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Abstract

Cortical activity involves large populations of neurons, even when it is limited to functionally 

coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small 

neural ensembles, even when modern-day techniques are used. Here we review results which have 

started to fill the gap between these two scales of inquiry, by shedding light on the statistical 

distributions of activity in large populations of cells. We put our main focus on data recorded in 

awake animals that perform simple decision-making tasks and consider statistical distributions of 

activity throughout cortex, across sensory, associative, and motor areas. We transversally review 

the complexity of these distributions, from distributions of firing rates and metrics of spike-train 

structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the 

dynamical evolution of neural population activity and the distributions of (pairwise) neural 

interactions. This approach reveals shared patterns of statistical organization across cortex, 

including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a 

majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) 

distributions of tuning parameters for sensory (and motor) variables, which show an extensive 

extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide 

dynamics that reveal rotations of internal representations over time, whose traces can be found 

both in stimulus-driven and internally generated activity. We discuss how these insights are leading 

us away from the notion of discrete classes of cells, and are acting as powerful constraints on 

theories and models of cortical organization and population coding.
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1 Introduction

Over the course of the last century, studies based on lesions, electrophysiology, fMRI, and 

other methods have quite successfully mapped out where different types of information are 

represented in the brain (Kandel et al., 2000). During the same period, our understanding of 

the single neuron and its role in the brain has increased substantially (Koch, 1999). While 

both research directions have created a wealth of knowledge about the organization of the 

brain, a large gap remains between them. At the center of this gap lie neural networks—

thousands or millions of interconnected neurons, responding in myriad ways to whatever 

task an organism is engaged in. The number of degrees of freedom in these neural 

populations explodes, a phenomenon known as the “curse of dimensionality”. This 

dimensionality explosion creates a tremendous challenge to unravel how information in 

populations of neurons is processed and represented. One challenge is to understand the 

structure and plasticity of these networks, one to link this structure and plasticity to the 

generated activity, and one challenge is to describe and interpret this activity. This latter 

problem will be the focus of our review.

What defines a neural population and how should we represent its activity? A neural 

population is a collection of single cells in a given region or area of the brain. Accordingly, 

the population activity is just the collection of the respective single cell activities. A 

common view is that if a large class of cells is activated by the same type of information, 

e.g., a feature of a visual stimulus, then any differences in their responses are noise that must 

be averaged over. At the other extreme, the details of every single neuron matter, and the 

activation of each neuron has to be considered separately. In this review, we will attempt to 

strike a balance between these extremes, and center on the statistical approach to 

characterizing population activity. The statistical approach aims to quantify the probability 

with which a set of features is represented in a population of neurons.

Such a quantitative, probabilistic description of the population activity will be useful on 

three fronts. First, it shows how information is embedded in population activity and may 

thereby expose widespread organizational principles or statistical patterns that are shared 

across brain areas. Second, such an understanding may help to study the computations 

carried out in a given circuit. Third, a statistical description of population activity imparts 

important constraints to network models that seek to explain how these activities are 

generated through the interaction of neurons. To obtain these constraints, a description of the 

population activity for a particular experimental condition requires more detail than simply 

“N/500 cells were responsive (T-test, P < 0.05)”. Instead, we need to access the overall 

distribution of measured features in the population, and we need to provide a specific 

probabilistic model of the activity.

Here, we will review what we have learnt about population activities across the cortex, from 

sensory to executive to motor areas. We will restrict ourselves to the representation of simple 

stimuli or simple actions and put a strong emphasis on data that have been collected from 

animals performing well-controlled behavioral tasks. We will mostly leave aside parts of the 

literature that are concerned with complex stimuli (such as natural stimuli), complex 

movement sequences etc. Focusing on one dimensionality explosion, namely the one we 
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face when observing thousands of neurons, already provides ample perplexity. We will 

therefore disregard that second dimensionality explosion neuroscience is struggling with, 

namely the innumerable sensory stimuli or motor actions that may shape and modify the 

population activity.

The review is largely organized by model complexity. First, in Section 2, we discuss and 

specify the statistical approach to describing population activity, emphasizing its usefulness 

and its limitations. In Section 3, we review what is known about distributions of firing rates. 

In Section 4, we look beyond firing rates and review the distributions of second- and higher-

order statistics of spike trains. In Section 5, we review how neural populations are tuned to 

stimuli or actions and look into distributions of tuning curves and other encoding features. In 

Section 6, we take time into consideration and review what is known about the dynamics of 

neural population activity. Finally, in Section 7, we discuss more recent attempts to yield full 

characterizations of the population activity, that include (pairwise) neural interactions and 

correlations.

2 The statistical approach to population activity

2.1 The statistical characterization of cell-to-cell variability

For concreteness, imagine an animal that is engaged in a task in which we monitor a set of 

sensory stimuli s and a set of movements or actions a (Figure 1). In such a setting, we can 

often record the simultaneous activity of many neurons in a given patch of cortex. In 

analyzing the activity of these neurons in relation to the chosen set of stimuli or actions, we 

are likely to encounter strong cell-to-cell variability. Even if two cells are responsive to the 

same set of stimuli, their precise tuning is likely to differ. A third cell may show yet another 

tuning to the same stimuli and so on. How are we to characterize these response differences?

In the statistical approach to population activity, we neglect the identities of the neurons and 

only characterize the statistics or probabilities of their activity or some feature thereof. 

Assume, for instance, that we are measuring spontaneous activity in a region of interest. 

Focusing on a time window of length T = 10 seconds, how likely are we to find cells that fire 

exactly r = 24 spikes? How likely to find cells that fire r = 25 spikes? To answer that 

question, we can simply construct a distribution p(r) that measures the probability of 

observing the response r in the given scenario. The distribution will typically depend on one 

or more parameters, such as the mean and standard deviation in the case of a Gaussian, or 

just the mean in the case of an exponential distribution.

