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Abstract

The measurement of individual change has been an important topic in both education and psy-
chology. For instance, teachers are interested in whether students have significantly improved
(e.g., learned) from instruction, and counselors are interested in whether particular behaviors
have been significantly changed after certain interventions. Although classical test methods have
been unable to adequately resolve the problems in measuring change, recent approaches for
measuring change have begun to use item response theory (IRT). However, all prior methods
mainly focus on testing whether growth is significant at the group level. The present research
targets a key research question: Is the ‘‘change’’ in latent trait estimates for each individual signifi-
cant across occasions? Many researchers have addressed this research question assuming that
the latent trait is unidimensional. This research generalizes their earlier work and proposes four
hypothesis testing methods to evaluate individual change on multiple latent traits: a multivariate
Z-test, a multivariate likelihood ratio test, a multivariate score test, and a Kullback–Leibler test.
Simulation results show that these tests hold promise of detecting individual change with low
Type I error and high power. A real-data example from an educational assessment illustrates
the application of the proposed methods.
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The measurement of individual change is important in many applications of psychology. In

clinical, counseling, and medical settings, measures of individual change are used to evaluate

improvement or deterioration of a wide variety of symptoms and behaviors. In education and

training environments in industry, measures of individual change are used to inform and guide

the outcomes of instruction. Different examinees can vary in their levels of the measured vari-

ables at the first measurement occasion and they can vary in both level and pattern of change

over time, as well as ending at different levels on the measured traits.

There has been considerable effort focused on the statistical evaluation of measured change,

as evidenced by a continuing stream of books on the topic (e.g., Hoffman, 2014; Molenaar &
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Newell, 2010). These efforts have focused almost exclusively on measuring change at the group

level, using mixed-effects models or structural equation models (e.g., multilevel models, latent

growth curve (LGC) or latent transition models, and growth mixture models; Bollen & Curran,

2006). Other methods are based in item response theory (IRT), including a generalized explana-

tory longitudinal item response model (Cho, Athay, & Preacher, 2013), an IRT LGC model (C.

Wang, Kohli, & Henn, 2016), and a multidimensional Rasch model (W. C. Wang, Wilson, &

Adams, 1997). Group change is often measured to determine whether a certain instruction

approach is effective for a group of students in an education context, or whether a certain inter-

vention is effective for a group of patients in clinical settings. These group-based approaches to

measuring change have, however, little to offer with regard to measuring change for an individ-

ual to tailor instruction or intervention. For instance, a therapist might want to discuss the ter-

mination of treatment when a patient’s score on a depression scale is much lower compared

with his or her previous depression score, showing significant improvement in terms of depres-

sion symptoms. This and similar applications call for methods for reliably evaluating the signif-

icance of individual change. Although some of the above-mentioned models allow an analysis

of individual change, it is typically determined relative to the group in which the examinee is

embedded, resulting in the possibility that a given degree of individual change can have differ-

ent meaning and utility depending on the group with which the examinee happens to be mea-

sured. If a given individual happens to be an outlier relative to the group, his or her individual

growth trajectory might not be recovered precisely. This research intends to provide a sound

solution to the practical question:

Research Question: Is the ‘‘change’’ in latent trait estimates for each individual significant

across occasions?

The proposed solution is group independent,1 and it allows the latent trait to be

multidimensional.

Prior Literature

Given the need for providing change information in applied environments, a few efforts have

been made to measure individual change, despite long-standing controversy surrounding the

issue (e.g., Willett, 1997; Williams & Zimmerman, 1996). For example, simple difference

scores based on sum scores have demonstrated a negative correlation with the initial status

(Bereiter, 1963; Thorndike, 1963), low reliability (Hummel-Rossi & Weinberg, 1975; Lord,

1963; Willett, 1988), and regression toward the mean (e.g., Bereiter, 1963).

Because classical test theory methods appear to be unable to adequately measure individual

change, in recent years IRT methods have been applied to this problem. For example, Fischer

(1983) proposed a linear logistic model within the framework of the generalized Rasch model.

However, his approach is appropriate only for measuring group change because the treatment and

trend effects are assumed to be constant for all examinees across all occasions. Embretson (1991)

proposed a multidimensional Rasch model for learning and change designed to measure individual

change across k repeated measurements, which Mellenbergh and van den Brink (1998) generalized

to a two-parameter model. Although this approach measures individual change, model complexity

increases as more measurements are taken, that is, more parameters are estimated on later occa-

sions, so that parameter estimation accuracy at later occasions would decrease.

Willett (1988, 1997) proposed intra-individual methods for observing change across multiple

occasions. His approach requires multiple measurements on a single individual on a single vari-

able. He then fits individual regressions across measurement occasions, both linear and
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nonlinear, and estimates slopes and intercepts. The intercepts provide information on an indi-

vidual examinee’s beginning level on the trait while the slopes provide information on the rate

of change and, when change is nonlinear, the pattern of change. His approach is intra-individual

so that change is not group dependent. It is limited, however, because slopes and intercepts

based on a small number of observations (e.g., six or seven measurements or even fewer) are

highly unreliable and cannot easily be tested for statistical significance due to their large statis-

tical sampling errors. These methods are also limited in that they are designed for unidimen-

sional variables.

Most recently, Jabrayilov, Emons, and Sijtsma (2016) proposed an IRT-based method for

determining the significance of individual change. Their method uses the difference between

two IRT-based trait (u) estimates, divided by the sum of the IRT-based standard errors to create

a Z statistic. They then, in simulation, compared the performance of their test with the reliable

change index (RCI) based on the same data. Their data showed that the RCI method performed

better in terms of Type I error and power for polytomous scales with fewer than 20 items and

that the IRT method was better for longer scales. However, their conclusions are limited by the

single set of discriminations used in their simulations.

