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PheWAS and Beyond: The Landscape of Associations
with Medical Diagnoses and Clinical Measures
across 38,662 Individuals from Geisinger

Anurag Verma,2,3 Anastasia Lucas,2 Shefali S. Verma,2,3 Yu Zhang,5 Navya Josyula,1 Anqa Khan,6

Dustin N. Hartzel,1 Daniel R. Lavage,1 Joseph Leader,1 Marylyn D. Ritchie,2,3,4

and Sarah A. Pendergrass1,*

Most phenome-wide association studies (PheWASs) to date have used a small to moderate number of SNPs for association with pheno-

typic data. We performed a large-scale single-cohort PheWAS, using electronic health record (EHR)-derived case-control status for 541

diagnoses using International Classification of Disease version 9 (ICD-9) codes and 25 median clinical laboratory measures.

We calculated associations between these diagnoses and traits with �630,000 common frequency SNPs with minor allele frequency

> 0.01 for 38,662 individuals. In this landscape PheWAS, we explored results within diseases and traits, comparing results to those

previously reported in genome-wide association studies (GWASs), as well as previously published PheWASs. We further leveraged the

context of functional impact from protein-coding to regulatory regions, providing a deeper interpretation of these associations. The

comprehensive nature of this PheWAS allows for novel hypothesis generation, the identification of phenotypes for further study for

future phenotypic algorithm development, and identification of cross-phenotype associations.
Introduction

The wealth of information within an electronic health re-

cord (EHR) can be leveraged to improve our understanding

of the genetic architecture of human disease by character-

izing a landscape of genetic associations across many

differentmeasures such as disease diagnosis codes and clin-

ical laboratory tests. Phenome-wide association studies

(PheWASs) have become a common tool for identifying

comprehensive genetic associations between SNPs and a

wide range of phenotypes, with successful implementation

in phenotype data extracted/collected from EHRs, epide-

miological studies, and clinical trials. Much of the past

PheWAS literature has focused on smaller cohorts/datasets

and often with small numbers of genetic variants.1–8 Some

studies obtained larger sample sizes by utilizing combined

datasets from EHRs of different health care providers across

the country.5,9–11 These studies have shown the utility of

PheWASs and identified new hypotheses for genetic associ-

ations and particularly cross-phenotype associations

which can uncover pleiotropy. Integrating EHR data from

different health care providers has been challenging for

EHR-based PheWASs to date, due to the differences in cod-

ing practices and differing populations.

Currently, the Geisinger research program, the MyCode

Community Health Initiative, consists of more than

160,000 consented individuals (Figure S1), tens of thou-

sands of whom have genetic data linked to a single-source

EHR, which presents an opportunity to perform a large-

scale PheWAS. In our study, we utilized data from 50,726
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individuals genotyped at the time of our study (April

2016) to execute a PheWAS using common frequency

SNPs with greater than 1% minor allele frequency

(MAF) and 541 International Code for Diseases version 9

(ICD-9) codes and 25 clinical laboratory measurements.

Clinical laboratory measurements represent aspects of

current health or disease state and are key decision-making

elements for clinical diagnoses. In our previous work, we

have shown that integrating both clinical lab measure-

ments along with diagnosis codes can provide robustness

to the interpretation of genetic association results.12

A PheWAS at this scale, where we computed a total of

343,819,025 associations for the diagnosis codes and

15,888,125 associations for the clinical lab measures, pre-

sented several big data challenges such as computational

burden, high throughput result interpretation, and visual-

ization of the results. In this analysis, we tested more than

300 million associations using SNPs and clinical pheno-

types. The amount of storage and memory required

exceeded the limits of most high-performance computing

(HPC) clusters, even with software techniques to parallel-

ize these association analyses. To execute a PheWAS

at this scale, we used the distributed resources of a

cloud computing platform through DNAnexus (see Web

Resources) that uses Amazon Web Services (AWS). The

scalability of cloud resources not only addresses the

problem of dataset size but also allows for the computation

of analyses at this scale in a reasonable amount of time.We

ran more than 340 million models on 180 machines

with 32 cores each using the ‘‘scatter-gather’’ approach.
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In contrast, if we had run our analyses using a single core

machine, it would have taken 30 years to complete. The

computational processing for all the model calculations

took 3 days (more precisely, a total of 51 hours) for the

entire study.

Further, this study addresses the issue of high-

throughput interpretation of association results. In addi-

tion to the exhaustive associations evaluated in this study,

we have expanded the resources and approaches for inter-

preting the resultant genetic associations. For replicating

known associations, we used the EBI-GWAS13 catalog

and GRASP14,15 to compare our PheWAS associations to

previously reported genetic associations. Also, with the

number of PheWASs published in recent years, we

compared our results to the results of eight recently

published PheWASs.

The majority of associations reported in the GWAS

catalog have focused on interpreting the results of genetic

associations through identification of the nearest gene.

However, the majority of highly significant GWAS associ-

ations are found outside of protein-coding genes.16

Exploring results beyond the nearest gene is imperative

to improve the understanding of the relevance of a given

genotype-phenotype association, even when it is not the

most statistically significant finding. With the availability

of public resources such as Roadmap Epigenomics,17

ENCODE,18 HaploReg,19 and others, we can explore the

non-coding regions of the genome and annotate our

results based on meaningful regulatory information

including promoter, enhancer, and transcription sites,

among others. In this paper, we present an application

of a novel approach for prioritizing genetic association re-

sults using gene expression measures from RNA-seq data

obtained from the Roadmap Epigenome. This method

can be applied to other association studies to prioritize

genetic associations. The annotation of our association re-

sults enabled us to explore beyond protein-coding regions

of the genome and to improve our interpretation for

understanding the potential effects of these genetic varia-

tions on the phenotypes.

For this large-scale single-cohort PheWAS, we have pre-

sented additional ways to expand the understanding of

association findings from PheWASs including the use of

existing expert knowledge. We investigated the landscape

of associations independently across diseases and clinical

lab measures as well as through an integrative approach

to identify shared genetic patterns of associations be-

tween diseases and laboratory measures and to highlight

potential pleiotropy. Further, epigenomics knowledge of

non-coding regions of the genome helped us to refine

the genetic associations, to illustrate the biological

relevance to the associated disease. With these results,

we provide a landscape of associations across diseases

and quantitative traits, a series of potentially novel

associations, and cross-phenotype associations, all within

the context of protein-coding and regulatory impact of

genetic variants.
The Ame
Subjects and Methods

Geisinger, DiscovEHR, and MyCode Community Health

Initiative
In this study, we used data from the DiscovEHR study, a collabora-

tion betweenGeisinger and RegeneronGenetics Center as a part of

DiscovEHR collaboration. Geisinger is one of the largest health-

care providers in Central Pennsylvania withmore than 2.3 million

individuals in the system (Figure S1). The Geisinger research

biorepository, the MyCode Community Health Initiative, was

launched in 2007 and is a collective resource of genomics data

linked to the de-identified EHR data.20 Geisinger has been collect-

ing EHR data since 1996 with digital information including diag-

noses, laboratory, demographics, and medication use during the

course of care at Geisinger. The Geisinger Institutional Review

Board reviewed the study and declared it to be research with

non-human subjects as all data were de-identified. All MyCode

participants included in the study were consented.