The situation becomes slightly more complicated if we consider that neural activities change 

with the presentation of a stimulus, the execution of an action, or simply the passage of time. 

Imagine we were to measure the responses of cells to two different stimuli—such as two 

visual gratings with different orientations. In this case, we can summarize a neuron’s 

response in a two-dimensional vector r = (r1, r2), where r1 denotes the response (such as a 

firing rate) to the first orientation, and r2 denotes the response to the second orientation. In 

turn, we can ask what is the probability of observing a particular response r in the area we 

are recording from? Just as above, this amounts to characterizing the (now bi-variate) 

distribution p(r) = p(r1, r2).
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As the number of stimuli or actions increases, as we start considering temporal changes in 

activity, or the precise timing of spikes, the distributions become distributions over many 

variables, and the naive construction of distributions p(r) through histograms and the like 

becomes unfeasible. One way to address this problem is to construct quantitative models of 

the cells’ responses. For instance, we could describe the tuning of each cell to the set of 

stimuli with a few parameters, such as the width of tuning etc. In turn, we obtain a set of 

tuning parameters q = (q1, q2, …) for each neuron. In a second step, we can then seek to 

quantify the distribution p(q) = p(q1, q2, …) of these parameters over the population.

A problem of this two-step approach is that small modeling errors on the single-cell level 

may add up to large modeling errors on the population level. In other words, even though we 

may think that we are extracting the right features to describe the responses of single 

neurons, we may still miss important features of the population response. This problem can 

be avoided by directly modeling the population activity. For instance, we could use 

dimensionality reduction techniques such as principal component analysis to extract the 

relevant features from the data. In either case, we write p(q) and use this distribution as a 

proper stochastic description of the population activity.

The statistical approach to characterizing population activity is illustrated in Figure 1. We 

record responses from a subset of the actual population, Figure 1b–c, extract the features of 

the cell’s responses, plot these features for the whole population, Figure 1d, and then fit a 

probabilistic model to the population data, Figure 1e. In turn, if we were to draw random 

samples from this probabilistic model, Figure 1f, these random samples should look similar

—in a well-specified, statistical sense—to the recorded data. Importantly, in the last step we 

need to evaluate the probabilistic model, ideally on a new set of data. Such evaluations 

essentially compare how “likely” the new data are with reference to the model, when 

compared to the (known) likelihood of simulated data (Figure 1g).

Why would such an approach, in which we neglect the identity of neurons, make any sense? 

Several reasons: first, if there are thousands or millions of neurons to consider, we can no 

longer tend to each individual neuron. Other methods are needed to study what is happening 

and the statistical approach is one of those methods, presumably one of the simplest. 

Second, as we will see, the statistical approach can highlight commonalities in the properties 

of population responses across cortex, which in turn yields important insights into the 

cortical architecture, as well as constraints for network models of neural systems. Third, to 

the extent that there are different classes of cells, i.e., different types of neurons with clearly 

distinguishable response patterns, these will be identified by a statistical approach, which 

may allow us to link response patterns to anatomical features.

2.2 The sampling problem: recording methods and their biases

Recording a full neural population is virtually impossible with current technologies. We 

must therefore rely on inferring the properties of a population from a small sample of 

recorded neurons. This approach will generally work if the sampling is representative, so 

that the statistical properties of the few neurons we record are similar to the statistical 

properties of the population as a whole. Consequently, statistical approaches require a 
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precise definition or boundary for the population, and a recording technique that samples 

neurons randomly and uniformly.

Historically, most studies used extracellular recordings with metal microelectrodes and 

relied on neural activity for localizing neurons and determining their responsiveness to 

stimuli or tasks. Consequently, electrophysiological studies are usually biased, in that the 

most active neurons are self-selective for participating in population analyses, and the rest of 

the neurons in a region of interest are omitted (see e.g. Olshausen and Field, 2005). This 

poses a serious problem since there is good reason to believe that most neurons in 

mammalian cortex are almost silent: from analyses of the expected numbers of neurons 

within the recording radius of a microelectrode, it has long been suspected that most neurons 

in cortex are not firing, otherwise an order of magnitude more spikes should be visible (see 

Shoham et al., 2006, for a discussion of this “dark neuron” problem). However, these more 

silent neurons are largely ignored with classical electrophysiological methods.

The problem of biased sampling is illustrated in Figure 2. Traditionally, population activity 

has been characterized by estimating a mean and standard error of the firing rate from 

pooled single neuron samples. However, any activity-dependent bias in the sampling of cells 

causes the sample mean to converge higher than the true population mean with an increasing 

number of samples. Consequently, the mean firing rates are too high and give little clue to 

the preponderance of low-firing neurons.

One way of avoiding this recording bias is to isolate neurons independently of their 

responsiveness to stimuli or tasks. This approach is common to tetrode recordings or multi-

cell arrays, for instance. Nonetheless, in both cases neurons are still isolated by activity, even 

if that activity is not directly task-relevant, and less active neurons risk being overlooked. 

More recent recording methods such as patch-clamping and calcium-imaging circumvent the 

problem of activity bias completely. As we will see in Section 3.1, patch-clamp recordings 

provide a different picture of population activity, with many more silent neurons included, 

thereby confirming the suspicions mentioned above.