Purpose

The present research was designed to develop and evaluate methods that overcome the limita-

tions of prior research on the measurement of intra-individual change. In particular, the methods

(a) are based in IRT and take full advantage of the improvements that IRT provides in measur-

ing at the individual level, (b) are entirely intra-individual, (c) provide for drawing conclusions

about the psychometric significance of observed change, and (d) are multivariate, allowing mul-

tiple measurements on a single individual repeated over time.

Method

This research builds upon the work of Finkelman, Weiss, and Kim-Kang (2010); Lee (2015); Lee

and Weiss (2015); and Phadke, Weiss, and Christ (2016) who developed and evaluated methods

for identifying psychometrically significant change when a latent trait is unidimensional. When the

latent trait of interest is multidimensional, using the existing unidimensional IRT-based hypothesis

testing methods will have two adverse consequences: (a) model misfit, yielding inaccurate item

and person parameter estimates (e.g., Hulin, Drasgow, & Parsons, 1983); and (b) higher standard

errors of measurement for the latent trait, leading to lower power for detecting significant change

(e.g., Kirisci, Hsu, & Yu, 2001). In contrast, using multidimensional IRT (MIRT) models is more

appropriate because the individual’s latent traits can be more precisely recovered (e.g., Reckase,

2009; Svetina, Valdivia, Underhill, Dai, & Wang, 2017; C. Wang, 2014, 2015; C. Wang & Chang,

2011; C. Wang, Chang, & Boughton, 2011). This study extended the current hypothesis testing

methods to a multidimensional scenario. It should be noted that all of the hypothesis testing meth-

ods proposed and evaluated in this study are strictly intra-individual. They are based entirely on a

single examinee’s responses at two occasions to one or more sets of items for which MIRT item

parameters have been previously estimated.

MIRT Model

This study used the compensatory MIRT model (Reckase, 2009; C. Wang & Nydick, 2015)

which is the most widely applied MIRT model for measuring different types of latent traits. Let
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ui = (u1
i , ::::, uD

i )T denote a D-by-1 latent trait vector for examinee i; then the item response func-

tion (IRF) for the multidimensional three-parameter logistic (M3PL) model is

P Yij = 1jui

� �
= cj +

1� cj

1 + exp � aT
j ui � bj

� �h i , ð1Þ

where Yij denotes the response of examinee i to item j with Yij = 1, indicating a correct response.

aT
j is a row vector of discrimination parameters for item j, bj relates to the location of the item

on the latent trait continua, and cj is the lower asymptote parameter. When a test displays a sim-

ple structure (i.e., between-item multidimensionality), then only one element in aj is nonzero.

Equation 1 is used as the underlying MIRT model throughout this study. However, the hypoth-

esis testing methods that are proposed can be used with any MIRT model.

Omnibus Hypothesis Testing for Multivariate Change

Four omnibus tests are introduced, and their performance is evaluated based on their Type I

error and power. Type I error is defined as the proportion of simulees who have no change but

are erroneously identified as having significant change, and power is defined as the proportion

of simulees who have a specified level of change and are correctly identified as having chan-

ged. If an omnibus test is significant, then a post hoc comparison follows to identify the specific

dimension(s) on which the change occurred.

Multivariate Z-test (MZ; Wald test). For examinee i, the null hypothesis, H0 : ui2 = ui1, is tested

against the alternative hypothesis, Ha : ui2 6¼ ui1. This is an overall test; hence, the change can

occur in any direction or pattern (i.e., a two-tailed test) and involve one or more dimensions.

When the instrument is precalibrated with item parameters known, which is the typical case for

IRT-constructed instruments, then for each examinee, ui1 and ui2 can be estimated via maxi-

mum likelihood estimates (MLEs or û
mle

).

When the number of items approaches infinity, the covariance matrix of û
mle

is equal to the

inverse of the Fisher test information matrix evaluated at the true latent trait level, that is,

I�1(u) (Segall, 1996; C. Wang, 2014; C. Wang & Chang, 2011). As a direct generalization of

Finkelman et al.’s (2010) univariate Z-test, û
mle

i1 and û
mle

i2 can first be obtained for examinee i at

two occasions separately, then a test statistic can be constructed as

Zi = û
mle

i1 � û
mle

i2

� �TX�1

û
mle

pooled

û
mle

i1 � û
mle

i2

� �
, ð2Þ

where
P

û
mle

pooled

= I�1
1 (û

mle

pooled) + I�1
2 (û

mle

pooled). û
mle

pooled is the MLE of u by combining the response

vectors from both occasions, and it can also be viewed as the MLE under the null hypothesis.

I1(û
mle

pooled) and I2(û
mle

pooled) are test information from Time 1 and Time 2 evaluated at û
mle

pooled . The

Fisher test information has a closed-form expression (C. Wang & Chang, 2011). The test statis-

tic in Equation 2 is compared with a chi-square distribution with degrees of freedom D (i.e.,

total number of dimensions) and depending on the significance level a, examinee i is consid-

ered as either having significant change or not.

