; nset-2

¼ 5,860; nset-3 ¼ 1,683; and nset-4 ¼ 2,823). All of the 26

sets of medical conditions had at least 1 variant in set 1,

which is the most reliable and agreed-upon classified

variant set according to the ClinGen/ClinVar ranking.

In the study population, we observed 22,454 variants

with allele frequency less than 5% in the coding regions

of the 59 ACMG genes, including 7,162 missense and

245 loss-of-function (LoF) variants. Of these, 1,796 vari-

ants matched ClinVar records: nset-1 ¼ 139, nset-2 ¼ 107,

nset-3 ¼ 17, and nset-4 ¼ 1,533. Thus, in the present study,

we observed 10.7% of the 16,781 ClinVar variants associ-

ated with ACMG-59. Screening for the P/LP variants from

set 1, set 2, and set 3, we observed that 2.6% of the individ-

uals would be predicted at risk for disease (herein referred

to as ‘‘genetic risk’’) for 16 of the 26 ACMG-59 conditions,

and 4.9% of the individuals were carriers for 17 of the 26

ACMG-59 conditions. This is within the estimated range

(1.5%–6.5%) of screened individuals that would have an

incidental finding for the ACMG-56.20 Three individuals

(0.03%) in the study were at genetic risk for two ACMG-

59 conditions.

We wanted to investigate whether the variant ranking

(here, broken down by variant sets) is indicative of misclas-

sified variants. Thus, using variants from each set sepa-

rately, we compared the observed genetic risk to the

reported population prevalence for the conditions

(Figure 1A). We would expect, by using subsets of variants,

that the observed genetic risk would be lower-bound if the

variants were truly pathogenic and with high penetrance.

We observed inflated (heuristically defined as more than

10-fold increase; see Material and Methods) genetic risk

for several conditions using variants from set 1, set 2,

and set 3. This may indicate that some of the variants

have either low penetrance or inaccurate pathogenicity

assignment. As we sequentially added ranked sets of vari-

ants to calculate genetic risk, the fold change of observed

genetic risk compared to population prevalence gradually

increases (Figure 1B). This suggests that with the addition

of more variants with lower ranks, more misclassified var-

iants and/or variants with low penetrance accumulate

and contribute to the inflation.

We found three conditions (11.5% of the 26 ACMG-59

conditions) with more than 10-fold increase (i.e., inflated)

when using P/LP variants from set 1, set 2, and set 3 (Table

S2). These conditions included malignant hyperthermia

susceptibility (MIM: 145600), multiple endocrine

neoplasia type 1 (MIM: 131100), and hereditary paragan-

glioma-pheochromocytoma syndrome (MIM: 168000

[PGL1], 601650 [PGL2], 605373 [PGL3], 115310 [PGL4]).

All three conditions were also inflated using only the
rican Journal of Human Genetics 102, 609–619, April 5, 2018 611



Figure 1. Genetic Risk in ACMG-59 Conditions
Fold-change of observed genetic risk over expected population prevalence using ClinVar variant sets for the ACMG-59 conditions.
Each point represents a condition; each condition may be represented in more than one set. The navy blue line at a fold-change of
10 (i.e., inflation) indicates a theoretical penetrance of 10%. Observations above this line are highly suggestive of misclassified variants.
The boxplot shows median (horizontal line in the box), first and third quartile (lower and upper hinges of the box, respectively). The
upper whisker extends from the hinge to the largest value no further than 1.5 * inter-quartile range (IQR) from the hinge. The lower
whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge.
(A) Fold-change was calculated using variants per variant set: set 1 consists of variants with 2 or more ClinVar review stars (i.e., two or
more submitters with assertion criteria, expert panel, and practice guideline); set 2 consists of variants with 1 star (i.e., one submitter
with assertion criteria); set 3 consists of variants with 0 star (i.e., submitter with no assertion criteria submitted in ClinVar); set 4 consists
of variants with conflicting interpretations of pathogenicity.
(B) Fold-change was calculated by using variants cumulatively from each set; i.e., set 2 includes set 1 variants, set 3 includes set 1 and
2 variants, set 4 includes all variants.
(C) Fold-change was re-calculated after variants were filtered for disease-specific minor allele frequency thresholds.
variants in set 1 (i.e., a concordant variant interpretation

by two or more submitters with assertion criteria)

(Figure 1A). Below we discuss several of the conditions.