In principle, of course, any recording technique is likely to introduce a bias. Patch-clamping 

may bias the sampling towards larger neurons or reduce their firing rates, for instance, and 

calcium-imaging may bias the sampling towards neurons that favour expression or uptake of 

fluorescent markers. However, these biases are likely to be less important than the activity-

dependent bias of traditional electrophysiology. Yet even without any recording bias, 

neurons that become active only under very specific circumstances are notoriously hard to 

characterize. In the visual system, for instance, neurons with smaller receptive fields are less 

likely to be discovered or characterized than neurons with larger receptive fields, simply 

because they are less responsive (Olshausen and Field, 2005). These problems should be 

kept in mind when characterizing populations of neurons.

2.3 The sampling problem: simultaneous versus pooled recordings

In most studies, only a few neurons are recorded at the same time, and estimates of the 

population properties are obtained via pooling data across recording sessions. This approach 

is based on two crucial assumptions. The first assumption is that the population activity does 
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not change over time. Since large shifts in population responses have only been observed in 

the context of learning, this assumption seems reasonable for a given task. The second 

assumption is that the activity of single neurons does not change from trial to trial. This, 

however, is usually not true as neurons exhibit strong trial-to-trial variability, thus leading to 

a potential confound as soon as we start characterizing populations by pooling over 

sequential experiments.

From a statistical point of view, we can remedy this problem by characterizing a neural 

response through a firing rate that is averaged over trials, and through higher-order statistics 

of the spike trains such as CVs, Fano factors etc. However, even then the estimate of a 

neuron’s firing rate will come with error bars. Since the errors differ between neurons, they 

will lead to a distribution of responses even if there were no cell-to-cell variability at all. 

Accordingly, whenever we compute neural responses by averaging over trials, we introduce 

artificial variability in the responses, an artefact that needs to be taken into account and 

corrected for in order to distinguish generic cell-to-cell variability from ordinary trial-to-trial 

variability 2. While the effect is likely to be small if responses are averaged over a large 

amount of trials, it does become relevant if only a few trials are used for averaging (e.g. less 

than ten) and may then lead to an artificial widening of the population distributions. That 

said, we note that this effect has largely been ignored in the literature, and we simply caution 

the reader that some of the distributions reported in our review may be slightly narrower 

than stated.

Our review focuses on characterizing cell-to-cell variability, and we will write p(r) to refer to 

the probability of observing a certain response r within a population of cells. Once in a 

while, we also need to specify the above-mentioned trial-to-trial variability. In these cases, 

we will use the subscript t and write pt(r) to denote the probability of observing the response 

r of a given neuron within a set of (identical) trials.

3 Population distributions of firing rates

Perhaps the simplest characterisation of a neuron population is the distribution of its activity, 

p(r), when r is some measure of firing rate. Surprisingly, such distributions have only been 

characterized in a few cases. Standard practice in electrophysiological studies has been to 

report recorded firing rates across all neurons as the arithmetic mean ± standard error, rather 

than fit a probabilistic model p(r). Seemingly few studies have directly reported the actual 

distribution of firing rates across all recorded neurons (whether single-neuron or multi-

neuron recording). As we will see below, where they have been reported, the mean firing 

rate tells us little about the population, and firing rate distributions are clearly not Gaussian. 

Moreover, we will see that whether characterising spontaneous activity, stimulus-evoked 

activity, or activity related to the execution of actions, the distributions are remarkably 

similar and robust.

2In statistical literature, this correction procedure is known as density deconvolution.
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3.1 Population activity has a (very) long-tailed distribution, across all of cortex

Studies explicitly reporting and examining distributions of firing rates in cortical populations 

are mostly recent (see DeCharms and Zador (2000) for an earlier discussion). They have 

consistently described distributions dominated by neurons with low firing rates – low in 

comparison to classical single electrode recording (Kerr et al., 2005) – with a small set of 

neurons scattered over orders of magnitude higher rates, forming a long tail 3. Shafi et al. 

(2007) re-analysed a data-set of extracellular single neuron recordings from awake monkeys, 

and reported long-tailed distributions of firing rates in both parietal and prefrontal cortices. 

Using cell-attached recording in awake mouse, O’Connor et al. (2010) reported that barrel 

cortex had a very long-tailed distribution of firing rates when averaged over trial epochs. In 

perhaps the only study to explicitly fit a probabilistic model p(r), Hromadka et al. (2008b) 

used cell-attached recording in awake rat A1 to show that log-normal, rather than 

exponential, functions best-fit the distributions of firing rates across all task stages.

Bringing together the results of these studies with further multi-neuron recording data made 

available to us, we first survey the distributions of firing rates r and the probabilistic models 

p(r) we can use to describe those distributions, covering regions from all across cortex. We 

show the ubiquity of the long-tailed distribution, and also that the most common model 

points to a non-negligible peak at very low firing rates.

3.1.1 Spontaneous and overall activity—To get a first statistical picture of the 

population, we start by building a simple distribution of the population activity p(r), where 

we ignore the animal’s behaviour. This covers a wide range of situations we label for 

convenience as “spontaneous”: recordings under anaesthesia, during sleep, and quiet 

wakefulness, as well as “baseline” epochs of recordings before a stimulus presentation or a 

movement. It also covers what we term here “aggregate” recordings, analysed across 

presentations of stimuli or productions of actions. We group these as both are neural activity 

analyses without alignment to a component of a task (stimulus, action, or delay).

Figure 3a shows how neural populations’ distributions of spontaneous and aggregate firing 

rates are consistently right-skewed and long-tailed in examples from across the whole 

cortex: from primary sensory cortices (A1, V2), through “higher” prefrontal regions (OFC, 

PFC), to primary motor cortices (M1). These examples also show the consistency across 

species, recording technique and vigilance state – under anaesthetic, awake and resting, or 

awake and behaving. In every case, the distributions are dominated by neurons firing less 

than 1 spike/s, with few neurons firing at rates an order of magnitude higher.