Genotype Data and Quality Control Measures
At the time of this study, a total of 45,899 individuals were geno-

typed using the Illumina HumanOmniExpressExome bead chip

by Regeneron Genetics Center. We applied standard genotype

quality-control (QC) measures to eliminate any systematic errors

that could lead to spurious associations. We filtered out

variants with genotype and sample missingness (<99%) and we

included only the common variants with minor allele frequency

(MAF) > 1%. Further, to account for sample independence, one

sample from each pair of related samples with kinship coefficient

> 0.125 were dropped. The MyCode population was approxi-

mately 97% European American (EA) based on genetically

informed ancestry, and since the sample size of other ancestral

groups within our dataset was extremely limited, we did not

include them in the study. We calculated principal components

on EA samples using EIGENSOFT to further correct for confound-

ing factors due to global ancestry within our genetic associations.

After all the quality assessment, we had 635,525 SNPs in 38,622

unrelated samples available for genetic associations.

Phenotype Data
We collated 541 International Classification of Disease Version 9

(ICD-9) diagnosis codes as binary case/control disease outcomes

and 25 median clinical laboratory measurements as continuous

outcomes from the Geisinger EHR for all the 38,622MyCode partic-

ipants for this study. ICD-9 codes provide records of individuals’

disease diagnoses over the course of their clinic visits. We defined

case and control groups based on the number of clinic visits for

each ICD-9 code per individual. The individuals with at least three

or more instances of a diagnosis code were considered case subjects

and individuals with absence of that code were considered control

subjects. Any individuals with an ICD-9 code that had between one

and two visits were excluded from the association analysis for that

ICD-9 code. Based on an independent PheWAS simulation study

that we conducted,21 we considered only those ICD-9 codes with

a sample size of greater or equal to 200 case or control subjects to

reduce effect estimate inflation in regression models.

The decision-making and quality assessment for the 25 clinical

laboratory measurements were previously published in our other

studies using clinical lab measures for PheWAS.12,22 Briefly, we

used the median values of each lab value for each individual and

we removed any values outside the range of 2.5 standard
rican Journal of Human Genetics 102, 592–608, April 5, 2018 593



deviations. Standard statistical measures for data transformations

were applied after inspecting the lab value distributions. We pro-

vide summary statistics for each lab measure used in the study

in Table S1.
Association Testing
We used PLATO23 to perform association testing in this study. We

performed two independent PheWAS analyses, a separate analysis

for the binary outcomes using logistic regression and 541 ICD-

9-based case/control diagnoses, and linear regression for the 25

median clinical laboratory measurements, with 632,574 genetic

variants. We adjusted all regression models by sex, age, and first

four principal components to account for any confounding bias

due to these variables.

Calculating a total of more than 300 million genetic associa-

tions, even with parallelization of association testing, surpassed

the capacity of standard computational resources such as high-per-

formance clusters to run all of these associations in a reasonable

amount of time. To address these challenges, we used DNAnexus,

a genomic analysis platform built upon Amazon Web Services

(AWS). We used the distributed cluster of computers on the cloud

to reduce the computation time. We built a custom DNAnexus

app for PLATO, using a scatter-process-gather implementation on

the platform to compute regressionmodels in a ‘‘perfectly parallel’’

manner. The scatter-gather approach invokedmultiple AWS virtual

machines to concurrently process the regression models. Once all

calculations were completed, the application merged all results.

We ran more than 340 million models on 180 machines with 32

cores each; it took 30 core years to complete the analysis (i.e., if

we ran this analysis on a single core machine, it would have taken

30 years to complete). We finished all themodel calculations in less

than 3 days (51 hrs) for this entire study.
Statistical Correction
We implemented a custom Bonferroni correction for multiple test

correction to identify ourmost significant results for our phenome-

wide correction p value. The Bonferroni correction can be overly

conservative because of the assumption that all tests are

independent and that all phenotypes are independent, thusnot ac-

counting for the correlation between the genetic variants due to

linkagedisequilibrium (LD) aswell as the correlations betweenphe-

notypes. In this study, we used only genetically informed ancestry-

based EA samples, and to account for correlation between SNPs, we

identified the number of less correlated SNPs through LD pruning

at an r2 threshold of 0.3, which is considered the optimal threshold

for EA samples.24 Using the above threshold with PLINK (see Web

Resources),we founda total of 172,690 independent SNPs.Weused

this to derive our phenome-wide significance threshold, a divided

by the number of independent tests, i.e., 5.36 3 10�10

0:05=½ 172;690 x 541� and 1.15 3 10�8 ½0:05=172;690 x 25� for

ICD-9 codes and clinical lab measures, respectively.

The above LD pruning method accounts for the dependence

between the genetic variants in a more accurate manner than

the more conservative Bonferroni correction. However, it did not

account for any underlying correlation patterns present in pheno-

type data such as correlation between cholesterol measurements

(HDL, LDL, and total cholesterol) and the impact of power on as-

sociations due to sample sizes and case-control numbers. Thus, the

phenome-wide correction threshold is still stringent. Hence, in

addition to exploring results with a stringent Bonferroni correc-

tion, we further expanded our search space to look at amuchwider
594 The American Journal of Human Genetics 102, 592–608, April 5,
landscape of associations by investigating at an exploratory

threshold of 1 3 10�4 to study associations beyond only the

most statistically significant results.
Genomic Annotations
Using various resources including the Ensembl Variant Effect

Predictor (VEP)25 and Roadmap Epigenomics Project, we mapped

genetic associations to these resources of functional genomics to

obtain additional insights for the PheWAS results. In our first

step, we used VEP to annotate the variants in our association

results (p value < 1 3 10�4) with sequence ontology (SO) terms.

Using VEP predictions, we systematically classified our variants

by their biological consequences such as protein-coding (missense,

synonymous, non-synonymous, splice site), non-coding, and reg-

ulatory (UTRs, transcription binding, intergenic variants, among

others) region. We used these classifications to highlight the distri-

bution of variants that are specifically mapping to protein coding,

regulatory, and other non-coding regions of the genome.