Variants with conflicting interpretations from set 4 have

an observed genetic risk that inflates massively (Figure 1A).

24 of the 26 (92.3%) ACMG-59 conditions were inflated.

This is a strong indication of misclassified variants in the

set of conflicting interpretation, in particular as inflation

goes far beyond what could be assumed to reflect low pene-

trance. It has been suggested that ClinVar’s mis-interpreta-

tion of some OMIM entries as ‘‘pathogenic’’ might be a

source of conflict in set 4. However, we observed that

only 4% of the set 4 variants have OMIM as a submitter,

i.e., a majority of the conflict comes frommultiple submit-

ters with different interpretations of pathogenicity. There

may be a few exceptional variants within the set that

may be pathogenic; however, without supporting data

they should be removed from consideration.

A recommended criterion to identify benign variants

beyond ACMG-AMP’s criteria of greater than 5% allele fre-

quency (AF) threshold is to develop disease-specific minor

allele frequency (herein referred to as dMAF) thresholds.3

Several such dMAF methods have been proposed.21–23

We compare our approach with a recent AF filtering frame-

work by Whiffin et al.21 The framework uses disease prev-

alence, penetrance, inheritance pattern, and maximum

allelic contribution. The latter is ameasure of allelic hetero-

geneity that is derived from the most common causative

variant known in the literature for the specific disease.
612 The American Journal of Human Genetics 102, 609–619, April 5,
The variant frequency in disease cases is often derived

from small sample size and thus is susceptible to biased

estimation (e.g., frequency for most common causative

variant in PKP2 is estimated from only 361 cases). In addi-

tion, for most diseases, neither the allelic heterogeneity

nor maximum genetic contribution is well characterized.

To compare the methods, we used diseases reported in

Table 1 in Whiffin et al.,21 which the authors used to test

their framework (referred here as ‘‘W-framework’’). These

included hypertrophic cardiomyopathy/dilated cardiomy-

opathy, arrhythmogenic right ventricular cardiomyopathy

(ARVC), and Romano-Ward long QT syndromes types 1,

2, and 3, Brugada Syndrome (LQTS/Brugada). Using the

framework, for each of the diseases, we predicted

maximum allelic contribution (95%CI); however, tomain-

tain our conservative approach, we kept our penetrance at

100% unlike the assumed 50% penetrance used in the

W-framework.

The W-framework flagged all the variants that our dMAF

approach flags as potentially false positive variants. In

addition, the W-framework flagged 217 variants including

15 variants from set 1 (‘‘multiple submitters’’), 35 from

set 2, 4 from set 3, and 164 from set 4. One of the set 1

variants was rs373746463 in MYBPC3 associated with

hypertrophic cardiomyopathy/dilated cardiomyopathy.

The predicted maximum allelic contribution for gnomAD

Exome was 2; however, 4 were observed in gnomAD

Exome. Due to the higher observed frequency than pre-

dicted, the W-framework filters out this variant, indicated
2018



it to be a benign variant. However, there is a strong sugges-

tion for the variant rs373746463 to be P/LP and is inter-

preted as such by 7 different submitters in ClinVar. We

observed similar level of pathogenic confidence (multiple

submitters) for the other 14 variants. These included

rs267607554, rs794728583, rs397508118, rs12720458,

rs397508097, rs199472815, rs397516005, rs757532106,

rs137854604, rs199473284, rs199473283, rs199473220,

rs199473097, and rs139794067. This suggests that the

Whiffin et al.21 framework may be prone to removing

potentially pathogenic variants. Thus, for the rest of the

analysis, we used our dMAF method.

