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ABSTRACT

Staphylococcus aureus is an important human pathogen that causes life-threatening infections, and is resistant to the
majority of our antibiotic arsenal. This resistance is complicated by the observation that most antibacterial agents target
actively growing cells, thus, proving ineffective against slow growing populations, such as cells within a biofilm or in
stationary phase. Recently, our group generated updated genome annotation files for S. aureus that not only include
protein-coding genes but also regulatory and small RNAs. As such, these annotation files were used to perform a
transcriptomic analysis in order to understand the metabolic and physiological changes that occur during transition from
active growth to stationary phase; with a focus on sRNAs. We observed ∼24% of protein-coding and 34% of sRNA genes
displaying changes in expression by ≥3-fold. Collectively, this study adds to our understanding of S. aureus adaptation to
nutrient-limiting conditions, and sheds new light onto the contribution of sRNAs to this process.
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BACKGROUND AND INTRODUCTION

Staphylococcus aureus is an important human pathogen that is
able to cause disease in a variety of sites within the human
host. The ability to foster devastating and recurring infections
results from its ability to produce large amounts of virulence
determinants that enable disease causation and immune eva-
sion. In addition, the treatment of S. aureus infections has proven
increasingly difficult, due to its ability to resist killing by the
majority of our antibiotic arsenal. This is compounded by the
fact that most antibacterial agents only target actively growing
cells, thus, proving ineffective against slow growing and non-
dividing populations, such as cells within a biofilm or in sta-
tionary phase (reviewed in Stewart and Costerton 2001; Don-

lan and Costerton 2002; Hall-Stoodley, Costerton and Stood-
ley 2004; Bridier et al. 2011; Stewart 2015). Indeed, only a lim-
ited number of studies have demonstrated activity of therapeu-
tics against stationary phase cultures (Mascio, Alder and Sil-
verman 2007; Belley et al. 2009; Podos et al. 2012). Thus, a bet-
ter understanding of the metabolic and physiological changes
that occur during transition from active growth to station-
ary phase would be of significant utility in the development
of antibiotics effective against slow-growing and non-dividing
bacteria.

Although an increased knowledge of transcriptional reg-
ulation has been generated by high-throughput transcrip-
tomic methods, and in particular RNA-sequencing, the major-
ity of studies have been performed during exponential growth.
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Indeed, to date only a handful of studies have investigated global
transcriptional changes after a culture enters stationary phase,
with the majority of them focused on virulence determinant
expression, rather than on wholesale changes within the cell.
Additionally, it has become apparent that adaptation to vari-
ous environmental conditions and stimuli, e.g. higher culture
densities and/or low-nutrient availability, is not solely driven
by classical proteinaceous regulators, but also by small, regu-
latory RNAs (sRNAs) (Repoila, Majdalani and Gottesman 2003;
Landt et al. 2010). Consequently, our group has exerted signifi-
cant efforts to establish a comprehensive overview of sRNAs in
S. aureus and other organisms, facilitating a better understand-
ing of how these important elements influence adaptation to
changing environmental conditions (Carroll et al. 2016; Weiss
et al. 2016)

As such, in the present study, we perform RNA-sequencing
on stationary phase S. aureus cultures and identify wholesale
transcriptomic changes that occur, not only for protein-coding
genes but also, for the first time, sRNAs.

METHODS

To describe alterations in the S. aureus (USA300-Houston; High-
lander et al. 2007) transcriptome during different growth phases,
we compared two RNA-sequencing datasets from cells grown
for 3 (exponential phase) and 16 h (stationary phase). RNA-
sequencing and data analysis was performed according to Car-
roll, Weiss and Shaw 2016. Briefly, cells were synchronized in
TSB (shaking, 37◦C) as described previously (Kolar et al. 2011) be-
fore being grown for 3 or 16 h. Cultures were then harvested
and RNA isolated using an RNeasy kit (Qiagen, Hilden, Ger-
many), with DNA removed using a TURBO DNA-free kit (Am-
bion/Thermo Fisher Scientific, Waltham, MA). RNA quantity and
quality was assessed using an Agilent 2100 Bioanalyzer sys-
tem and a RNA 6000 Nano kit (Agilent, Santa Clara, CA), be-
fore three independent biological replicates were mixed in an
equimolar ratio. rRNA was removed with a Ribo-Zero bacte-
rial rRNA removal kit (Epicentre, Madison, WI) and MICROB-
Express bacterial mRNA enrichment kit (Agilent, Santa Clara,
CA). Removal of rRNA was confirmed on an Agilent 2100 Bio-
analyzer system using a RNA 6000 Nano kit, followed by cDNA
generation (Total RNA-seq kit v2, Ion Torrent/Thermo Fisher
Scientific, Waltham, MA). Library quality and concentration
was assessed using an Agilent Bioanalyzer 2100 system and
a High Sensitivity DNA kit (Agilent, Santa Clara, CA), before
being bound to Ion Sphere Particles (ISPs). These were ampli-
fied and enriched using an Ion PGM Template OT2 200 kit and
an Ion OneTouch 2 system (Ion Torrent/Thermo Fisher Scien-
tific, Waltham, MA). Template-positive ISPs were subjected to
sequence analysis using an Ion Torrent Personal Genome Ma-
chine (PGM), with data analyzed using CLC Genomics Work-
bench (CLC-Bio, Aarhus, Denmark) with the standard RNA-seq
analysis settings. Expression values were calculated as RPKM
(reads per kilobase material per million reads) and subjected
to quantile normalization, with a threshold of 10 RPKM applied
as the lower cutoff (McClure et al. 2013). All sequences gen-
erated were aligned to our publicly available S. aureus anno-
tation files (https://dx.doi.org/10.6084/m9.figshare.2061132.v1)
(Carroll et al. 2016). All data were deposited in GEO un-
der accession number GSE77242 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE77242). Gene clusters and pathways
displaying altered expression (±10-fold) during stationary phase
were assessed using the Database for Annotation, Visualiza-
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Figure 1. Changes in the S. aureus transcriptome during stationary growth.
Shown is an overview of transcriptional changes for (A) protein-coding and
(B) sRNA transcripts when comparing stationary and exponential growth.