In the second stage of mapping our results to functional infor-

mation, we annotated variants in regulatory and non-coding re-

gions defined by VEP to the Roadmap Epigenome. The Roadmap

Epigenomics Project is a tissue-specific epigenomics dataset gener-

ated from 127 human tissues and 12 epigenetic marks such as his-

tonemodifications, H2A.z, and DNase.We used amodel including

20 chromatin states predicted by a tool called the Integrative and

Discriminative Epigenome Annotation System (IDEAS)26 from the

127 epigenomes dataset. IDEAS provides a predicted chromatin

state across 200 base pair windows for each epigenome. To explore

the overall representation of these variants in each chromatin

state, we computed the most probable chromatin state across

the 127 epigenomes. The most probable state for each 200 bp win-

dow was assigned to the state predicted most number of times

across 127 tissues.We overlaid the SNP coordinates with the epige-

nome regions and annotated SNPs with the derivedmost probable

chromatin state.

To understand the influence of the variants in this study on gene

expression, we further extended our annotation approach. The

Roadmap Epigenome Consortium also provides RNA-seq data on

56 epigenomes, and we used these data to evaluate the variance

explained by each predicted chromatin state within gene expres-

sion data. The RNA-seq dataset consists of RPKM (reads per kilo-

base million) values for all the coding and noncoding genes

including exons and introns. We used the same regions as in the

chromatin state prediction by IDEAS, and for each region, we per-

formed regression between the binary measures for each state and

RPKM values for genes within5100 kilobases of each 200 bp win-

dow across 56 epigenomes27 (Figure 1). We use adjusted r-squared

(r2) value from the calculation to infer the correlation between the

chromatin state and expression of nearby genes to obtain a mea-

sure of the contribution of predicted chromatin state to the

expression of the gene. As there can be multiple genes near a re-

gion, and to simplify the annotations, we used only the gene

with highest r2 value for a given genomic region. In this way, we

could identify SNPs that were within regions that are most corre-

lated with changes in gene expression of specific genes.
Fine Mapping PheWAS Haplotype Blocks
Due to the presence of linkage disequilibrium (LD) between the

SNPs in a genome-wide scale study, many SNPs were in haplotype

blocks associated with the same phenotype. We prioritized

associations for SNPs in high LD using functional annotations
2018



Figure 1. Correlation between Chromatin State and Genes via RNA-Seq Data
For a given region such as region 1 shown on chromosome 9 in the figure, we calculated the correlation between the predicted chromatin
state and gene expression using data from 56 tissues provided by the Roadmap EpigenomeConsortium. The size of the regions was 200 bp
in length, the same as used by IDEAS for chromatin state prediction. In this example, there are three genes in vicinity of ‘‘region 1’’
(5100 kb): G1, G2, and G3. Next, we generated a matrix of gene expression measures (RPKM values), represented in the matrix on the
left in the middle of Figure 1. For each gene, we performed regression between the gene expression, log10(RPKM þ 0.001), and the binary
measures of a 20-state chromatinmodel from IDEAS (matrix on the right in themiddle of figure). The output is the adjusted r2 between the
‘‘region1’’ and the three genes.Weused only the genewithhighest r2 value for a givengenomic region,whichwouldbeG2 in this example.
from the above correlation between the chromatin state and gene

expression (Figure 2). First, we generated haplotype blocks using

pairwise LD calculations for all the SNPs with association p value

< 1 3 10�4. For each haplotype block, we then mapped the SNP

coordinates of correlated SNPs to the 200 bp regions of pre-

computed chromatin state and gene-chromatin state correlations.

Thus in a given haplotype block for a phenotype, we prioritized a

single variant as the most biologically relevant SNP when it over-

lapped with a 200 bp region.
Results

Our results are from an EHR-based PheWAS from a single

health care provider using 541 ICD-9 code-based diagnoses

and 25 clinical laboratorymeasurements from 38,622 indi-

viduals, 58% female and 42% male with a mean age of 59

years. We executed two separate PheWASs, one using diag-

nosis codes and other with clinical laboratory measure-

ments, and we investigated associations from each analysis

independently as well as combined.

For the diagnosis code-focused PheWAS, we identified

1,118 associations passing our phenome-wide significance
The Ame
cutoff (p value < 1 3 10�11), with 902 SNPs (0.1% of total

SNPs) and 27 diseases, listed in Table S1. We collapsed our

case/control diagnoses for these results into major disease

concept categories to group association results, and in

Table 1 we present the most significant associations within

each category. We observed that the majority of the top as-

sociations were with the type 1 diabetes diagnosis code

‘‘250.01.’’ The most significant association in our study

was between SNP rs9273363 and ‘‘diabetes mellitus type

1’’ with p value 1.21 3 10�77, consistent with the previ-

ously reported associations of HLA-DQB1 variants with

type 1 diabetes as well as other autoimmune disorders

such as rheumatoid arthritis.28–30 Other significant associa-

tions included ICD-9 code 250.00 ‘‘type 2 diabetes’’ with

SNP rs7903146, ICD-9 code 272.1 ‘‘pure hyperglyceride-

mia’’ with SNP rs964184, and ICD-9 code 702.0 ‘‘actinic

keratosis’’ with SNP rs12203592. In the top associations,

we identified two previously unreported associations

between the SNP rs12207756 and ICD-9 code 696.1

‘‘psoriasis’’ and between SNP rs2760985 and ‘‘rheumatoid

arthritis’’ (RA) (Tables 1 and S2). The variant rs2760985 is

near HLA-DRB1, and there are known GWAS findings with
rican Journal of Human Genetics 102, 592–608, April 5, 2018 595



Figure 2. Fine Mapping of PheWAS Results
We annotated our PheWAS associations withmost probable chromatin state and the correlation of chromatin state with gene expression
data. For each phenotype, we identified a haplotype block of variants with association p values < 1 3 10�4, then we annotated each
variant within the haplotype block to identify the variant based on state with the highest value of r2 to the expression of a given
gene. In this example, SNP RS3 is the variant overlapping region 2, the region that G2 is located within.
the variants mapped to the gene.31,32 However, the variant

identified in our study is not in linkage disequilibrium (LD)

with any known genetic variant associated with RA.