Likelihood ratio (LR) test. This change detection method (Finkelman et al., 2010) is based on a

LR test adapted from a method that is described by Agresti (1996) for categorical data. In the

current context for testing individual change across occasions, the condition ‘‘parameters
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satisfy H0’’ is û
mle

pooled . In the denominator, under the alternative hypothesis, the likelihood is

maximized by computing the MLEs separately at each occasion. The LR statistic, therefore, is

LRT = � 2 log
L û

mle

pooled ; Y1 + 2

� �

L û
mle

i1 ; Y1

� �
3L û

mle

i2 ; Y2

� �
2
64

3
75, ð3Þ

where Y1 and Y2 denote response vectors for examinee i from Time 1 and Time 2, respectively,

and Y1 + 2 is the combined response vector from two occasions; L(û
mle

pooled ; Y1 + 2), L(û
mle

pooled; Y1),

and L(û
mle

pooled ; Y2) denote likelihood functions. The statistic is compared with a chi-square distri-

bution with D degrees of freedom to determine the significance of change.

Score test (ST). The ST is another commonly used method for testing hypotheses about parameters

in a likelihood framework (Rao, 1948). The hypothesis under investigation is typically expressed as

one or more constraints on the values of parameters; thus, the ST includes a restricted maximum like-

lihood estimation problem solved by the Lagrangian method. The ST requires only estimation of the

parameters subject to the constraints specified by the null hypothesis:

LMT = S û
mle

pooled

� �0
I�1 û

mle

pooled

� �
S û

mle

pooled

� �
~x2

df = D: ð4Þ

In Equation 4, S(û
mle

pooled) is a 2D-by-1 vector computed from the first derivative of the log likeli-

hood—it is the slope of the tangent line at û
mle

pooled along the log-likelihood function. The first D

elements of S(û
mle

pooled) are computed from

SD31 û
mle

pooled

� �
=

d log L u; Y1ð Þ
d u u = û

mle

pooled

���� , ð5Þ

where L u, Y1ð Þ denotes the likelihood obtained from the response vector at Time 1. When the

M3PL model in Equation 1 is used,

SD31 û
mle

pooled

� �
=
Xn

j = 1

aj1

yij1 � P û
mle

pooled

� �h i
P ûmle

pooled

� �
� cj1

h i

P û
mle

pooled

� �
1� cj1

� � , ð6Þ

where yij1 denotes examinee i’s response on item j at Time 1. Note that I(û
mle

pooled) in Equation 4

is a 2D-by-2D block-diagonal matrix in which the first D-by-D block is the Fisher information

matrix evaluated at û
mle

pooled with the item parameters from Time 1. The second D-by-D block is

the Fisher information matrix computed at û
mle

pooled with the item parameters from Time 2.

Kullback–Leibler (KL) divergence test. This new test does not rely upon any point estimate of u,

and thus it avoids any possible contamination introduced by errors in the MLEs. The KL diver-

gence is widely used for measuring the distance between two distributions (Cover & Thomas,

1991; Lehmann & Casella, 1998). In the current context, the divergence between two posterior

distributions,p(ui1jY1) and p(ui1jY1), is of interest. If no significant change occurs, the KL dis-

tance will be close to 0; otherwise, the KL distance will be large. From a Bayesian theorem, for
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examinee i, the posterior distribution of ui1, given the responses to the test at Time 1, is com-

puted as

p ui1jY1ð Þ = L ui1, Y1ð Þf uð ÞÐ
:::
Ð

L ui1, Y1ð Þf uð Þ∂u
, ð7Þ

where L(ui1, Y1) denotes the likelihood as in Equation 3, and f (u) denotes the prior. A noninfor-

mative flat prior was used throughout the study. The denominator is a D-fold multiple integral.

p(ui2jY2) is computed in a similar fashion. Then, the KL divergence between the two posterior

distributions is calculated as

KLD = Ep ui1jY1ð Þ log
p ui1jY1ð Þ
p ui2jY2ð Þ

� �
: ð8Þ

Equation 8 can be numerically approximated by

Xq

i1 = 1

:::
Xq

iD = 1

p� ½ui1 , :::uiD �jY1ð Þ log
p� ½ui1 , :::uiD �jY1ð Þ
p� ½ui1 , :::uiD �jY2ð Þ

� �
, ð9Þ

where there are q quadrature points along each dimension, and p�(½ui1 , :::uiD �jY1) and

p�(½ui1 , :::uiD �jY2) are normalized probability mass functions satisfyingPq
i1 = 1 :::

Pq
iD = 1 p�(½ui1 , :::uiD �jY1) = 1 and

Pq
i1 = 1 :::

Pq
iD = 1 p�(½ui1 , :::uiD �jY 2) = 1. Although

Equation 9 contains multiple summations which will be computationally intensive if D is large,

if the test displays a simple structure, such computation can be expressed in matrix form to sub-

stantially reduce the calculation burden (see the appendix).

Belov and Armstrong (2011) showed that, under certain reasonable assumptions common in

psychometrics, the distribution of KL divergence follows, asymptotically, a scaled (noncentral)

chi-square distribution. Although their argument is based on a unidimensional latent trait, the

same arguments can be made in the multidimensional case. It can be shown that, if the posterior

covariance matrix of ui1 and ui2 from the two occasions are close, then KL divergence follows

a chi-square distribution with D degrees of freedom. Therefore, for each examinee, the observed

KL divergence can be compared with the chi-square distribution to compute the p value under

the null hypothesis. Different from the other three tests, the KL test forms the test statistic based

on the equivalency of the two posterior distributions.

Post Hoc Comparisons

The four hypothesis tests can all be viewed as omnibus tests to determine whether the two latent

trait profiles are the same across two occasions. When the omnibus null hypothesis is rejected, it

is equally important to identify the specific dimensions on which the significant change occurs.