Deciding which statistical models p(r) best describe the firing rate distributions, whether 

these are different across cortical areas, and what that means, are open problems. For firing 

rate data available to us we fitted exponential, log-normal, and gamma probability 

distributions as examples of general potential models. 4 As firing rate data can only take 

3In statistical literature, “long tails” often refer to precise mathematical definitions which essentially characterize a slower asymptotic 
drop-off than the exponential distribution. Since such notions are not applicable to finite, empirical distributions, we use the word 
“long-tailed” in a more informal meaning, to describe distributions which clearly drop off more slowly than a Gaussian.
4Models were fitted using maximum likelihood; to determine the best-fitting model, we computed a Bayesian Information Criterion 
for each model, and from that determined its posterior probability of having generated the data (Wagenmakers and Farrell, 2004).
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zero or positive values, one might consider the exponential distribution to be the null model 

for such distributions: deviations from this distribution are then informative about the 

relative spread of firing rates into the lower-rate peak or higher-rate tail of the distribution.

We found that all three distributions occur in the cortical activity data-sets (Figure 3b). Like 

Hromadka et al. (2008b), we found log-normal models best-fit the firing rate distributions in 

A1, as well as PFC and M1, suggesting that there is a non-negligible peak of very low firing 

rates in each of these regions; both other models under-estimated p(r) over the middle range 

of the distributions (Figure 3c). The distribution of firing rates in V2 was best-fit by an 

exponential model, suggesting just a long tail (Figure 3c). The distribution of firing rates in 

OFC was best-fit by a gamma model: the exponential model under-estimated the mid-range 

of the distribution and the log-normal model over-estimated the tail of distribution. Are these 

distinct distributions between cortical regions meaningful? This is unknown: they could 

represent differences between vigilance states (awake vs anaesthetised), of recording type, of 

the sample size and construction (pooled vs single recording), or of the spatial sampling (see 

results on layer-specificity below). Nonetheless, they may also reflect different 

characteristics of the cortical micro-circuits in different areas.

As we noted in Section 2.2, such long-tailed distributions are surprising from the perspective 

of classical single neuron recording studies, but not surprising from the perspective that most 

neurons in cortex must be almost silent, given the likely recording radius of electrode 

technology (Shoham et al., 2006). Consequently, we expect most cortical neurons to be at 

the sub-1 Hz end of the firing rate distribution, and the few neurons that are more active 

ensure long-tailed distributions of firing rate everywhere in cortex. Such long-tailed 

distributions, dominated by ultra-low rate neurons, are consistent with estimates that mean 

rate over all cortex must be very low due to metabolic demands (Laughlin and Sejnowski, 

2003; Lennie, 2003). What is perhaps genuinely surprising is the ubiquity of the rejection of 

an exponential model: low firing rates dominate, but not arbitrarily low.

3.1.2 Evoked activity and activity during task-engagement—Given the little 

firing in the spontaneous state, one may wonder what happens when the respective piece of 

cortex becomes engaged, e.g., through sensory stimulation, or through a particular 

behavioral task that an animal is carrying out. Ignoring the precise tuning of cells (see 

Section 5) or their temporal dynamics (see Section 6), this is simply asking what we know 

about the distribution of firing rates, p(r), when a single stimulus is presented, or when a 

particular action taken. From current evidence, it seems all such distributions are also long-

tailed – the majority of neurons have a low firing rate, and only a small subset display strong 

activity aligned to the task component.

Hromadka et al. (2008a) pooled single cell-attached recordings to show that the A1 cortex in 

awake rats had long-tailed firing rate distributions aligned to stimuli presentations (Figure 

4a); similar to their recordings of spontaneous activity, they reported good fits by log-normal 

distributions. Using similar recording methods, O’Connor et al. (2010) reported long-tailed 

distributions of firing rates in mouse barrel cortex (S1) aligned to stimulus contact by the 

whiskers (Figure 4b, right). Shafi et al. (2007) pooled single-cell extracellular recordings 
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from monkeys performing a delayed-match-to-sample task to show a long-tailed distribution 

of firing rates during the delay period.

We confirmed the generality of these prior results by fitting distribution models to firing-rate 

data from each of the stimulus presentation, action, and delay parts of different tasks. For 

stimulus-aligned rates, we used recordings of rat A1 after presentation of a tone stimulus in 

a two-choice decision-making task (data from Otazu et al., 2009). For action-aligned rates, 

we used recordings of rat orbitofrontal cortex neurons during the movement epoch (move 

left or right) of a two-choice decision-making task (data from Feierstein et al., 2006). For 

delay-aligned rates, we used recordings from rat area M2 taken during a reinforcement task 

with delay, with firing rates calculated from a waiting period in contact with a nose-port 

before the rat exited to collect reward (unpublished data supplied by Masayoshi Murakami 

and Zach Mainen). Figure 3a shows that all three firing rate data-sets had long-tailed 

distributions. When we fitted the same exponential, gamma, and log-normal distribution 

models, we found best fits by the log-normal model for stimulus (A1) and delay (M2) 

components, and the gamma model for the action component (OFC) (Figure 3b). Again, 

silence reigns, with the majority of neurons firing less than 1 spike per second.

Both the analyses of Hromadka et al. (2008a) (Figure 4a) and our analysis of data from 

Otazu et al. (2009) found clear best-fits of a log-normal distribution to cortical firing rates in 

rat A1. This consistency is reassuring as the two data-sets were collected respectively using 

single cell (patch-clamp) and multiple cell (tetrode) recording technologies, and in different 

behavioural states, passive receipt of stimuli against active engagement in a decision-making 

task. For rat A1 at least we thus have converging evidence for log-normal firing rate 

distributions.