For the clinical lab-measurement PheWAS, our phenome-

wide threshold was 1.153 10�8 (see Subjects and Methods

for more details), and we observed 3,024 associations from

2,109 SNPs (0.3%) with 25 lab measures that were signifi-

cant at that p value cut-off, listed in Table S2. In our top as-

sociations, we had 30 associations with a p value less than

or equal to 3.29 3 10�83. In Table 2, we highlight the top

statistically significant associations for each clinical labora-

tory measure investigated in this study. In our previous

work, we studied these laboratory measures in a smaller

study population and we found that the top results in this

analysis are consistent with our previous findings.12 For

example, we replicated the association between the

UGT1A1 variant rs11568318 and bilirubin levels with

p value ¼ 3.29 3 10�83, and the intergenic variant

rs7903146 associated with glucose levels with p value ¼
4.58310�58.We also replicatedmanyprevious reported as-

sociations with mean corpuscular volume,33 white blood
596 The American Journal of Human Genetics 102, 592–608, April 5,
cell counts,33–35 hematocrit levels,36 and hemoglobin

levels.37–39 Among these top associations,we also identified

previously unreported genetic associations with the levels

of carbon dioxide, chloride, serum protein, and serum so-

dium, as well as themeasure of anion gap (Tables 2 and S2).

Landscape of PheWAS Associations

The high number of genetic associations of this study,

coupled with the variations in power that occur within

PheWASs due to varying sample sizes across phenotypes

and differing effect sizes, can result in associations that

do not pass a more stringent Bonferroni correction but

that are still biologically relevant and plausible. There-

fore, in this study we also studied all results passing a

more exploratory p value of 1 3 10�4. In Figure 3, we

showcase the landscape of our associations across the

genome that include results confirming many previously

reported associations as well as some previously unre-

ported findings. For example, the diagnoses of ‘‘morbid

obesity’’ (rs1421085 and p value ¼ 5.31 3 10�32), ‘‘type

1 diabetes’’ (rs9273363 and p value ¼ 1.21 3 10�77),
2018



Table 1. Top Associations with ICD-9 Disease Diagnoses Grouped by Disease Class

ICD-9 Category
ICD-9
Code ICD-9 Description SNP Gene Case/Controls Odds Ratio [CI] p Value

Neoplasms 238.2 neoplasm of uncertain
behavior of skin

rs12203592 IRF4 2,237/26,680 1.39 [1.28,1.51] 8.21 3 10�15

Endocrine and
metabolic

244.9 unspecified acquired
hypothyroidism

rs965513 PTCSC2 5,282/27,539 0.75 [0.71,0.78] 7.30 3 10�34

250.00 type II diabetes mellitus rs7903146 TCF7L2 9,117/24,057 1.29 [1.24,1.34] 3.13 3 10�40

250.01 type I diabetes mellitus rs9273363 – 756/33,165 2.79 [2.5,3.1] 1.21 3 10�77

268.9 vitamin D deficiency rs2282679 GC 4,423/25,600 1.24 [1.18,1.31] 6.54 3 10�8

272.1 pure hyperglyceridemia rs964184 – 615/33,195 1.76 [1.53,2.01] 6.38 3 10�15

272.4 hyperlipidemia rs7412 APOE 17,804/12,356 0.60 [0.56,0.65] 1.81 3 10�46

274.9 gout rs1014290 SLC2A9 1,315/32,323 0.58 [0.53,0.65] 1.43 3 10�25

278.01 morbid obesity rs1421085 FTO 5,596/26,295 1.28 [1.23,1.34] 5.31 3 10�32

Blood disorder 289.81 primary hypercoagulable state rs6687813 – 273/34,102 6.26 [5.19,7.57] 6.86 3 10�66

Nervous system 340 multiple sclerosis rs3129860 – 324/34,276 2.48 [2.09,2.95] 5.56 3 10�22

362.5 macular degeneration (senile) rs572515 CFH 403/33,587 2.05 [1.77,2.37] 6.18 3 10�23

362.51 nonexudative senile macular
degeneration

rs395544 CFH 561/33,479 2.09 [1.84,2.37] 4.02 3 10�32

362.52 exudative senile macular
degeneration

rs1329424 CFH 287/34,239 2.20 [1.86,2.60] 2.64 3 10�20

Circulatory 427.31 atrial fibrillation rs2129982 – 3,130/30,481 1.43 [1.34,1.53] 1.34 3 10�27

Digestive 571.8 chronic nonalcoholic liver disease exm1615904 PNPLA3 609/31,328 1.98 [1.76,2.23] 5.12 3 10�28

Genitourinary 585.3 chronic kidney disease rs12917707 – 4,076/29,131 0.72 [0.68,0.78] 1.02 3 10�19

696.1 psoriasis rs12207756 CDSN, PSORS1C1 6,60/33,277 2.07 [1.80,2.37] 1.91 3 10�22

702 actinic keratosis rs12203592 IRF4 2,221/29,745 1.83 [1.68,1.99] 5.17 3 10�43

Musculoskeletal 714 rheumatoid arthritis rs2760985 – 970/33,273 1.86 [1.67,2.07] 1.31 3 10�27

Symptoms 794.8 abnormal results of function
study of liver

exm1615904 PNPLA3 554/32,681 1.68 [1.48,1.90] 5.25 3 10�15
and ‘‘primary hypercoagulable state’’ (rs6687813 and

p value ¼ 6.86 3 10�66) were the phenotypes of the

most significant genetic associations and were supported

by previously reported genetic associations with same or

related phenotypes.28,40–42 For the clinical laboratory

measurements (Table 2), the median levels of bilirubin

(rs11568318 and p value ¼ 3.29 3 10�83), alkaline phos-

phatase (rs635634 and p value ¼ 3.29 3 10�83), white

blood cell count (rs2227315 and p value ¼ 5.64 3

10�42), and mean corpuscular hemoglobin (rs855791

and p value ¼ 9.99 3 10�64) replicated previously re-

ported studies.43,44

Comparing Results for ICD-9 Codes and Clinical Lab

Measures

Clinical lab measures provide a representation of human

health, and these measures play a critical role in disease

diagnosis. In our previous work, we showed the robustness

in the interpretation of disease associations by analyzing

the ICD-9 code and median clinical lab measure associa-

tion results in conjunction.12 In Figure 4, we present a
The Ame
position by position comparison between ICD-9 and clin-

ical laboratory measure associations.

Blood glucose levels are common clinical tests to diagnose

diabetes. We identified 220 associations where multiple loci

are associated withmedian glucose levels as well as diabetes,

including the intergenic variant rs9275495 downstream

of MTCO3P1 that was phenome-wide significant for associ-

ation with ‘‘type 1 diabetes’’ (p value ¼ 7.83 3 10�56) and

glucose levels (p value ¼ 5.32 3 10�9, Table 3). MTCO3P1

is a pseudogene located in the MHC complex, and

SNPs in multiple genes in the MHC complex have

been known to have associations with type 1 diabetes

(such as rs2647044 in HLA-DQB1).45 However, rs9275495

is 5.6 kb upstream of rs2647044, and there is weak LD

detected between these two loci in our study population

(r2 ¼ 0.02), suggesting that this is a potential novel locus

for type 1 diabetes.