tion and Integrated Discovery (David) (Huang da, Sherman and
Lempicki 2009).

RESULTS

We identified ∼24% (640) of protein-coding genes with ≥ ±3-
fold change in expression during stationary phase (Table S1,
Supporting Information), and ∼6% (159) with ≥ ±10-fold alter-
ations (Figs 1A and 2A). For both subgroups, the number of
up- and downregulated genes was relatively similar (≥ ±3 =
296 versus 344; ≥ ±10 = 80 versus 79, respectively). Impor-
tantly, several of the identified changes have previously been
described, including protein A (spa), which displays a 14-fold
decrease in expression (described by Gao and Stewart 2004)
and α-toxin (hla), which is 13-fold upregulated in our exper-
iment (shown by Xiong et al. 2006; Yarwood et al. 2002). In
addition, we observed 15 genes that showed alterations in

https://dx.doi.org/10.6084/m9.figshare.2061132.v1
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77242
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Figure 2. Genomicmaps depicting transcriptomic changes during exponential and stationary phase growth of S. aureus. (A) For protein-coding genes, the chromosomal
location (outer circle) as well as expression values for exponential (blue bars) and stationary phase (red bars) cultures are displayed. In between expression values,

transcriptional fold changes are shown. For increased accessibility, the figure contains only genes that showed a≥ ±3-fold alteration in expression. (B) sRNAannotations
are shown in sense (outer circle) and antisense (second circle) directions, along with the corresponding gene names. The RPKMs for exponential (blue bars) and
stationary (red bars) cultures, as well comparative fold changes (in between), are shown. For both transcriptome figures, the cutoff for expression strength displayed
is 1000 RPKM, with genes higher than this displayed as 1000 in order to make lowly expressed genes more visible.
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transcription ≥100-fold, with six upregulated and nine down-
regulated (Fig. 1A). The strongest decrease (2841-fold) was found
for SAUSA300 1997, a SirA-like protein. SirA is involved in iron-
uptake, and acts by recognizing and binding staphyloferrin B
(Heinrichs et al. 1999; Grigg et al. 2010). Additionally, the down-
stream gene (SAUSA300 1998), which, from our bioinformatic
analysis (not shown), appears to be transcribed as part of
the same operon, displays a complete absence of expression
during stationary phase. Interestingly, SAUSA300 1998 encodes
a sulfur-transporter domain, and therefore could act in con-
cert with SAUSA300 1997 to import sulfur or sulfur-bound pro-
teins. Furthermore, the SAUSA300 0173-SAUSA300 0177 operon
showed >100-fold decreased expression. This operon may en-
code an ABC transporter for nitrate and/or sulfonate based
on the ATPase of the system, with SAUSA300 0174, showing
similarity to the NrtD/SsuB and TauB family of ABC-type ni-
trate/sulfonate transporters. Notably, most of the discussed
genes/operons displaying large-scale changes in expression af-
ter entry into stationary growth are import/export system, high-
lighting changing requirements for uptake and secretion based
on the nutritional status of the cell.

Beyond these changes, our dataset also shows shifts in
metabolic processes. To explore these further, we used the
DAVID tool and observed a variety of processes to be dependent
on growth phase and nutrient availability (Table S3, Support-
ing Information) (Huang da, Sherman and Lempicki 2009).
Downregulated pathways included, amongst others, fructose
and mannose metabolism and glycolysis, showing alterations
in energy generation after high-density growth and resulting
carbon deprivation. Concomitantly, to increase the availability
of glucose, genes encoding proteins involved in gluconeogenesis
were strongly induced, including pckA (SAUSA300 1731, +153-
fold), encoding a phosphoenolpyruvate carboxykinase, the
glyceraldehyde-3P-dehydrogenase gene gapB (SAUSA300 1633,
+48-fold) and fbp (SAUSA300 2455, +11-fold), which en-
codes Fructose-1,6-bisphosphatase (Table S1, Supporting
Information).