This post hoc comparison can be done using a simple univariate Z-test, but either (a) controlling

for family-wise error rates using a Bonferroni correction (e.g., Dunn, 1961), or (b) controlling

for false discovery rate using a Benjamini–Hochberg (BH) procedure (Benjamini & Hochberg,

1995). Specifically, for examinee i who is identified as having a significant change by one of

the four omnibus tests,

Zd
i =

û
d

i1 � û
d

i2

� �2

S
û

mle

pooled

	 

dd

ð10Þ
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can be computed where S
û

mle

pooled

is defined in Equation 2 and (S
ûmle

pooled
)dd denotes the dth diagonal

element in this matrix. Then with Bonferroni correction, Zd
i , computed for each dimension, can

be compared with a standard normal distribution with significance level of a=D . With the BH

correction, Zd
i is compared with a standard normal distribution to obtain a corresponding p

value, denoted as, Pd
i . Then all D p values are ranked in order from smallest to largest,

(Pd
i )1, . . . , (Pd

i )k , . . . , (Pd
i )D, where the subscript ‘‘k’’ denotes the kth smallest p value from the

list. Each individual p value is then compared with the BH critical value, (k=D)q, where q is

the false discovery rate. Then, find the largest (Pd
i )k that satisfies (Pd

i )k � (k=D)q, then all of

the p values smaller than k are considered significant. Usually q is larger than a (McDonald,

2014), and while a = .05, q was chosen to be 0.15 in this study. This decision was made for

two reasons: (a) conceptually, q = 0.15 indicates an expected 15% false discoveries among all

the significant results across three dimensions, each of which could be considered as having a

5% false discovery per dimension2; (2) the simulation results presented below showed that set-

ting q = 0.15 maintained good power and kept the Type I error rate below or at 0.05 (with only

a few exceptions). Of course, setting a lower q value will further bring down the Type I error

rate but at the sacrifice of the power. Note that in this study, only the simple univariate Z-test

was considered for post hoc comparisons. The possibilities of modifying LR and ST for such

purpose are discussed below.

Simulation Studies

Study I: Evaluating the Performance of the Omnibus Tests

Method. Using simulated repeated measures of test data, the performance of the proposed four

omnibus tests was examined in terms of Type I error and power. A simulee’s latent trait profile

at Time 1 (ui1) was simulated from a multivariate normal distribution with a mean vector of 0s

and a covariance matrix with 1s along the diagonal and 0.5s off the diagonals. This level of cor-

relation is seen in real testing, such as the ASVAB (Armed Services Vocational Aptitude

Battery; Yao, Pommerich, & Segall, 2014). To evaluate the power of each method, simulees’

profiles at Time 2 were generated from an LGC model, that is, ui2 = ui1 + bi + e, where the resi-

duals, e, followed a multivariate normal distribution with a mean vector of 0s and a diagonal

covariance matrix with 0.5 along the diagonals. In this study, the residual variance was kept

fixed because estimating u was not the primary objective, but rather evaluating the efficiency of

the proposed methods when the level of average change varied. The value of .5 was chosen such

that the intraclass correlation (ICC) was approximately .66, which is close to the ICC in some real

longitudinal data (e.g., Kwok et al., 2009). The individual slope parameter bi also followed a mul-

tivariate normal distribution with a diagonal covariance matrix with 0.1 along the diagonals. This

value was selected to allow enough variability across different simulees so that some might have a

higher level of change than others. The mean of bi increased from a vector of 0.2 to a vector of 0.8

(with 0.2 increment) to induce different levels of change. Multivariate change was computed as the

average Euclidean distance between ui1 and ui2 (denoted as ui1 � ui2k k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
d = 1 (ud

i1 � ud
i2)

2
q

)

divided by the number of dimensions, D,

D =
1

N

XN

i = 1

Di =
1

N

XN

i = 1

1

D
ui1 � ui2k k

	 

, ð11Þ
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where D = 3, and N is the sample size. Equation 11 roughly indexes the average change along

each dimension. This method generated an average change (i.e., quantified by the magnitude of

D) in the latent traits that was similar to the observed change in patients’ depression levels

before and after intervention (see Table 3, Brouwer, Meijer, & Zevalkink, 2013, or Finkelman

et al., 2010). Sample size was set at 10,000. To evaluate Type I error of each method, no change

was imposed; hence, ui1 = ui2 for that sample of 10,000 simulees.

Both within- and between-item multidimensionality structures were considered. For a

between-item multidimensional test (i.e., simple structure), the item discrimination parameters

were simulated from a normal distribution with a mean of 0 and a standard deviation of 0.15

with a scaling factor of 1.7 (Finkelman et al., 2010), the difficulty parameters were simulated

from a N(0, 1) distribution, and the guessing parameters were simulated from a U[0, 0.2] distri-

bution (e.g., C. Wang & Chang, 2011). It was assumed that the test measured three correlated

dimensions. Test length was 15, 30, 60, or 90 items. For the complex structure tests, the item

parameters were obtained from 30 dichotomously scored items in Reckase (2009, p. 153, Table

6.1), which were cloned and a very small distrurbance was added to create 60- and 90-item

tests. A random half of the items were used for the 15-item condition. The scaling factor of 1.7

was used, as well.

Results. Tables 1 and 2 present the power and Type I error for the four hypothesis testing meth-

ods at four levels of multivariate change (D) and four test lengths for both the simple and com-

plex multidimensional structures, respectively. There are several sailent trends in Table 1. First,

and unsurprisingly, increasing the number of items always increased the power of all methods,

regardless of D. This is because increasing test length increases the test information and thereby

decreases the measurement error. Second, as the level of change increased, detecting individual

change became easier, resulting in higher power. As shown in Table 2, the majority of the val-

ues of Type I error for the LR and ST fell close to the nominal level of .05 with ST being

slightly more conservative, whereas for MZ and KL, Type I errors were generally above the

.05 level, especially for short tests. ST and LR were relatively conservative among the four

hypothesis tests but they both generated acceptably high power combined with low Type I error

rate with reasonable test length.