3.1.3 Layer-specific differences in spontaneous activity—A confound in many 

studies of cortical activity in vivo is that we do not know the layer(s) from which the 

neurons are being recorded. This confound is important because different layers have 

different levels of activity. Barth and Poulet (2012) have provided a comprehensive review of 

differences in average firing rate between layers – we note a few key papers here. In a 

pioneering use of calcium-imaging in vivo, Kerr et al. (2005) reported that layer 2/3 in both 

A1 and S1 of the rat had very sparse firing rates under anaesthesia, with a maximum of 0.1 

Hz over ten minutes of recording across 212 neurons (their Figure 6G). Such low rates were 

confirmed by simultaneous cell-attached or whole-cell recordings from a sample of those 

neurons; later studies confirmed that layer 2/3 neurons have substantially lower rates than 

layer 4 and 5 neurons for both spontaneous and stimulus-evoked firing (de Kock et al., 2007; 

Sakata and Harris, 2009). Similarly, Beloozerova et al. (2003) reported significantly more 

activity in layer 5 neurons than layer 6 neurons of rabbit primary motor cortex during both 

rest and locomotion. It seems that the difference in average rates extends to higher moments 

too: distributions of p(r) are different between different layers. Ringach et al. (2002) 

constructed a comprehensive map of the layer-by-layer differences in spontaneous firing 

rates of monkey V1 (Figure 4c), showing that, while all layers were dominated by low firing 

rates of less than 1 Hz, layers 4-6 had markedly more neurons with higher firing rates than 

layers 2/3. A direct comparison by (Hromadka et al., 2008b) found that the firing rate 

distributions in rat A1 were consistently long-tailed in each layer (2/3, 4, 5 and 6), and, 
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though not explicitly tested, that the distributions were not the same between layers. 

O’Connor et al. (2010) reported that barrel cortex had very long-tailed distributions in each 

layer (2/3, 4, 5, and 6); moreover, the distributions were significantly different between 

layers, with layers 2/3 and 6 showing lower rates than layers 4 and 5 (the raw mean firing 

rate data are shown in Figure 4b). Unfortunately, this is the current extent of layer-specific 

delineation of distributions; layer-specific distributions of the more complex models 

considered later in this review—of spike-train structure, feature encoding, temporal 

dynamics—have rarely been attempted. Notable exceptions include the study of Ringach et 

al. (2002), which characterised the layer distributions of various metrics capturing V1 

neurons’ responses to moving gratings. Together, the work of (Ringach et al., 2002; 

Hromadka et al., 2008b; O’Connor et al., 2010) and the review of (Barth and Poulet, 2012) 

provide the first insights on layer-specific distributions, and indicate that far more 

information has yet to be discovered.

3.2 Spontaneous and evoked firing rate distributions are highly similar

If both spontaneous and task-aligned activity consists of long-tailed firing rate distributions, 

do these distributions differ? Answering this is the first application of taking a statistical 

model perspective of cortical activity: we can compare the probabilistic models for the 

different conditions to directly detect the effect of task events.

Stimulus representation in sensory neurons is probably one of the domains of 

electrophysiology where most literature is available, stemming from Adrian’s first 

measurements of action potentials in nerve fibers responding to sensory stimulation (Adrian, 

1928). Because many sensory neurons have always been found which respond vigorously to 

the presence of an adequate stimulus, it has generally been thought that population activity 

in visual cortices changes dramatically when a stimulus is presented (Barth and Poulet, 

2012). Similar reasoning could be applied for the execution of an action, or the maintenance 

of working-memory during a delay period. We review recent results which have started to 

challenge this view thanks to new experimental techniques, revealing that population-wide 

statistics of task-driven and spontaneous activity may be much closer than previously 

expected.

3.2.1 Only small differences between distributions of spontaneous and 
evoked activity—Visual inspection of Figure 4a,b shows that distributions of mean firing 

rates in rat A1 (Hromadka et al., 2008a) and mouse S1 (O’Connor et al., 2010) barely 

changed between baseline and evoked firing. Similar results were obtained in PFC of 

monkeys performing a delayed match-to-sample task (Shafi et al., 2007), and the OFC of 

rats performing an olfactory discrimination task where distributions remained the same 

during epochs in which rats smelled an odor, moved, or received a reward (Feierstein et al., 

2006). We could quantitatively reaffirm these results using the action-related activity in rat 

OFC (Feierstein et al., 2006) or stimulus-evoked activity in rat A1 (Otazu et al., 2009). 

Figure 4d (top) visually confirms that the task-aligned distributions were not significantly 

different from their corresponding baseline distributions (two-sample Kolmogorov-Smirnov 

test, p = 0.117 for OFC; p = 0.827 for A1). Thus, there seems little change in the population 

firing rate distribution between spontaneous and evoked activity. Figure 4d (bottom) 
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illustrates the extent of the changes in both A1 and OFC by plotting the deviation between 

the models p(r) fitted to the baseline and evoked firing rate distributions; from this 

perspective, we see a small and smooth increase in the probability of neurons appearing in 

the tail of the distributions of evoked firing rates.

3.2.2 The single neuron’s perspective—These small changes in distribution obscure 

substantial changes at the single-neuron level between spontaneous (baseline) and evoked 

activity. O’Connor et al. (2010) reported that in mouse S1 34% neurons showed a significant 

change in the number of spikes evoked by whisker contact; the mean evoked change was 

between 2 and 4 spikes. In rat auditory cortex, Hromadka et al. (2008a) always found around 

5% of cells with strong responses to the stimulus, an increase of at least 20 spikes/s, 

independent of its exact nature (tone pips, white noise, natural stimuli). Still in rat auditory 

cortex, Bartho et al. (2009) presented a similar picture during the sustained response to 

tones, with most neurons returning to low activity levels while a few neurons kept on 

encoding stimulus value through their strong firing rates. Single neuron changes are thus 

both large (number of neurons showing a response over the whole experiment or individual 

neuron firing rate changes) and small (number of neurons showing a large response, or 

number of neurons simultaneously showing a response per trial). However, since firing rate 

changes of individual neurons can be both positive and negative, the overall effect of these 

changes on the firing rate distributions is rather small.