For chronic kidney disease (ICD-9 585.3), the SNP

rs12917707 (p value ¼ 2.58 3 10�19, Table 3) upstream

of UMOD was also associated with creatinine levels in

serum plasma (p value¼ 1.583 10�21). For both creatinine
rican Journal of Human Genetics 102, 592–608, April 5, 2018 597



Table 2. Top Associations for Each Clinical Laboratory from Clinical Lab PheWAS

Clinical Lab SNP Gene Beta Sample Size p Value

Anion gap rs1260326 GCKR 0.156264 31,717 3.02 3 10�32

Calcium rs17251221 CASR 0.0678278 32,137 3.29 3 10�83

Carbon dioxide rs11465670 IL18RAP �0.184063 32,440 7.98 3 10�17

Chloride rs1808192 – 0.10478 32,261 6.56 3 10�10

Hematocrit rs7776054 – �0.202675 32,299 8.54 3 10�12

Hemoglobin rs855791 TMPRSS6 �0.100959 32,288 2.06 3 10�25

Alanine amino-transferase exm1615904 – 0.0535439 30,848 2.01 3 10�45

Albumin rs11671010 HPN-AS1 0.00586762 30,879 2.38 3 10�12

Alkaline phosphatase rs635634 – �0.0699188 30,212 3.29 3 10�83

Aspartate amino-transferase rs35038329 MRC1 �0.0391737 30,649 1.38 3 10�70

Bilirubin rs11568318 UGT1A10 �0.173621 30,236 3.29 3 10�83

Creatinine rs12917707 UMOD �0.0200995 32,625 1.58 3 10�21

RDW rs855791 TMPRSS6 0.00741513 31,880 6.74 3 10�53

Glucose rs7903146 TCF7L2 0.0244817 32,241 4.58 3 10�57

WBC counts rs2227315 CSF3 0.0301915 32,754 5.64 3 10�42

Mean corpuscular hemoglobin
concentration

rs855791 TMPRSS6 �0.103003 32,164 9.99 3 10�64

Mean corpuscular hemoglobin rs7775698 – 0.28882 32,186 3.29 3 10�83

Mean corpuscular volume rs9376092 LOC105378010 0.686955 32,288 3.29 3 10�83

Platelet counts rs1354034 ARHGEF3 �5.81988 32,140 1.88 3 10�41

Platelet mean volume rs342293 CTB-30L5.1 0.149491 32,439 2.42 3 10�64

Potassium rs4557401 FAM13B �0.0194743 32,322 1.99 3 10�13

Serum protein rs3132451 AIF1 �0.0294945 29,844 2.76 3 10�13

RBC counts rs7776054 – �0.0587365 32,230 1.56 3 10�61

Serum sodium rs10777939 – �0.0958484 32,277 9.42 3 10�13

Urea nitrogen rs2287921 RASIP1 �0.201762 32,104 1.24 3 10�10
and kidney-related diseases, we replicate previous find-

ings.46–48

We also replicated the most significant associations

with variants in the gene TMPRSS6 and the diagnosis of

‘‘anemia’’ as well as the levels ofmean corpuscular hemoglo-

bin concentration in red blood cells.37,38,49,50 For example,

in our study, we detected an association between missense

variant rs855791 and the diagnosis of ‘‘anemia’’ (ICD-9

code 285.9, p value ¼ 1.128 3 10�5, Table 3) as mean

corpuscular hemoglobin levels (p value ¼ 2.29 3 10�83,

Table 3).

A previously reported association of APOE variant rs7412

with lipid traits was also replicated in our study with the

diagnosis of ‘‘hyperlipidemia’’ (p value ¼ 1.8 3 10�46).51,52

In the clinical laboratory measurement analysis, we de-

tected the same polymorphism associated with red blood

cell distribution width (RDW) (p value ¼ 8.74 3 10�9).

The minor allele of the pathogenic missense variant

rs7412 is commonly known as the E2 polymorphism

of APOE, and many independent studies show association
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between this SNP and cardiovascular risks and early vascular

diseases. Recent findings suggest that RDW has a high cor-

relation with long-term cardiovascular events, supporting

this association in our study population.53

Comparing Associations to Previous PheWASs

There have now been many published PheWASs, and we

compared our ICD-9-based diagnosis results to previously

reported PheWAS associations. PheWAS analyses have

many challenges including the potential noise incorpo-

rated into analyses due to the fact that EHR were not de-

signed for research purposes. Also, the differences in the

sample size for each ICD-9 code can impact the statistical

power to detect associations in PheWASs. As a result, the

significance of associations for these PheWAS analyses

may not reach the threshold for inclusion in genetic asso-

ciation catalogs such as the GWAS catalog and GRASP.

For this study, we further extended our investigation of

results of this study by comparing results from our study

to previously published PheWASs that used ICD-9-based
2018



Figure 3. Landscape of Genome-wide PheWAS Results
We plotted the association results with p value < 13 10�4, using �log10(p value). Each association is represented in relation to the SNP
location on each chromosome and the points are color-coded by ICD-9 code categories in (A) and clinical laboratory measures in (B).
A triangle indicates that the association is previously reported and a circle represents a previously unreported association. The red
line is at the phenome-wide significance p value threshold for each PheWAS. We indicated the phenotypes of a few of the most signif-
icant associations.
case/control diagnoses, a total of eight other studies. We

did this comparison using ICD-9 codes at the 3-digit level.

This strategy has been found to be a robust way to compare

PheWAS results across studies, as collapsing ICD-9 codes at

the three-digit level identifies similar diagnoses but does

not require the exact specificity of the five-digit level and

accounts for the variability in ICD-9 use at different insti-

tutions.4 We replicated a total of 950 associations with pre-

viously published PheWASs. In Figure 5, we present associ-

ations replicated within each broader three-digit-based

ICD-9 category. The majority (68%) of the replicating asso-

ciations were with endocrine and metabolic disorders. For

example, in Figure 5, the SNP rs964184 was associated with

the diagnosis ‘‘pure hyperglyceridemia’’ (ICD-9 code

272.1), p value ¼ 6.3 3 10�15 and we identified associa-

tions for this SNP with the 3-digit level of ICD-9 diagnosis

code for ‘‘hyperlipidemia’’ (ICD-9 code: 272) in previous

PheWASs.4,10,54,55

Coding and Non-coding Genomic Regions

PheWAS provides a way to scanmillions of associations be-

tween a wide range of phenotypes and genetic markers.