Study II: Evaluating the Performance of the Post Hoc Comparisons

The second study was designed to evaluate whether the dimension(s) on which the psychome-

trically significant change occurred could be correctly identified for simulees who were classi-

fied as having significant change at the profile level. For this purpose, simulees’ latent profiles

were simulated so that it was known exactly on which dimension(s) the true change occurred.

Ignoring the direction of change, there were six core types of change patterns that encompassed

all possible patterns of interest.

Method. In total, 60,000 examinees were simulated, evenly distributed among the six change

patterns with 10,000 having each pattern. The u vector at Time 1 was simulated from a multi-

variate normal distribution in the same way as in Study 1; the u vector at Time 2 was simulated

by adding a vector of (d,d,d) along with a random disturbance vector to the u vector at Time 1.

Four levels of d were considered: 0.25, 0.5, 0.75, and 1. The three-dimensional random distur-

bance vector was simulated from a multivariate normal distribution with a mean vector of 0

and a diagonal covariance matrix with 0.001 (to create a small disturbance) along the diagonals.

Test length was fixed at 60 items, and LR was used for testing the omnibus hypothesis. Both

simple and complex multivariate structures were examined. Power was computed as the propor-

tion of 10,000 simulees of each change type (or simulees having a change on a certain
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dimension) correctly identified as having changed, whereas Type I error was computed as the

proportion of the simulees not having a change on a certain dimension who were identified as

having significant change.

Results. Tables 3 and 4 summarize the power and Type I error for the post hoc comparisons at

four different levels of multivariate change. Consistent with both Tables 1 and 2, there was

increased power with increased individual change. Type I error rate was uniformly lower (with

two exceptions) than the nominal level of .05, which resulted in low power. The Bonferroni

correction tended to be too conservative, and with only three comparisons, even without correc-

tion, the pairwise Z-test still maintained Type I error below .05. For the BH correction, because

the false discovery rate was set at .15, the Type I error was slightly above .05 in some cases but

Table 1. Mean Power for Four Hypothesis Testing Methods at Four Levels of Multivariate Change (D)
and Four Test Lengths for Simple and Complex Structure Data.

Test length and method

Simple structure Complex structure

0.493 0.624 0.800 1.008 0.491 0.620 0.800 1.001

15 items
MZ 0.272 0.313 0.563 0.721 0.271 0.381 0.525 0.618
LR 0.171 0.246 0.329 0.444 0.183 0.270 0.405 0.521
ST 0.127 0.252 0.286 0.326 0.150 0.219 0.335 0.453
KL 0.130 0.193 0.335 0.517 0.229 0.318 0.470 0.577

30 items
MZ 0.378 0.479 0.691 0.754 0.469 0.585 0.717 0.796
LR 0.293 0.423 0.498 0.713 0.385 0.509 0.650 0.743
ST 0.275 0.390 0.416 0.684 0.355 0.481 0.621 0.716
KL 0.264 0.421 0.577 0.732 0.461 0.589 0.721 0.807

60 items
MZ 0.563 0.660 0.814 0.898 0.610 0.719 0.826 0.882
LR 0.518 0.630 0.784 0.892 0.561 0.692 0.803 0.870
ST 0.499 0.619 0.754 0.885 0.551 0.690 0.801 0.876
KL 0.541 0.640 0.807 0.885 0.615 0.740 0.840 0.902

90 items
MZ 0.660 0.784 0.884 0.953 0.706 0.789 0.872 0.913
LR 0.629 0.761 0.877 0.952 0.671 0.777 0.860 0.911
ST 0.616 0.746 0.872 0.953 0.675 0.787 0.870 0.925
KL 0.639 0.783 0.869 0.949 0.706 0.806 0.889 0.932

Note. MZ = multivariate Z-test; LR = likelihood ratio test; ST = score test; KL = Kullback–Leibler test.

Table 2. Type I Error Rate for Four Hypothesis Testing Methods at Four Test Lengths for Simple and
Complex Structure Data.

Method

Simple structure Complex structure

15 30 60 90 15 30 60 90

MZ 0.247 0.114 0.089 0.066 0.149 0.095 0.078 0.078
LR 0.051 0.057 0.058 0.054 0.045 0.043 0.046 0.049
ST 0.044 0.046 0.052 0.052 0.023 0.032 0.040 0.049
KL 0.050 0.070 0.064 0.053 0.083 0.072 0.068 0.068

Note. MZ = multivariate Z-test; LR = likelihood ratio test; ST = score test; KL = Kullback–Leibler test.
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with substantially higher power. Table 5 shows the power of detecting each level of change for

different change patterns. For simple structure tests, when the change occurred on all three

dimensions (Change Types 1-3), the power was the highest. When there was no change on cer-

tain dimensions (Types 4-6), the power decreased. The amount of power appears to be related

to the Euclidean distance between the two u vectors, as shown in Table 6, and that might be

the reason why Type 5 yielded the lowest power among the six types.