Most of the additional transcripts that showed strongly in-
creased abundance belong to pathways involved in purine or
purine–precursor synthesis and binding (Table S3, Supporting
Information). This increase in transcriptional activity toward
these pathways highlights depletion of nucleic acid components
later in growth, and an attempt to overcome such limitation by
the synthesis of nucleic acid building blocks. Additionally, we
identified a variety of upregulated genes that are involved in
the degradation of amino acids, including hutI and hutU (imi-
dazolonepropionase (+30.5-fold) and urocanate hydratase (+45-
fold)), which degrade histidine, highlighting the need to em-
ploy alternative carbon (and nitrogen) sources during glucose-
deprived conditions (Table S1, Supporting Information) (Zhang
and Rainey 2007).

In addition to protein-encoding transcripts, we also observed
wholesale changes in non-coding transcript abundance (Figs 1B
and 2B). Here, we found 34.3% of sRNAs (104 of 303 [Carroll et al.
2016]) demonstrating differential expression (≥ ±3-fold) during
stationary growth (Table S2, Supporting Information). Of the 60
sRNAs with higher expression during stationary phase, rsaOG
(SAUSA300s046) was one of the most affected sRNAs with a
102-fold increase (Marchais et al. 2009, 2010). Interestingly, this
sRNA was previously shown by our group to be strongly up-
regulated during growth in human serum, suggesting a similar
role during high-density growth to that in more pathophysio-
logical relevant media (Carroll et al. 2016). Another sRNA, Teg124
(SAUSA300s099), was found to be the second most strongly up-

regulated sRNA (55.5-fold) during stationary growth (Beaume
et al. 2010). Interestingly, this transcript is located on a
pathogenicity island and therefore has been suggested to have
a role in S. aureus virulence (Felden et al. 2011).

In addition to this, we observed 44 sRNAs that were ex-
pressed to a lower extent during stationary phase (Fig. 1B; Ta-
ble S2, Supporting Information). The strongest downregulated
(−141-fold) was Sau-6569 (SAUSA300s171), which has previously
been identified, but has no known role to date (Abu-Qatouseh
et al. 2010). Another sRNA whose expression is almost com-
pletely abolished (−120.7-fold) is Teg125. According to the Tar-
getRNA2 algorithm (Kery et al. 2014), this sRNA may interact
with the femA mRNA, 8 nt upstream of its translational start
site. FemA is a protein that is important for the development
of methicillin resistance in S. aureus (Berger-Bachi et al. 1989)
and is widely conserved across clinical isolates (Kobayashi et al.
1994). Although the FemA protein is present at higher levels
during exponential growth (Johnson, Kruger and Labischinski
1995), we do not see any significant changes in transcript level
when comparing exponential and stationary phases. There-
fore, the higher FemA protein levels during exponential phase
could be caused by differences in translational efficiency of
the femA transcript, possibly resulting from interaction with
a sRNA partner.

Although a number of sRNAs display at least a 10-fold change
in expression, it is important to note that the influence of those
with smaller changes could also have meaningful biological sig-
nificance. For example, sRNAs can regulatemRNA targets via tar-
geted binding, resulting in the degradation of both molecules.
Therefore, an equimolar ratio of sRNA and mRNA target repre-
sents an equilibrium thatwill shift as sRNA expression increases
and mRNA stability decreases. Conversely, a decrease in sRNA
expression below the equilibrium will proportionally increase
the abundance of the mRNA target. Thus, a subtle change in the
expression of a given sRNAmay have a large-scale impact on its
target specifically, and cellular physiology in general (reviewed
in Levine and Hwa 2008; Beisel and Storz 2010).

CONCLUDING REMARKS

Collectively, our dataset highlights the global changes that oc-
cur within cells upon entry into stationary phase. In addition
to alterations in protein-coding transcripts, including various
metabolic pathways and transport systems, we observed major
changes in sRNA expression. With respect to these latter ele-
ments, our findings are noteworthy because, for the vast ma-
jority of sRNAs, no cellular function has been experimentally
determined. Therefore, we suggest that by connecting sRNA ex-
pression to environmental stimuli, such as high-density growth,
we can generate new insights into possible functions of these
understudied transcripts. This is particularly significant when
one considers that these elements outnumber proteinacious
regulators by ∼2:1 (Ibarra et al. 2013; Carroll et al. 2016). There-
fore, our work presents not only an important study of cel-
lular changes during stationary growth, but also serves as a
first step towards integrating sRNAs into existing regulatory
networks.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSPD online.
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