However, an important aspect of PheWAS is leveraging

the complex results to gain a greater understanding of

the impact of the genetic architecture of an outcome

beyond focusing on single SNP-phenotype associations

and interpreting associations only through the impact of
The Ame
protein-coding genes. Approximately 90% of the

genome-wide studies have identified statistically signifi-

cant variants outside of protein-coding regions.16 We can

use the amount of knowledge accumulated to date

regarding activity and importance of the non-coding

genome to better understand the results of this study, spe-

cifically for the variants outside of protein-coding regions.

Using the Variant Effect Predictor (VEP), we characterized

SNPs of the ICD-9 code PheWAS associations into coding

and non-coding regions for results passing p < 1 3 10�4

(Figure 6A). We observed that almost 90% of the SNPs

were represented in the non-coding or regulatory region

of the genome. A total of 29% were intergenic variants,

11% were downstream or upstream of protein-coding re-

gions, and the rest were located in untranslated, regulatory,

non-coding exons, or splicing regions. In the protein-

coding regions, we found 891 variants in exons, with the

majority of these being missense variants (461 SNPs),

synonymous variants (417 SNPs), and stop-gained variants

(7 SNPs). When comparing to polymorphisms reported in

the GWAS catalog, we found that the distribution of the

location of the SNPs in the genome was similar to our

results (Figure S2). We also compared our results to the

overall genetic variants represented on the genotyping

chip (Figure S2). Almost 80% of the variants found on

the chip are located in the untranslated regions (49%

30 UTR and 30% 50 UTR).
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Figure 4. Integrating ICD-9 and Clinical Lab PheWAS
We present a position-by-position comparison of genetic associations the two PheWASs, one with 541 ICD-9 diagnosis codes and the
other with 25 clinical laboratory measures. The horizontal axis represents genomic locations by each chromosome and the vertical
axis is the –log10(p value) of the associations. The red and blue dotted lines are the phenome-wide significance threshold for ICD-9
and clinical lab PheWAS, respectively. We annotated examples of associations between the same SNP and highly related phenotypes
across the two PheWASs.
Figure 6B shows genetic variation from non-protein

coding regions mapped to 20 different chromatin states.

By mapping genetic variation in non-coding regions to

the tissue-specific data in the Roadmap Epigenomics, we

identified that 68% of the associations in our study with

a p value < 1 3 10�4 overlap with genomic locations

in quiescent or low activity regions of the genome

(Figure 6B). Of the rest of the SNPs, there were primarily

four broad categories of region/activity that the SNPs

mapped to: transcription start sites (2%), transcription

(12%), enhancers (5%), and repressed polycomb (9%). As

shown in Figure 6B, the pie chart represents the number

of variants mapped to 20 different chromatin states based

on chromosome base pair location. While the majority of

variants map to the quiescent state, which is found consis-

tent with previously reported mapping of variants to

chromatin states in 127 epigenomes,56 there are important

considerations that may explain how these SNPs have an

impact. We averaged the predicted state across multiple

tissues, and in some instances, these genetic variants

may have a regulatory effect in a single or subset of tissues

where a region is not in the quiescent state and that is not

captured in our approach.

The number of significant variants mapping to chro-

matin states does not show how each chromatin state is
600 The American Journal of Human Genetics 102, 592–608, April 5,
represented in comparison to all variants used in analysis.

Therefore, we calculated ratios of variants mapping to

chromatin states for all genotype variants and also for

variants at p value < 1 3 10�4 and then calculated the

over- and under-representation of each state via the ratio.

The bar plot in Figure 6B illustrates this representation

for each chromatin state, and it highlights that even

though the majority of the significant variants are in low

activity state, such states are underrepresented when

compared to chromatin state annotation of all the SNPs

included in the study. We found that active chromatin

states such as ‘‘weak transcription start site (TSS),’’ ‘‘genic

active enhancer,’’ and ‘‘bivalent enhancer,’’ among others

are the over-represented states.

PheWAS Associations (ICD-9) in Protein-Coding Regions

In a protein-coding region, we identified a stop-gained

variant rs701884 in the gene HLA-DRB5, which was signif-

icantly associated with two autoimmune disorders: ‘‘type 1

diabetes’’ (p value ¼ 2.53 3 10�28, Table S2) and multiple

sclerosis (p value ¼ 2.64 3 10�20, Table S2). There is a

known SNP, rs26819262, in HLA-DRB5 in close LD with

SNP rs701884 associated with multiple sclerosis, but not

with type 1 diabetes. The gene HLA-DRB5 is one of the

paralogs of HLA-DRB1, and many polymorphisms in
2018



Table 3. Genetic Associations from Integrated Result Interpretation between ICD-9 Codes and Clinical Laboratory Measure PheWASs

ICD-9
Code ICD-9 Description Clinical Lab SNP Gene Case/Controls Odds Ratio [CI]

p Value
(ICD-9)

Lab
Sample
Size

Lab
Beta

p Value
(Lab)

250.01 type 1 diabetes glucose rs9275495 MTCO3P1
(closest)

756/33,131 2.90 [2.57,3.28] 7.83 3 10�56 32,195 0.01 5.32 3 10�9

585.3 chronic kidney
disease

creatinine rs12917707 UMOD
(closest)

4,076/29,131 0.72 [0.68,0.78] 1.02 3 10�19 32,625 �0.02 1.5 3 10�21

285.9 anemia mean corpuscular
hemoglobin levels

rs855791 TMPRSS6 2,822/26,165 1.13 [1.07,1.20] 1.1 3 10�05 32,149 �0.26 3.29 3 10�83

272.2 hyperlipidemia erythrocytes
distribution
width (RDW)

rs7412 APOE 17,804/12,356 0.60 [0.56,0.65] 1.8 3 10�46 31,766 0.005 8.74 3 10�9
HLA-DRB5 have previously reported the association

with type 1 diabetes, suggesting that the finding in

our study could be an indirect association with type 1

diabetes.28,45,57–59

A total of 48 associations were with missense variants,

with the most significant association between the SNP

rs7412 and ‘‘hyperlipidemia,’’ a well-reported finding in

previous genome- and phenome-wide studies.10,51,52

For type 1 diabetes, we identified multiple missense

variations in MHC complex significantly associated

with this diagnosis including the SNPs rs1130399

(p value ¼ 9.37 3 10�32, OR ¼ 2.02 [1.80, 2.26]),

rs1129740 (p value ¼ 2.07 3 10�28, OR ¼ 0.53

[0.48, 0.60]), rs1071630 (p value ¼ 2.67 3 10�28,

OR ¼ 0.54 [0.48, 0.60]), and rs1049060

(p value ¼ 3.56 3 10�28, OR ¼ 0.53 [0.48, 0.60])