After filtering out variants using dMAF, we observed an

overall decrease in inflation, especially using set 4 variants

(Figure 1C). The inflation dropped from 24 conditions to

15 conditions (57.7%), thereby confirming that a large

proportion of the set 4 variants are benign. However, the

genetic risks of two conditions (hereditary paragan-

glioma-pheochromocytoma syndrome and malignant

hyperthermia susceptibility) showed inflation using P/LP

variants (Table S2). Individually, variants for these disor-

ders are rare; however, collectively, they add up to show

an increase in the observed genetic risk compared to the

estimated population prevalence. These conditions with

inflated risks are discussed in detail below, and as a model

case we also describe a well-studied condition: hereditary

breast and ovarian cancer (MIM: 604370, 612555).

To further inquire the source of inflation, we divided the

sets into sub-categories to distinguish likely pathogenic

(LP; defined as greater than 90% certainty of variant being

disease causing5) from pathogenic (P) variants. This de-

convolutes two concepts: (1) confidence in assertion (via

sets 1–4) and (2) likelihood of pathogenicity (P versus

LP). We calculated inflation for each of the sets as above.

We did not observe any indication of LP sets contributing

more to inflation compared to P sets (Figures S1A and S1B).

Overall, of the 1,796 ClinVar variants from all sets (n ¼
263 in sets 1, 2, 3) observed in 10,495 individuals, using

the dMAF filter, we removed 882 (49.1%) variants from

all sets, most of which came from set 4 as expected (n ¼
870, 56.8%), while only 12 variants (4.6%) from sets 1, 2,

and 3. Of the 26 ACMG conditions, the genetic risks for

three conditions were inflated before the dMAF filter (sets

1, 2, 3), and for two conditions genetic risks were still in-

flated after the filter. For the critical sets (sets 1, 2, 3) only

few variants appear responsible for the inflation.

Hereditary Breast and Ovarian Cancer (HBOC)

To test that the disease estimates for well-studied condi-

tions are as expected, we studied the frequency of individ-

uals at genetic risk for hereditary breast and ovarian cancer

(HBOC). HBOC is estimated to have a disease prevalence of

0.2%–0.3% in the general population.24 Variant classifica-

tion for BRCA1/2 (MIM: 113705, 600185) showed high

concordance across seven established clinical testing

laboratories.25 Using P/LP variants, we observed 47 indi-

viduals with 39 variants (nset-1 ¼ 38, nset-3 ¼ 1) to be at
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genetic risk for HBOC (0.4% of the individuals); i.e., a

frequency close to expected. The observed-over-expected

fold change in genetic risk of less than 2% is mainly

attributed to HBOC being one of the most well-studied

conditions for germline mutations. An expert panel in

ClinVar, known as ENIGMA (Evidence-based Network for

the Interpretation of Germline Mutant Alleles), has

submitted more than 6,000 variant interpretations for

BRCA1 and BRCA2. The expert panel comprises of interna-

tional investigators focused on determining the clinical

significance of sequence variants in breast cancer genes.

This showcases the necessity to consolidate efforts around

the world for correct annotation of variants.
Hereditary Pheochromocytoma-Paraganglioma

This is a rare condition characterized by growth of benign

tumors in paraganglia and with an inheritance pattern of

autosomal dominant. We observed five individuals in

the study carrying five different variants (nset-1 ¼ 2,

nset-2 ¼ 3) in the disease-associated SDHB (MIM: 185470)

and SDHD (MIM: 602690) genes (observed genetic risk of

48 in 100,000 individuals). The population disease preva-

lence is not precisely known but the rate of incidence is

approximately 0.3 in 100,000 individuals (Kirmani and

Young in GeneReviews; see Web Resources). Disease pene-

trance for both the genes has the highest score (>40%

chance) and clinical severity of 2 (i.e., reasonable possibil-

ity of death or major morbidity) according to ClinGen

guidelines for actionability assessment for ACMG-59.6

According to Benn et al.,27 by the age of 40 years the

penetrance for SDHD is 68%. Two variants (rs786202100,

rs80338844) from set 1 had information available on its

pathogenic effect on paraganglioma syndrome. However,

the three variants from set 2 lacked sufficient information

in ClinVar to determine pathogenicity. Reporting such

variants that are not well recognized and do not have

enough information available to clarify the association

could lead to false reporting.
Malignant Hyperthermia Susceptibility

This is a disorder of skeletal muscle calcium regulation and

is inherited in an autosomal-dominant manner. This disor-

der is triggered by reactions to anesthetics and thus the

exact population prevalence is unknown. However, preva-

lence in individuals undergoing surgery in a New York

hospital was estimated to be 1 in 100,000 for adults and

3 in 100,000 in children (Rosenberg et al. in GeneReviews;