This large/small picture is also present in the action-evoked activity of rat OFC (Feierstein et 

al., 2006). The majority of the neurons in the data-set (349/515) had significant differences5 

(Mann-Whitney U-test, p < 0.05) between their rates in baseline and rates in movement 

epochs. However, on a trial-wise basis, these changes could be both negative and positive, 

and the dominant change from baseline to movement epochs was 0 spikes/s (Figure 4e). 

Moreover, there was a wide-ranging distribution of the proportion of trials on which each 

neuron changed rate between baseline and movement epochs (Figure 4f), with a median 

proportion of 42% of trials. Thus while the majority of neurons’ rates were “significantly” 

altered by movement, the majority of neurons changed their rates on less than half the trials.

3.2.3 Whence the dramatic macro-scale changes in activity?—The above 

evidence argues that population distributions during spontaneous and stimulus-evoked 

responses of activity appear highly similar. How is this overall similarity of distributions 

compatible with the fluctuations in population-wide activity traditionally observed with 

imaging methods such as fMRI and EEG? Although the issue remains to be further 

explored, it seems that there is no fundamental contradiction between the two. Indeed, 

because overall firing rates in the population are so low, the few cells with strong response 

may actually be sufficient to significantly increase the overall number of spikes in the 

population in response to a stimulus. For example, Hromadka et al. (2008a) report both that 

16% of neurons contributed 50% of spikes and an overall increase of mean firing rate of 

almost 50% between pre-stimulus and early stimulus responses. Similarly, in mouse barrel 

cortex (S1) responding to a simple tactile discrimination task, O’Connor et al. (2010) report 

5333/515 after adjustment for multiple comparisons using Benjamini-Hochberg test, with false discovery rate of 0.05
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that around 10% of the cells in a single column account for 50% of all spikes fired. Their 

data also suggests that around 15% of the cells increased their firing rate by more than 10 

spikes/s after the onset of active whisking (their Figure S3, panel A1). Thus, the overall 

sparseness of responsive neurons may be compatible with significant increases of spiking 

activity, detectable using macro-scale recording methods. Since the distributions are long-

tailed, this overall increase in average firing rate is compatible with only small changes in 

the distribution itself.

3.3 Firing rate distributions constrain theories of neural function

Why is it interesting that firing rate distribution are long-tailed? And why is it interesting 

that, statistically, the spontaneous and evoked activity distributions are so similar? We 

review here the implications of these first simple probabilistic models of cortical activity.

3.3.1 The theory of cell “classes”—From the perspective of probability distributions 

for firing rates, the classical physiological approach to defining distinct “cell classes” by 

firing rate is not appropriate. Traditional analyses make binary distinctions into two classes 

of neurons that fire at a significantly high or low rate, or that significantly fire to stimulus s 
or that significantly fire before action a and so on. But continuous long-tailed distributions 

show that there is nothing special about neurons with “significantly” higher activity; that 

amounts to drawing a threshold line somewhere on the distribution of firing rates. Moreover, 

these results show there are no grounds for demarcating responsive vs non-responsive 

neurons after stimulus, during delay, or before action. As Figure 4 shows, when we fit a 

model to the distribution of rates, we can no longer distinguish such classes – the 

distribution shape changes smoothly. We can do statistical tests to distinguish responsive 

from non-responsive neurons, as we illustrated above for the OFC data, but from the 

distribution model perspective this is the wrong approach; to echo (Gelman and Stern, 2006; 

Nieuwenhuis et al., 2011): the difference between the significant and non-significant 

response is not itself significant.

3.3.2 Participation in computation—Knowledge of firing rate distributions provides 

constraints on and opens up new questions for theories of neural function. Any theories of 

neural function based on Gaussian distributions of population activity to encode stimuli or 

compute functions may require re-examining. Rather, the experimental results reviewed 

above support the view of sparse neural representations, where a relatively small number of 

active neurons mediate a population’s function at any time.

Sparse representations constitute one of the first and most influential theoretical proposals 

concerning neural populations, whose roots can be traced back to ideas of redundancy 

reduction (Barlow, 1961, 1972) and of robust memory storage in neural networks (Marr, 

1969; Kanerva, 1988). Sparse codes can be viewed as striking a balance between the two 

extreme views of population representation with ‘grandmother cells’ (one specific cell for 

each concept or object) at one extreme and fully distributed neural representations at the 

other. A strong conceptual quality of sparse-coding theories is to provide a functional 

explanation for the explosion in the number of neurons observed between subcortical 

structures and cortex: since a sparse code relies largely on the identities of active neurons 
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rather than on their exact level of activity, the population size must be large enough to allow 

a rich and robust combinatorial repertoire of activities. In early sensory systems particularly, 

sparse coding is one of the most influential theories of population representation, further 

reviewed in Section 5.2.1.

While experimental observations of long-tailed population activity favorably echo the 

predictions of sparse coding theories, they also offer a promising glimpse on new theoretical 

perspectives. For example, the recurring observation of low but non-zero peaks in population 

distributions of activity (Figures 3 and 4a), leading to better fits by log-normal rather than 

exponential models, is at odds with classical predictions of sparse coding models. And 

indeed, if most cortical neurons are barely active, then this raises the question of whether 

they meaningfully participate: either only the most active neurons are actually participating 

in the ongoing encoding or computation, and the sparse firing of occasional spikes in the 

remaining neurons is irrelevant (Shadlen and Newsome, 1998; Mazurek and Shadlen, 2002), 

or all active neurons participate. The latter view is supported by considerations of energy 

expenditure—the total number of spikes fired by the sparsely firing neurons is on a par with 

the total number of spikes fired by the few highly active neurons, thereby creating large 

energetic costs for cortex (Attwell and Laughlin, 2001). It is further supported by the 

observation that the dynamics of the local cortical circuit are exquisitely sensitive to the 

addition or deletion of a single spike (Izhikevich and Edelman, 2008; London et al., 2010).