(Table S2). The locus of these variants lie within HLA-

DRB1 and HLA-DRA1 and both of the genes have been

previously reported with type 1 diabetes.28,45,59

For synonymous polymorphisms, we identified the

SNP rs1061147 (CFH) to be significantly associated

with ‘‘non-exudative senile macular degeneration’’

(p value ¼ 1.04 3 10�30, OR ¼ 2.05 [1.81, 2.33],

Table S2). This SNP has been previously associated with

age-related macular degeneration but with lower odds

ratio (1.4 [1.32–1.48]).60 Additionally, other associations

were found with synonymous polymorphisms including

the SNP rs1475865 and ‘‘chronic kidney disease, stage

III’’ (ICD-9 585.3, p value ¼ 1.20 3 10�19, Table S2),

between rs2076529 and ‘‘rheumatoid arthritis’’ (ICD-9

714.0, p value ¼ 6.78 3 10�15, Table S2),29,61 and

between rs10939650 and ‘‘gout, unspecified’’ (ICD-9

274.9, p value ¼ 3.24 3 10�24, Table S2).62

PheWAS Associations (ICD-9 Codes) with Non-Protein-

Coding Regions

The SNP rs7850258 in a regulatory region had strongest

association with ICD-9 code 244.9 ‘‘acquired hypothyroid-

ism’’ (p value ¼ 9.29 3 10�34, Table S2). Previous associa-

tions with hypothyroidism have been reported for FOXE1,

which is downstream of the variant identified in our

study.63 There were 21 associations within active transcrip-
The Ame
tion start sites (TSSs), with the most number of associations

with the ICD-9 code 250.01 diagnosis ‘‘type 1 diabetes.’’

The SNP rs3749981 is a non-coding transcript variant and

had the strongest association with type 1 diabetes

(p value ¼ 3.96 3 10�25, OR ¼ 2.23 [1.95, 2.58], Table S2).

The only known association for this active TSS variant is

with autoimmune disorder rheumatoid arthritis.29 For

ICD-9 code 696.1 ‘‘psoriasis,’’ there were three 50 UTR

SNPs near active TSSs, also in high LD with each other

and representing a potential novel association for this

disease diagnosis (rs2074510, rs1052693, rs9468842). The

SNPs rs2074510 (p value ¼ 9.4 3 10�12, OR ¼ 1.56 [1.38,

1.77], Table S2) and rs1052693 (p value ¼ 8.9 3 10�12,

OR ¼ 1.56 [1.38, 1.77], Table S2) map to GTF2H4 and the

SNP rs9468842 (p value ¼ 1.5 3 10�11, OR ¼ 1.55 [1.37,

1.76]) is located within DDR1, and there are no known

association of these genes with psoriasis.

Within a strong transcription region, an intronic variant

rs4823173 in PNPLA3 is the strongest association with

ICD-9 code 571.8 ‘‘other chronic non-alcoholic liver dis-

ease’’ (p value ¼ 4.67 3 10�20, OR ¼ 1.87 [1.65, 2.13],

Table S2). There are known associations between variants

in PNPLA3 and non-alcoholic liver diseases and the genetic

variant found in our analysis is in strong LD with previ-

ously identified variants.64

Identifying Genetic Associations Most Correlated with

Gene Expression

Using PLINK, we first identified haplotype blocks from LD

correlations between the SNPs in the genotype data from

38,622 European American populations in our study. We

found a total of 14,764 haplotype blocks with block size

ranging from 2 bp to 900 kb. Thenwe identified the genetic

variants from the PheWAS results most correlated with

gene expression changes in specific genes by using the cor-

relations between chromatin state and gene expression

measures from 56 epigenomes available through Roadmap

Epigenomics Project (see Subjects and Methods for more

details). For example, in a haplotype block of 88.6 kb size

on chromosome 6 with 37 SNPs in LD, we identified that

DDR1 variant rs9501032 was associated with ICD-9 code

696.1 ‘‘psoriasis’’ (p value ¼ 1.443 10�11), and it is located
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Figure 5. Replicating Published PheWASs
Here we plotted SNP phenotype associations replicating previously published PheWAS results from studies using ICD-9 code-based
diagnoses. The top axis is all the ICD-9 codes from this study, and the rows represent SNPs. The gradient of the color in the matrix
represents the number of associations replicating between our study and existing PheWAS results for each SNP-phenotype pair.
in an enhancer region with correlation (r2) of 0.45 with

DDR1 expression. There is no previously reported associa-

tion for this finding.

For another example, the intergenic variant rs2038024

in strong LD with two SNPs is associated with the primary

hypercoagulable state (ICD-9 289.81), and it is located in

an active TSS and has a low correlation with the expression

of the pseudogene RP1-206D15.5 (r2 ¼ 0.174). It is a pseu-

dogene, so potentially the association effect might be a

result of links with variants in other paralogous genes.
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Within a 52 kb haplotype block on chromosome 11, an

intergenic variant rs964184 had a strong association with

hyperlipidemia (ICD-9 272.1, 272.4) as well as coronary

atherosclerosis (ICD-9 414.00) and essential hypertension

(ICD-9 401.9) at an exploratory significance cutoff

(Table S3). This variant is 359 base pairs upstream of

ZPR1, and it is predicted to be in strong transcription re-

gion (Figure 6C). We also identified that the 200 bp region

of strong transcription has a slight LD correlation with a

long non-coding RNA (lncRNA) APOA1-AS (r2 ¼ 0.22).
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Figure 6. Functional Annotations (p Value < 1 3 10�4)
(A) We used Variant Effect Predictor (VEP) to identify functional consequences of the genetic variants in our study for the ICD-9-based
PheWAS results. The plot shows the number of variants of each type of predicted consequence classifying SNPs across the coding and
noncoding regions of the genome.
(B) The pie chart on the left is the representation of SNPs annotated to the most probable chromatin region across 127 epigenomes.
The plot on the right shows the overall representation of each chromatin state for variants with significant results when compared
to annotations of all the variants included in the study.
(C) In the plot, the scatterplot represents associations within a haplotype block on chromosome 11 where the horizontal axis is base pair
location and –log10(p value) is shown on the vertical axis. The color of the circles represent phenotypes and size of the circle corresponds
to pre-computed gene correlation measure (r2) for that region in roadmap epigenomes. The genes close by to that haplotype block are
represented below the scatterplot. Based on haplotype block annotations, SNP rs964184 shows the highest correlation (highest r2) with
the expression of APOA1.
Although recent studies suggest that lncRNA are involved

in the function of protein-coding genes, there are only

few that have been found involved in disease mechanism.