see Web Resources). Incidence range is estimated much

higher to be 1 in 30,000 to 50,000 uses of anesthetics

(Rosenberg et al. in GeneReviews; see Web Resources).

Using P/LP variants in the two associated genes, CACNA1S

(MIM: 114208) and RYR1 (MIM: 180901), from set 1, set 2,

and set 3 (after applying dMAF threshold), the observed

genetic risk was inflated to 133 in 100,000 individuals.

A total of 12 P/LP variants in only RYR1 were observed in

14 individuals.
rican Journal of Human Genetics 102, 609–619, April 5, 2018 613



Figure 2. Genetic Risk in OrphaNet Conditions
Fold-change of observed genetic risk over expected population prevalence using variant sets from ClinVar for the OrphaNet conditions.
Each point represents a condition; each condition may be represented in more than one set. The navy blue line at a fold-change of 10
(i.e., inflation) indicates a theoretical penetrance of 10%. Observations above this line are highly suggestive of misclassified variants. The
boxplot shows median (horizontal line in the box), first and third quartile (lower and upper hinges of the box, respectively). The upper
whisker extends from the hinge to the largest value no further than 1.5 * inter-quartile range (IQR) from the hinge. The lower whisker
extends from the hinge to the smallest value at most 1.5 * IQR of the hinge.
(A) Fold-change was calculated using variants per variant set: set 1 consists of variants with 2 or more ClinVar review stars (i.e., two or
more submitters with assertion criteria, expert panel, and practice guideline); set 2 consists of variants with 1 star (i.e., one submitter
with assertion criteria); set 3 consists of variants with 0 star (i.e., submitter with no assertion criteria submitted in ClinVar); set 4 consists
of variants with conflicting interpretations of pathogenicity.
(B) Fold-change was calculated by using variants cumulatively from each set; i.e., set 2 includes set 1 variants, set 3 includes set 1 and
2 variants, set 4 includes all variants.
(C) Fold-change was re-calculated after variants were filtered for disease-specific minor allele frequency thresholds.
RYR1 is also related to several distinct myopathies,

including central core disease (MIM: 117000), Minicore

myopathy with external ophthalmoplegia (MIM:

255320), King-Denborough syndrome (MIM: 145600),

and neuromuscular disease (MIM: 117000) (Rosenberg

et al. in GeneReviews; see Web Resources). Some of the

myopathies are inherited in an autosomal-dominant

manner and some are inherited in autosomal-recessive

manner.29 The confluence of several disorders, two modes

of inheritance, and a disorder triggered by an exogenous

exposure (anesthetics) leads to great imprecision in esti-

mates of population prevalence and genetic risk. Studies

such as Gonsalves et al.30 andMerrit et al.31 have identified

misclassified and functionally validated pathogenic vari-

ants in RYRI and CACNA1S. However, there is a need for

larger studies to estimate the disease prevalence and

further assess pathogenicity of known and novel variants

for malignant hyperthermia susceptibility.

OrphaNet Conditions

Next, we performed a similar prevalence analysis on

OrphaNet conditions with at least one variant in any of

the four sets, a stated mode of inheritance, and disease

prevalence information. There are 12,997 ClinVar variants

with allele frequency < 5% (nset-1 ¼ 2,778, nset-2 ¼ 4,454,

nset-3 ¼ 3,249, and nset-4 ¼ 2,516) in 463 genes associated

with 265 OrphaNet conditions.