3.3.3 Underlying cortical network—The long-tailed distributions also place strong 

constraints on the underlying cortical network and on the dynamical properties of cortical 

neurons. Earlier theoretical work predicted that simple balanced networks of excitatory and 

inhibitory neurons would have long-tailed distributions of firing rates (van Vreeswijk and 

Sompolinsky, 1996). A more complete theory was recently developed by Roxin et al. (2011), 

who showed that a long-tailed firing rate distribution in the population implies that each 

neuron’s transfer function in vivo is an expansive non-linearity, such as a rising exponential 

or power-law function (Finn et al., 2007). They demonstrated that this result held across 

changes to the synaptic weight distribution, and held even if inhibitory interneurons were 

more active than the principal neurons.

This theory assumes a Gaussian distribution of input currents to each neuron, as generated in 

a uniformly-random coupled network of neurons. An open question is whether the transfer 

function alone can generate long-tailed firing distributions when the Gaussian assumption is 

violated, whether by more realistic network topologies that promote localised synchrony 

(Galan et al., 2008; Haeusler et al., 2009), or by the non-Gaussian statistics of external 

inputs to the network, as has been demonstrated in rat A1 (DeWeese and Zador, 2006).

Side-stepping the assumption of Gaussian inputs, Koulakov et al. (2009) used a simple linear 

integration and linear transfer function model of an excitatory, recurrent cortical network to 

study how such long-tailed distributions of spontaneous activity might arise from aspects of 

network connectivity. They showed that a log-normal distribution of synaptic weights across 

the network is insufficient to generate log-normal firing rate distributions. Rather, a stable 

log-normal distribution of spontaneous firing rates arises if, in addition, synaptic inputs to 

each neuron are clustered by their mean weight, such that each neuron tends to receive either 
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weak synaptic inputs or strong synaptic inputs. Open questions here are whether such a 

long-tailed distribution of rates would remain with any departure from linearity in the 

transfer function, and the impact of inhibitory neurons on the distribution.

3.3.4 Spontaneous activity as “browsing” through possible dynamical states
—Several studies in the last decade have begun to investigate the functional and theoretical 

links between spontaneous and evoked activity. Joint studies of optical imaging and single-

cell activities in anaesthetized cat visual cortex have revealed a preserved link between a 

particular neuron’s spiking and the overall activity in its embedding network, both during 

spontaneous and stimulus-evoked phases (Arieli et al., 1996; Tsodyks et al., 1999). In rat 

visual cortex, population-wide patterns of neural activation during a repeated stimulus 

presentation have been observed to replay during subsequent spontaneous activity (Han et 

al., 2008). In ferret visual cortex, Berkes et al. (2011) have found a quantitative similarity 

between the trial-to-trial probabilities of activity in the absence of visual stimulation and of 

activity averaged over natural visual stimulations. Furthermore, this similarity increased 

progressively during the early phases of visual development, pointing to sensory learning as 

a crucial shaping factor of spontaneous activity. Similarities have also been found in the 

temporal patterns of population activity between spontaneous and stimulus-evoked 

responses, both in anaesthetized and awake states (MacLean et al., 2005; Luczak et al., 

2009).

All these studies suggest that spontaneous activity may be akin to an internal (and 

experimentally uncontrolled) “browsing” through potential patterns of sensory-evoked 

responses. Consistent with this view, Luczak et al. (2009) have found that neural population 

activity in rat auditory cortex during sensory stimulation lives in a subset of possible 

activities observed during sensory spontaneous activity. From a more theoretical perspective, 

these results raise the exciting possibility that the organization of spontaneous activity 

reflects an internal connectivity, learned by interaction with the environment, that would act 

as a probabilistic prior helping to interpret incoming stimuli (Ringach, 2009; Berkes et al., 

2011). These theories have mostly operated on the level of few cells and considered the trial-

to-trial variability of neural responses. What such theories predict in terms of cell-to-cell 

variability, and the respective population distributions of firing rates that we have discussed 

here, has yet to be determined.

4 Population distributions of spike-train statistics

In this section, we will review the population-wide statistics of spike-trains’ structure across 

cortex. This is simply anything we know about distributions p(r), when r is some 

quantification of each neuron’s spike pattern beyond its rate. As the study of firing rate 

distributions alone is in a nascent stage, only a few studies have directly addressed this 

problem. So here we take a brief, broad survey of measures of spike-train structure, for 

which a population picture would provide us with useful additional constraints on neural 

theories and models.
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4.1 Regularity of spike trains

The relative regularity of spikes emitted by a neuron is central to many theories of neural 

coding (Rieke et al., 1997; Gabbiani and Koch, 1998). Basic measures of neuron output 

irregularity such as the coefficient of variation (CV = σ/μ) (e.g. Softky and Koch, 1993) and 

the Fano factor (F = σ2/μ) (e.g. Kara et al., 2000) are widely used. Both allow relative 

comparison between the output irregularity and a Poisson process, for which both CV and F 
equal 1 for different summary measures of the spike-train: the CV for inter-spike intervals, 

and the Fano factor for spike counts in time windows of equal length. However, these 

measures alone are difficult to compare over time or between neurons, as they are global 

measures that are sensitive to fluctuations in the neuron’s firing rate (Softky and Koch, 1993; 

Holt et al., 1996; Ponce-Alvarez et al., 2010). That is, the standard deviation σ of the inter-

spike intervals (for CV) or spike counts (for F) is computed using the global mean interval 

or count μ, but if that mean value is not locally stationary then irregularity tends to be over-

estimated. Consequently, CV and F are not ideal for characterising a population distribution 

p(r) of spike-train regularity.