A Real-Data Example

A real-data analysis was conducted to illustrate the performance of the four omnibus hypothesis

testing methods. This data set contained 1,024 students’ responses to a math test in Grades 3

and 4. In each administration, 52 items were administered that measured five dimensions (the

values in parentheses are the number of items measuring each dimension for each of the 2

years, respectively): (a) number and operation (22, 21); (b) geometry and spatial sense (5, 7);

(c) data analysis, statistics, and probability (6, 7); (d) measurement (13, 9); and (e) algebra,

functions, and patterns (6, 8). The entire test exhibited a simple structure as each item loaded

only on one dimension based on item content. The item M3PL parameters were obtained from

the field test sample with 6,682 observations. When the five-dimensional M3PL model was fit

to the original field test sample using flexMIRT (Cai, 2013) for each time point separately, the

full-information global fit statistic of the fitted model, root mean square error approximation

Table 3. Power for Post Hoc Comparisons at Four Levels of Multivariate Change (D) for a 60-Item Test.

Test structure
Change
size (D)

Dimension 1 Dimension 2 Dimension 3

No B BH No B BH No B BH

Simple structure 0.125 0.041 0.030 0.050 0.044 0.031 0.051 0.039 0.031 0.048
0.251 0.104 0.086 0.119 0.096 0.073 0.112 0.099 0.069 0.120
0.376 0.222 0.177 0.258 0.241 0.193 0.284 0.248 0.189 0.303
0.502 0.398 0.334 0.449 0.398 0.306 0.466 0.380 0.280 0.469

Complex structure 0.125 0.044 0.011 0.050 0.044 0.012 0.050 0.046 0.012 0.053
0.251 0.109 0.040 0.127 0.109 0.039 0.127 0.128 0.047 0.148
0.376 0.192 0.083 0.235 0.219 0.095 0.262 0.235 0.107 0.295
0.502 0.325 0.171 0.386 0.316 0.161 0.391 0.333 0.183 0.424

Note.‘‘No’’ denotes no correction, ‘‘B’’ denotes Bonferroni correction, and ‘‘BH’’ denotes Benjamini–Hochberg

correction.

Table 4. Type I Error for Post Hoc Comparisons for a 60-Item Test.

Test structure

Dimension 2 Dimension 3

No B BH No B BH

Simple structure 0.036 0.024 0.051 0.048 0.030 0.074
Complex structure 0.026 0.006 0.039 0.025 0.006 0.042

Note.‘‘No’’ denotes no correction, ‘‘B’’ denotes Bonferroni correction, and ‘‘BH’’ denotes Benjamini–Hochberg

correction. Dimension 1 is not included due to the manner in which us were simulated: A specific level of change was

always added on the first dimension.
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(RMSEA), was 0.06 and 0.07, respectively. Different from the typical upper threshold of .08

for RMSEA (Hu & Bentler, 1999) for covariance structure models, the cutoff for bivariate

RMSEA and full-information RMSEA for categorical data are 0.05 and 0.03, respectively

(Maydeu-Olivares & Joe, 2014). According to these criteria, it was concluded that the five-

dimensional M3PL showed some level of misfit to the data. However, the item parameter esti-

mates were plausible and their corresponding standard errors were reasonable; hence, the item

parameters were used for the follow-up analysis.3 All students had mixed response patterns on

all items belong to each domain, thereby ensuring the MLEs to be finite. The four omnibus

tests were performed using each student’s scored item responses, and each student was classi-

fied as either having significant change or not by every test.

Table 7 shows that the agreement between LR and ST was the highest (.870), whereas the

agreement between KL and the other three was relatively low. Moreover, KL was the most con-

servative among the four, with the fewest number of students identified as having significant

change: The proportion of significant change was 56%, 60%, 66%, and 27% for MZ, LR, ST,

and KL, respectively. This observation contradicts the simulation results that KL is more liberal

and thus more powerful; one possible reason is that the real test contained fewer items per

domain than used in the simulation study, and therefore MLEs would be outwardly biased. As

a result, significance tests that rely on MLEs would tend to capitalize on the outward bias and

identify more students as having significant change. Another reason is that the KL test relies on

the assumption of multivariate normality of the posterior distribution of u, which might be

Table 5. Power of Detecting Six Types of Change at Four Levels of Change (d = 0.25, 0.50, 0.75, and 1.0)
for a 60-Item Test Using the LR Test.

Type of change

Simple structure Complex structure

0.25 0.50 0.75 1.0 0.25 0.50 0.75 1.0

1 ( + + +) 0.075 0.218 0.470 0.701 0.113 0.395 0.727 0.813
2 ( + + 2) 0.095 0.202 0.446 0.679 0.083 0.222 0.516 0.698
3 ( + 22) 0.063 0.192 0.436 0.653 0.099 0.221 0.486 0.697
4 ( + + 0) 0.089 0.149 0.337 0.524 0.084 0.216 0.438 0.648
5 ( + 0 0) 0.075 0.118 0.183 0.258 0.062 0.106 0.194 0.330
6 ( + 2 0) 0.087 0.169 0.315 0.508 0.075 0.163 0.322 0.473

Note.‘‘ + ’’ indicates positive change on a dimension, ‘‘0’’ indicates no change, and ‘‘2’’ indicates negative change. LR =

likelihood ratio test.

Table 6. Mean D by Change Type at Four Levels of Change for Simple Stucture Multidimensionality.

Type of change

Level of change

0.25 0.50 0.75 1.0

1 ( + + + ) 0.144 0.289 0.433 0.577
2 ( + + 2) 0.144 0.289 0.433 0.577
3 ( + 22) 0.144 0.289 0.433 0.577
4 ( + + 0) 0.118 0.236 0.354 0.471
5 ( + 0 0) 0.083 0.167 0.250 0.333
6 ( + 2 0) 0.118 0.236 0.354 0.471

Note.‘‘ + ’’ indicates positive change on a domension, ‘‘0’’ indicates no change, and ‘‘–’’ indicates negative change.
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violated with short tests and low test information. Therefore, the chi-square distribution might

not be a good approximation to the sampling distribution of KL divergence, causing the lower

power.