In the study population, we observed 119,236 variants

with allele frequency < 5% in the coding regions of the
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463 genes, including 40,569 missense and 2,460 LoF vari-

ants. Overall, 2,830 were ClinVar variants associated

with the OrphaNet conditions in the study population:

nset-1 ¼ 448, nset-2 ¼ 391, nset-3 ¼ 199, and nset-4 ¼ 1,792.

Thus, in the present study, we observed 21.8% of the

12,997 ClinVar variants associated with OrphaNet condi-

tions. Screening for P/LP variants from set 1, set 2, and

set 3, we observed 4.8% of the individuals with genetic

risk for at least one of the 45 OrphaNet conditions, and

48.3% of the individuals were carriers for at least one of

168 OrphaNet conditions. Lazarin et al. identified 24% in-

dividuals of a large, ethnically diverse population as car-

riers for 108 Mendelian disorders.32 While the present

study is based on whole-genome sequencing and not

limited to predefined sets of variants and disorders, the

massive increase in carriers may alert of a significant

number of misclassified variants.

As with the ACMG-59 conditions, we compared the

observed genetic risk to the reported population preva-

lence for the OrphaNet conditions separately for each set

(Figure 2A). We observed four conditions (Birt-Hogg-

Dubé syndrome [MIM: 135150], central core disease

[MIM: 117000], multiple endocrine neoplasia type 2

[MIM: 171400, 162300], and hereditary chronic pancrea-

titis [MIM: 167800]) with more than 10-fold higher

observed genetic risk compared to the expected population

prevalence using variants from set 1. For hereditary

chronic pancreatitis (HCP), the study population had 17

set 1 variants from CFTR (MIM: 602421) which is known
2018



to be associated with autosomal-dominant HCP and auto-

somal-recessive cystic fibrosis (MIM: 219700). Themode of

inheritance for CFTR and its associated condition HCP is

incorrectly assigned as autosomal dominant in OrphaNet.

Similarly, central core disease, usually inherited in an auto-

somal-dominant manner, can also be inherited in an auto-

somal-recessive manner. Such discrepancies can cause the

observed genetic risk to be inflated. Using set 2 and set 3

variants, we observed 7 conditions with inflated genetic

risk. Using P/LP variants from the union of set 1, set 2,

and set 3, in total, there were 9 conditions with inflated

observed genetic risk (3.4% of the 256 conditions;

Table S3). As observed with the ACMG-59 conditions, ge-

netic risk using set 4 variants inflated massively for 82

OrphaNet conditions; strongly suggesting the inclusion

of misclassified variants (30.9% of the 256 conditions;

Figure 2B).

We used dMAF threshold to filter out additional poten-

tially benign and low penetrant variants from the variant

sets (see Material and Methods). We observed an overall

decrease in inflation (Figure 2C). Applying the filter, we

not only removed potentially benign variants but also

filtered out variants due to inaccurate disease information,

including imprecise prevalence estimations. For example,

a common pathogenic variant, rs6025 (also known as

R506Q; MAF ¼ 0.02), in F5 (MIM: 612309) is well known

for its association with a common clotting disorder called

factor V Leiden thrombophilia (MIM: 188055), where the

blood clots more easily than normal. Other mutations in

this gene are known to cause a different, rare condition

called factor V deficiency (MIM: 227400) (prevalence of 1

in 1,000,000),33 where the blood does not clot easily. In

ClinVar, the rs6025 variant is incorrectly associated with

factor V deficiency due to the gene’s association with

both conditions. The dMAF filters out such cases of true

pathogenic variants but where they are wrongly associated

with another condition. Another example is the successful

removal of variants in CFTR that were associated with HCP.

Even though the dMAF filter removed most of the noise,

there were four conditions with autosomal-dominant in-

heritance that had inflated genetic risk using P/LP variants

collectively from set 1, set 2, and set 3 (1.5% of the

256 conditions; Table S3). Of the four conditions, three

were the same as the inflated conditions observed using

the set 1 variants, namely Birt-Hogg-Dubé syndrome, cen-

tral core disease, and hereditary chronic pancreatitis. The

fourth condition, pulmonary arterial hypertension

(MIM: 178600), had a fold-change of 11.