APOA1-AS has been found to influence APOA1 and APOC3

genes by initiating the transcriptional upregulation.65

Discussion

We present one of the most comprehensive PheWAS ana-

lyses to date using EHR from a single health care provider

linked to a genetic biobank through the Geisinger bio-

repository, the MyCode Community Health Initiative.

Many findings of our study replicated previously reported

associations in non-EHR-based genetic studies with the

same or similar phenotypes, supporting the results of our

EHR-based genome-wide PheWASs. We observed that the

most significant associations were identified in the MHC

complex on chromosome 6, which reflects the importance
The Ame
of this region on human health and impact on disease

pathogenesis. Most of the associations in theMHC gene re-

gion were found associated with autoimmune diseases

such as type 1 diabetes, rheumatoid arthritis, and multiple

sclerosis.

Additionally, using the genome-wide landscape of this

comprehensive PheWAS, we detected multiple previously

unreported genetic associations with essential hyper-

tension, occlusion and stenosis of carotid, psoriasis, and

depressive disorders. For example, a polymorphism on

chromosome 7p21.1 in HDAC9 was suggestively signifi-

cantly associated with ICD-9 433.10 ‘‘occlusion and steno-

sis of carotid’’ (the narrowing of arteries due to plaque

deposits) (p value ¼ 2.26 3 10�8). Variations in HDCA9

have previous associations with coronary artery disease

(CAD) such as ischemic stroke,66 but there are no previ-

ously reported genetic associations between rs2074633

and our specific phenotype or other CAD phenotypes.
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The expression of HDAC9 is increased in carotid athero-

sclerotic plaques, in greater quantities than even femoral

plaques. There is also a potential involvement of this

gene in a mechanistic pathway, where HDAC9 has been

shown to inhibit FOXP3 expression and the function of

regulatory T cells, which protect against atherosclerosis.67

Another previously unreported association, between SNP

rs1275980 located within intronic region of KCNK3, was

associated with ICD-9 code 401.9 ‘‘essential hypertension’’

(p value ¼ 9.27 3 10�8). The diagnosis code 401.9 has the

highest case number within our PheWAS (17,975), making

it is one of themost well-powered associations of this study.

The gene KCNK3 (potassium two-pore domain channel

subfamily K member 3) encodes a protein of potassium

channel family, and the gene product contributes to regula-

tion of blood pH levels. Variants in this gene have been

found linked to aldosterone hormone production, systolic

blood pressure,68 body mass index, and mean arterial pres-

sure.69,70 Aldosterone affects the body’s ability to regulate

blood pressure and is one of the causative factors in hyper-

tension. Based on the regulatory annotations, we found

that the SNP rs1275980 is located in the repressed poly-

comb chromatin state, and correlation (r2) of 0.25 with

KCNK3 suggests a minor relationship to the gene expres-

sion of KCNK3. Also, the SNP rs1275980 was significantly

associated with blood CO2 levels in the PheWAS with clin-

ical laboratory measures. A previous study suggests that

CO2 levels in blood plasma reflect different cerebrovascular

responses, andmore importantly there is a positive correla-

tion between increased blood pressure and CO2 levels.71

CRHR-2 is one of the receptors of corticotropin-releasing

hormone (CRH) and is found in various regions of the brain

that play an important role in responding to stress, anxiety,

fear, and arousal,72 and the receptor is synthesized in the

brain in response to stress. An intronic variant rs255112

within CRHR-2 was associated with the diagnosis ICD-9

296.90 ‘‘episodic mood disorder’’ (p value ¼ 1.28 3 10�6)

in our study. The variant is located in the second intron

of CRHR2 and this gene has previous known associations

with lower physiological responses to anxiety and stress

and psychiatric disorders including depression, PTSD, and

bipolar disorder.72 The variant is also enriched in various tis-

sues including brain, and it maps to the non-coding region

with a predicted weak-repressed-polycomb chromatic state.

Lastly, we identified a previously unreported association

with theUSP8 SNP on chromosome 15 (rs148783236) asso-

ciated with the diagnosis of psoriasis (ICD-9 code 696.1, p

value ¼ 2.54 3 10�20). This finding may present new

insights into underlyingmechanism of the disease. Ubiqui-

tin-specific-processing protease 8 (USP8) is involved in cell

proliferation and plays an important regulatory role in

epidermal growth factor receptor (EFGR) degradation.73

EFGR binds with epidermal growth factor (EGF) and regu-

lates cell growth, proliferation, and differentiation of cells

in the epidermis. The increase in EGF and decrease in

EGFR are reported in individuals with psoriasis, suggesting

a critical role in the pathogenesis of the disease.74 Of note,
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there are many pseudogenes across the genome processed

within the chromosome 15q21 region including the pseu-

dogeneUSP8P1, upstream of theHLA-C inmajor histocom-

patibility complex (MHC).HLA-C is also known as psoriasis

susceptibility 1 (PSORS1) and is a part of the cluster of genes

in MHC region on chromosome 6 with susceptibility to

psoriasis and systemic sclerosis. However, there is no

sequence similarity between the two regions of USP8 and

USP8P1, suggesting that this observation was not due to

cross-hybridization.75,76 It is also worth noting that

rs148783236 is locatedwithina strong transcription region,

which supports that it could provide regulation for USP8.

There were some limitations of this study, which can be

addressed through future analyses with these data.

Genome-wide array technology identifies tag SNPs, so

many of the SNPs of this study may be highly correlated

with the actual causative genetic variation, and thus our

functional annotation is not necessarily for the SNP im-

pacting phenotypic variability. Our future directions

include further analysis of the novel results of this study

using imputed data, as well as exploring rare genetic varia-

tions within genes using whole-exome sequencing data.

We incorporated chromatin state predictions for the non-

coding region by averaging the probability of chromatin

state across multiple tissues. Thus, there were many vari-

ants located in the low activity regions of the genome,

also referred to as the quiescent state. However, there are

likely many scenarios where genetic regions are not quies-

cent in one or more tissues, but their specificity was lost

when activity levels are averaged across all tissues. A future

direction is to further delve into the impact of variants on

individual tissues and link that back to the diagnosis and

trait associations that we identified in this study.

In conclusion, we provide a landscape of associations

acrossdiseases andquantitative traits throughacomprehen-

sive PheWAS using EHR data from a single health care pro-

vider. For this study, we also presented additional ways to

expand the understanding of association findings through

the use of existing expert knowledge. We addressed the

computational challenges of such studies at such large scale

by utilizing resources through cloud computing.With ever-

increasing genomic data and study participation, we believe

thatuseof thecloudcomputingwill becomemorecommon.

The findings of our study serve as an excellent resource for

hypothesis generation for targeted future studies.
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