Figure 1 shows frequency histograms of students’ average change (defined by Di in Equation

11) for each of the omnibus test methods. Unsurprisingly, for all four methods, students classi-

fied as having nonsignificant change tended to have lower average change than those who were

classified as having significant change. KL was the most stringent test by classifying the major-

ity of students as having no significant change, whereas ST was the most liberal test. The figures

also show that a given degree of multivariate change was not a guarantee of significance or non-

significance, except for the highest and lowest levels of change. For middle ranges of change,

there were some students identified by all methods whose change was significant and others

whose change was not.

Figure 2 shows score profiles for selected students with varying levels of change for each of

the 2 years. The general trend is clear that if a student is identified as having a significant change

by more methods, then the actual estimated change of Di is generally larger, even though the

reverse pattern also exists. The figure also shows that for those students for whom change was

reliably identified by the four methods (Figure 2a and 2b), both the pattern and level of change

varied across students, as did their patterns of scores on both testing occasions.

Discussion and Conclusion

Individual Change Versus Group Change

A measure of individual change is useful when (a) it can differentiate change that is due only

to random factors (e.g., error of measurement) from change that is meaningful, (b) it is able to

measure change that occurs across two or more measurement occasions, (c) it is applicable to

measurements of any kind of psychological and educational variable, and (d) it provides results

that can be immediately available for use in an applied setting.

The methods for determining change developed and evaluated in this research have the

potential to satisfy all of these criteria. Because they are based in IRT, they permit measure-

ments that are entirely intra-individual. Once IRT item parameters are estimated on a previous

sample, only those parameter estimates and a single examinee’s responses to a subset of items

are necessary to estimate an examinee’s u levels and corresponding standard errors of measure-

ment, both of which are used in various ways by the change methods analyzed here.

The change methods studied are designed to permit a determination of whether a single

examinee’s observed change is meaningful or ‘‘psychometrically significant.’’‘‘Significance’’

is based on psychometric theory, utilizing the characteristics of the likelihood function from a

single person, and thus observed change is determined to be ‘‘psychometrically significant.’’

Group-based methods for analyzing change, such as LGC modeling, can also produce esti-

mates of individual change. The individual intercept and slope are obtained via a simple closed

Table 7. Classification Agreement Between Pairs of Significance Tests.

Method MZ LR ST

LR 0.734
ST 0.716 0.870
KL 0.685 0.642 0.594

Note. MZ = multivariate Z-test; LR = likelihood ratio test; ST = score test; KL = Kullback–Leibler test.
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form, known as the empirical Bayes estimate. Moreover, when group information is taken into

consideration, the correlations among multiple dimensions can be used, which echoes the statis-

tical advantage of ‘‘borrowing strength’’ from correlated dimensions in MIRT. As a result, an

individual’s latent traits can be more accurately estimated with smaller measurement errors

(e.g., Reckase, 2009; C. Wang, 2015; C. Wang & Chang, 2011). However, as indicated above,

the individual parameters are obtained relative to the group in which the individual is

embedded; hence, an individual’s change trajectory might take different shapes depending on

the group information. This is less ideal than the intra-individual change method advocated in

this study. Moreover, the methods proposed here have two other advantages as compared with

the popular alternatives, such as LGC modeling: (a) The present methods can be used with as

few as two measurement occasions: regression slopes and intercepts based on two observations

for a single individual will have very large standard errors and will be difficult to classify as

‘‘statistically significant’’ using statistical sampling theory; (b) when generalized beyond two

occasions (Phadke & Weiss, 2017), these methods do not require the specification of a func-

tional relationship describing change (e.g., linear, quadratic); instead, change is evaluated and

the nature of the functional relationship can be determined afterward at the individual level.

The change methods studied were originally developed to detect significant change on a sin-

gle variable across two measurement occasions (Finkelman et al., 2010). The present research

extended the number of variables to three in the simulation studies and five in the real-data

Figure 1. Histogram of average change (i.e., Di) for students with significant and nonsignificant change:
(a) MZ, (b) LR, (c) ST, and (d) KL.
Note. MZ = multivariate Z-test; LR = likelihood ratio test; ST = score test; KL = Kullback–Leibler test.

Wang and Weiss 233



analysis. The methods, therefore, can be used with any number of measurements taken on an

examinee on two occasions. Because the simple and complex structure tests used in the study

utilized items from different distributions, a direct comparison between the two test structures

was not possible, nor was it the intention of the study. Instead, the studies were designed to

assess the performance of the methods under conditions commonly encountered in practice.

Figure 2. Cognitive profiles of individual students in Year 1 (—) and Year 2 (- -) for different levels of
change (i.e., Di): Profiles of (a) four students who had significant change identified by all four methods, (b)
four students who had significant change identified by three of four methods, (c) four students who had
significant change identified by either one or two methods, and (d) four students who were classified by
all four methods as having no significant change.
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Although simple structure emerges in many real tests (such as the ASVAB, or in the real-data

example), as more measurements are taken on an examinee, the possibility arises that the factor-

ial structure will become more complex. In either case, increasing test information (by, for

instance, increasing the values of a parameters) will help improve the power of the tests.

Main Findings and Significance

Willett (1988, 1997) has argued that a proper analysis of change requires measurement on a sin-

gle variable on more than two occasions. Although the present change methods have been stud-

ied only for the two-occasion case, their generalization to multiple occasions is straightforward.