As with ACMG-59 analysis, we sub-divided the sets to

include only LP variants to inquire whether LP variants

contributed to inflation more than P variants. We calcu-

lated inflation for each of the sets as above. We did not

observe any indication of LP sets contributing more to

inflation compared to P sets (Figures S2A and S2B).

Overall, of the 2,830 ClinVar variants from all sets (1,038

in sets 1, 2, 3) observed in 10,495 individuals, we removed

1,064 (38%) variants from all sets (41, 4% in sets 1, 2, 3)
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using the dMAF filter. Of the 265 OrphaNet conditions,

the genetic risks for 24 conditions were inflated before

the dMAF filter (sets 1, 2, 3) and for four conditions were

still inflated after the filter. As was the case for ACMG-59

conditions, only a few variants appear responsible for the

inflation in sets 1, 2, 3.

Replication in gnomAD

To validate our findings, we looked for the inflation

patterns in ACMG-59 conditions in large publically avail-

able datasets, gnomAD exomes (n ¼ 123,136), and ge-

nomes (n ¼ 15,496).14 We observed 3,476 ClinVar

variants from all sets (nset-1 ¼ 743, nset-2 ¼ 480, nset-3 ¼ 67,

and nset-4 ¼ 2,186) in the ACMG-59 genes that had at

least 1 sample count in gnomAD. As above, we filtered

variants (sets 1, 2, 3) using dMAF filter. We observed three

conditions inflated (11.5% of the 26 ACMG-59 conditions;

Figures S3A and S3B), two of which were also inflated using

this study population. The conditions included hereditary

paraganglioma-pheochromocytoma syndrome, malignant

hyperthermia susceptibility, and PTEN hamartoma tumor

syndrome (MIM: 153480).

In OrphaNet, we observed a similar inflation pattern

using gnomAD exomes and genomes data. We

observed 5,026 ClinVar variants from all sets (nset-1 ¼
1,056, nset-2 ¼ 1,167, nset-3 ¼ 584, and nset-4 ¼ 2,219) in

the OrphaNet genes that had at least 1 sample count in

gnomAD. As above, we filtered variants (sets 1, 2, 3) using

dMAF filter and looked for inflation. We observed 17 con-

ditions inflated (6.6% of the 256 OrphaNet conditions;

Figures S4A and S4B), which included all four conditions

that were observed to be inflated using this study’s

population.

Changes of Classification of ClinVar Variants over Time

The classification of variants in ClinVar evolves over time

as reflect of better understanding of pathogenicity, but

also as a result of more population representative fre-

quency data emerging through large sequencing efforts.

Compared to the May 2016 version of ClinVar, the

September 2017 version added 179,432 new variants (see

Material and Methods). Of these, 23,712 were classified

as pathogenic/likely pathogenic (P/LP), 60,888 were classi-

fied as benign/likely benign (B/LB), and the rest were

classified as a variant of uncertain significance (VUS), of

conflicting pathogenicity, or other non-ACMG terms of

significance.

We observed discrepancy in ‘‘review status’’ for a subset

of variants with conflicting pathogenicity status in

ClinVar’s XML file that reports at a record-level (‘‘RCV’’).

For example, record RCV000036715.4 (rs376225470) has

two submitters with clinical significance of ‘‘benign’’ and

‘‘likely benign’’ but was categorized as ‘‘conflicting inter-

pretations of pathogenicity,’’ which according to ClinVar

guidelines should be ‘‘Benign/Likely benign.’’ To overcome

the issue, we used submitter level clinical significance for

all records to aggregate clinical significance for each
rican Journal of Human Genetics 102, 609–619, April 5, 2018 615



Figure 3. Change in ClinVar Variant Clas-
sification from May 2016 to September
2017
In the study period, 7,615 ClinVar variants
changed classification. Predominantly,
variants were reclassified to ‘‘conflicting
interpretation’’ (n ¼ 5,867; 77%). Only
158 variants (2%) were reclassified as path-
ogenic or likely pathogenic. Thickness of
the arrows corresponds to the number of
variants reclassified.
variant (see Material and Methods). The newly released

ClinVar VCF file (available from September 2017) that re-

ports at variant level by collapsing all records for the

variant did not have the discrepancy. Thus, the discrep-

ancy did not affect the above inflation analysis, which

was performed using the VCF file.