Work is underway to accomplish this generalization and to evaluate the performance of the

change methods when an individual is measured on more than two occasions. Because the

change methods have been developed within the context of IRT, they can be used with any type

of measurements that can be fit with an IRT model, whether it is dichotomously or polyto-

mously scored. The final generalization of the methods proposed here is to extend them to

simultaneously analyze individual change on more than two measurements taken on more than

two occasions.

As indicated, a change detection method is maximally useful when its results provide action-

able data. Obviously, because of the IRT underpinnings of these methods, psychological practi-

tioners will not be able to compute them in an applied setting. However, as electronic testing

and IRT-based tests continue to replace paper-and-pencil testing in many testing programs, the

computations necessary to determine significant change can easily be programmed into the out-

put from major testing programs. Any testing program that delivers its instruments electroni-

cally could incorporate the change methods studied here to provide psychologists and educators,

on retest of any examinee, with instant determinations of significant change on one or more

measured variables.

Simulation studies using artificial data demonstrated the promise of all four change detection

methods, among which both the ST and LR test provided good balance between high power

and low Type I error rate. Because the power is slightly low when test length is short, one future

direction is to use computerized adaptive testing (CAT), because CAT can provide more precise

measurements with a given number of items, thus reducing the effects of measurement errors in

the detection of change and thereby providing the potential for improved power. All methods

for the measurement of change are based on the assumption that the latent construct of interest

is invariant across measurement occasions. This assumption can be formally checked (see Liu

et al., 2016, for details).

The real-data results demonstrated the complexity of multivariable change over two testing

occasions. Figure 2 shows that, for a given level of multivariate change, psychometric signifi-

cance is not guaranteed, particularly in the middle ranges of average change. This is due to (a)

the differing levels of change that result in a given amount of average change and (b) the differ-

ent precision associated with each examinee’s measured level of change on each variable. A

similar observation was made by Phadke et al. (2016) based on unidimensional change data in

reading and math. Figure 2 also demonstrates the complexity of multivariate change. In Figure

2a and 2b, different students have different levels and patterns of test scores at both Time 1 and

Time 2, resulting in different levels and patterns of significant change across students.

Future Studies

As the first study to investigate the identification of significant multivariate individual change

using IRT, the generality of the findings is, of course, limited. Further research is needed with
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more than three dimensions, more than two occasions, a wider range of multivariate structures

(e.g., bifactor structures, other complex structures), different IRT models (e.g., Hong, Wang,

Lim, & Douglas, 2015; W. C. Wang, Qiu, Chen, Ro, & Jin, 2017), and different post hoc tests

that were not evaluated in the current study. Future research should also examine the applica-

tion of these methods within the context of multivariate CAT and consider the performance of

various omnibus tests coupled with different item selection rules in CAT (e.g., Finkelman et

al., 2010).

To elaborate on the post hoc comparisons, take LR test as an example. If testing

H0 : ud
i1 = ud

i2 = ud
i against Ha : ud

i1 6¼ ud
i2, then under the null hypothesis, the likelihood is maxi-

mized with respect to ud
i , u�d

i1 , u�d
i2 jointly, where the superscript ‘‘–d’’ indicates all but the dth

component of the latent trait. Under the alternative hypothesis, the likelihood is maximized at

û
mle

i1 and û
mle

i2 as before. Then the LR statistic is compared with a chi-square distribution with

one degree of freedom. The ST can also be modified in a similar fashion. That is, let

uH0
= (ud

i , u�d
i1 u�d

i2 ) denote a 2D-by-1 vector after putting the elements in ud
i , u�d

i1 , u�d
i2 in

appropriate order, then the test statistic becomes ST = S(uH0
)0I�1(uH0

)S(uH0
);x2

df = 1. The

performance of the LR and Lagrange multiplier (LM) statistics for post hoc comparisons should

be evaluated in future studies.

Appendix

Matrix Computation of Kullback–Leibler (KL) Divergence

Consider 61 points spanning from 23 to 3 with 0.1 increments along each ability dimension,

and let p1 denote a 61-by-D matrix, with the (l, d)th element being
Qnd

j = 1 P(ud
i )

ij
(1� P(ud

i ))
1�ij

.

p2 is computed similarly with item parameters and the response vector from the second occa-

sion. Then the likelihood at every possible ability point (there are 61D points in total) forms a

61D�1-by-61 matrix Ut computed recursively as Ud
t = Ud�1

t � pd
t , for t = 1 or 2, and D . 2, d

= 2, . . . , D. pd
t denotes the dth column of pt, � denotes Kronecker products, and U2

t = p1
t (p2

t )T

when D = 2. After expressing the posterior likelihood as a matrix operation in matrix form, the

computation of Equation 9 becomes much simpler. In all computations, only one loop with 61

iterations is needed, regardless of the size of D.

Acknowledgments

The authors would like to thank the editor, the associate editor, and three anonymous reviewers for their

thoughtful comments and suggestions.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or pub-

lication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or pub-

lication of this article: This article is partially supported by Institute of Education Sciences (IES) Grant

R305D160010, National Institutes of Health (NIH) Grant R01HD079439-01A1, and Spencer Foundation.

Author Notes

1. Throughout the study, item parameters were assumed to be precalibrated and known; hence, the intra-

individual tests do not use any group-level information.

236 Applied Psychological Measurement 42(3)



2. This conceptual explanation is viable only when the number of multiple tests is small, such as in the

current application. When hundreds of tests are performed simultaneously, such as in a biological con-

text, multiplying a = .05 by the number of tests certainly does not make sense.

3. Evaluating model data fit was not the focus of the study; hence, only global fit was checked. Based on

Maydeu-Olivares and Joe’s (2014) cutoff, the model showed some degree of misfit. Hence, the results

based on real data should be interpreted with caution.
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