To better understand the evolution of the assignment of

pathogenicity classification to variants, we identified the

directionality of the changes, i.e., whether a P/LP variant

was reclassified as VUS, B/LB, or of conflicting pathoge-

nicity. Between the two ClinVar versions, we observed

that a majority of the variants (n ¼ 93,101 of 100,716;

92.4%) did not change its clinical significance classifica-

tion over the period of 16 months. For the 7,615 (7.6%)

variants that were re-classified, we noted the directions of

change (Figure 3).

Overall, most of the re-classification in ClinVar feeds

into ‘‘conflicting interpretation,’’ B/LB and VUS, and

away from P/LP. The same period observed the reclassifica-

tion of a significant number of P/PL variants to VUS or

‘‘conflicting interpretation.’’ The trend of re-classification

is expected as more knowledge is acquired and shared.

For these variants, there was an increase in the number

of submitters in the newer version of ClinVar (Figure S5).
Discussion

It is known that the current knowledge on pathological

variants is far from complete.34 There have been several

efforts to identify misclassification of variants via data

sharing (e.g., ClinVar/ClinGen)35 and genetic analysis of

large populations. Some examples of the studies are identi-

fication of false positive interpretation for cardiomyopathy

using 7,855 cases;36 re-evaluating previously identified

casual variants for hypertrophic cardiomyopathy;37 and

observational study of P/LP variants implicated in Mende-

lian pediatric disorders38 and epilepsy39 using ExAC.14

Such large genomic screening studies have assessed fre-

quencies of variants in the general population2,40 and

used variant selection algorithms to identify misclassified
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variants that are relatively common.

Here, we identify not only conditions

with relatively common variants but

also conditions that have inflated ge-
netic risk (i.e., observed genetic risk is higher than popula-

tion prevalence) when several potentially misclassified rare

variants are considered jointly. One of the limitations of

accurate estimations of inflation is lack of validated preva-

lence for all diseases. For example, we showed inflation

(fold-change ¼ 133) in malignant hyperthermia suscepti-

bility, a disorder triggered by reactions to anesthetics. How-

ever, the available estimated population prevalencemay be

underestimated as it is measured only in individuals under-

going surgery. By design, we used curated public resources

(OrphaNet, GeneReviews, and ClinGen) for disease preva-

lence information. This way, improvement in estimations

can be globally tracked and can be used by other re-

searchers. To address imprecision and reported biases of

disease prevalence, we applied extremely conservative

criteria to identify inflation at disease level as discussed

below.

The inflation analysis uses three main concepts: patho-

genicity of the variants, variant penetrance, and disease

prevalence. Given limited understanding of the inherently

interconnectedness between the three concepts, we used

an extremely conservative approach to identify inflation

of genetic risk for multiple diseases in the following

ways. (1) At variant level, we used a stringent disease-spe-

cific minor allele frequency threshold by assuming 100%

penetrance. In addition to false positive variants, this

stringent approach may remove common potentially

pathogenic variants with lower penetrance and thus un-

derestimate the observed at-risk rate used in calculating

inflation. (2) At disease level, we defined inflation only

when the observed rate is higher than 10-fold of the re-

ported prevalence. This enabled us to highlight only the

diseases with a much higher rate of observed at-risk rate

than disease prevalence; thereby allowing for inaccuracies

in disease prevalence estimations. (3) At disease level,

when there were two ormore reported prevalence informa-

tion available, to err on the side of caution, we chose the

maximum prevalence. Using the approach, the overall

inflation was observed in up to 11.5% of disorders

using pathogenic/likely pathogenic variant sets (only us-

ing sets 1 to 3; not set 4 as the analysis strongly indicates



misclassified variants in this ‘‘conflicting pathogenicity’’

set) and up to 92.3% of disorders using the variant set

with conflicting interpretations (set 4). This improved to

7.7% and 57.7%, respectively, after filtering for disease-

specific minor allele frequency (dMAF). It is possible that,

despite the conservative approach, inflation may just alert

about diseases with incomplete penetrance, and patho-

genic variants that are not clinically manifest due to a

number of modifiers.

This work revisits a well-understood relationship be-

tween minor allele frequency and disease prevalence. The

pattern is one of an excess of individuals with genetic

risk relative to the disease prevalence in the population.

The inflation increases as the level of support for the

pathogenicity of the genetic variants decreases in ClinVar.

This means that a number of rare pathogenic variants have

low penetrance or that those variants have an incorrect

interpretation of pathogenicity. The present analyses

strongly suggest that ClinVar includes significant amounts

of misclassified variants and supports the important role of

ClinVar to increase transparency, contrast claims, and

foster validation across submitters. Overall, our work sup-

ports the observations of Yang et al.35 that show that

discordance is higher in non-clinical and older submis-

sions and low-penetrance variants. Yang et al. also noted

that the concordance differs among clinical areas, with

highest consensus rate in hereditary cancer genes

and lowest in genes related to cardiology and metabolic

disorders.35

The ACMG-AMP standards and guidelines for variant in-

terpretations recommends that variants with more than

5% allele frequency should be classified as benign variants

(rule BA1).5 To lower this relatively lenient threshold, a

more recent recommendation supports the use of dMAF

thresholds based on disease prevalence.3 Application of

the dMAF threshold does correct inflation; few variants

contribute to inflation for many of the conditions. How-

ever, for some disorders inflation may be hard to pinpoint

to low-frequency alleles, and rare variants needed to be

considered jointly. This problem is compounded by the

very large number of rare variants that are being identified

though genome and exome sequencing.14 Here, rare varia-

tion risks are being misconstrued as indicating functional

relevance.

The present study also adds to the discussion on the

importance of specifying review criteria with the variant

submission to ClinVar, and improving the applicability

of standardized criteria, such as those of the ACMG-AMP

guidelines.3,41 ACMG-59 genes are now being carefully

annotated, and we see limited differences in inflation

across star 0–4 levels. In contrast, OrphaNet conditions

exhibit inflation as the star classification moves from

highest to lowest confidence. We include examples that

illustrate some of the sources of misclassification, error,

and other issues in the reporting of pathogenic variants.

Specifically, we observed cases of rare variants with low

penetrance, incorrect mode of inheritance, conditions
The Ame
with unknown or older estimates of population preva-

lence, and variants that are incorrectly associated with

disease.

We explored another strategy to understand the mecha-

nisms of correction of the data currently deposited in

ClinVar. We compared two versions of ClinVar released

data (May 2016 and September 2017). Changes in classifi-

cation in successive versions of ClinVar favors a general

direction away from pathogenic/likely pathogenic toward

VUS and benign/likely benign. However, the bulk of

reclassified variants are reassigned to the ‘‘conflicting inter-

pretation’’ category. This observation and our analysis of

massive inflation in genetic risk for variants classified as

having conflicting interpretation reinforce the notion

that pathogenicity of these variants is questionable. More

generally, the study supports the aim of reaching a defini-

tive classification for this set of variants to avoid repeated

re-assessment in the clinics.

In addition to classifying a variant as pathogenic or

benign using ACMG-AMP guidelines, there is a need for

a quantitative measure of risk (e.g., penetrance of the

variant).34 Larger genetic studies integrating phenotype

data to estimate variant risks using age/sex-specific inci-

dence are needed. Although the concept of this work is

anchored in the current practice of genetics, it serves to

document the use of current large databases on the general

population to better support the classification of variants.

The observation of excessive numbers of individuals

carrying genetic risk alleles both in well-curated genes

sets (ACMG-59) and in other resources (OrphaNet) pro-

vides a useful benchmark for the improvement of variant

annotation.
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