More advanced measures attempt to capture a rate-invariant irregularity, allowing 

meaningful comparisons between different neurons. One approach has been to compute a 

rate-corrected CV by computing separate CV values for inter-spike intervals grouped by 

sections of spike-train with the same firing rate (Softky and Koch, 1993; Maimon and Assad, 

2009). Another has been to define alternative metrics that measure local changes in 

regularity, such as local variation (Shinomoto et al., 2009) and CV2 (Holt et al., 1996). The 

CV2 metric has been most widely used for detailed studies of spike-train regularity in cortex 

(Holt et al., 1996; Compte et al., 2003; Ponce-Alvarez et al., 2010; Hamaguchi et al., 2011). 

The comparative study of Ponce-Alvarez et al. (2010) suggested that of all tested metrics for 

regularity CV2 was least affected by rate variation. We use it below, so note here its 

definition: if Ii and Ii+1 are adjacent inter-spike intervals, then for that pair CV2(i) = 2|Ii - Ii

+1|/(Ii + Ii+1), and CV2 is the average over all pairs; similar to other regularity metrics, CV2 

= 1 for a Poisson process.

4.1.1 Spike-train regularity changes across cortex and across tasks—Both the 

local-variation metric (Shinomoto et al., 2009) and the rate-corrected CV (Maimon and 

Assad, 2009) have been used to study the differences in spike-train regularity between 

cortical areas. Shinomoto et al. (2009) showed that, after accounting for rate differences, the 

average spike train changed from random (Poisson-like) to bursty and then to regular 

patterning when moving from sensory to prefrontal and then to motor cortex in a data-set of 

multiple primate studies. Similarly, Maimon and Assad (2009) found that neurons in 

“sensory” parietal cortex (area MT) had irregular spike-trains, whereas neurons in “motor” 

parietal regions (LIP and Area 5) had more regular spike-trains. They also noted that the 

distributions of rate-corrected CV changed in shape and left-shifted from MT to LIP and 

then to Area 5 (their Figure 4A). Thus in both these wide-ranging surveys of spike-train 

regularity across cortical areas, spike-trains were more regular in motor areas of cortex than 

in other regions, and both speculated that this was linked to the necessity for rate-coding in 

motor areas (Maimon and Assad, 2009; Shinomoto et al., 2009).
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In a seminal paper, Compte et al. (2003) used measures of spike train structure including 

CV2 to analyse single-unit recordings from the PFC of monkeys performing an oculomotor-

delayed-response task. They reported that the spike trains of most neurons (around 60%) 

could be classified as Poisson-like, but that the rest of the neurons were more irregular (or 

bursty) than a Poisson model. Their most striking finding was that the population 

distribution of CV and CV2 changed between the fixation and delay periods of the task 

(Figure 5a). Thus, despite the overall increase in mean firing rate during the delay period 6, 

the neurons’ outputs were significantly more irregular than during the fixation period.

Hamaguchi et al. (2011) used CV2 to analyse spike-train regularity of a database of single-

unit recordings from the motor cortex of monkeys performing two delayed arm movement 

tasks. The population distribution of mean CV2 was predominantly below CV2 = 1 and left-

skewed, suggesting marked regularity of single neuron firing in motor cortex (Figure 5b). 

Moreover, when broken down by task stage, each neuron’s CV2 values were highly 

correlated between task stages (r = 0.99) and between the two arm movement tasks (r = 

0.86), suggesting that each neuron had a fixed level of firing regularity. Also using single-

unit recordings from motor cortex of a monkey performing a joystick task, Ponce-Alvarez et 

al. (2010) reported that CV2 distributions did not differ between the two delay stages or arm 

movement stage of the task (though we note their reported CV2 distributions were 

approximately symmetrical around 0.9, thus not consistent with the distributions in 

(Hamaguchi et al., 2011)).

Together, the analyses of (Compte et al., 2003) and (Hamaguchi et al., 2011) are consistent 

with the (Shinomoto et al., 2009) and (Maimon and Assad, 2009) reports of greater 

regularity in motor regions of cortex than in prefrontal cortex. Moreover, the analyses of 

(Compte et al., 2003) and (Hamaguchi et al., 2011) together suggest that an additional 

difference in spike-train structure between motor cortex and PFC is that a neuron’s 

irregularity is stable in motor cortex, but not in PFC.

The analyses of (Compte et al., 2003; Ponce-Alvarez et al., 2010; Hamaguchi et al., 2011) 

all pooled single-unit recordings using extracellular microelectrodes, and were all from 

primate studies. They were thus restricted to relatively high firing neurons in a single 

species. To further generalise these findings, we analysed simultaneous recordings in rat 

PFC and in cat V2 for their distributions of CV2. Figure 5c shows that spike-train 

irregularity in rat PFC during a maze task had a symmetrical distribution around CV2 = 1, 

and was thus consistent with the predominance of Poisson-like neurons reported by (Compte 

et al., 2003) for primate PFC. Figure 5d shows that spike-train regularity in cat V2 under 

anaesthesia had a strongly left-skewed distribution, with a peak around CV2 = 1.15. Thus, 

under anaesthesia many V2 neurons are more irregular than a Poisson process – while cortex 

was showing up/down state oscillations under this anaesthesia (Humphries, 2011), the rate-

invariance of the CV2 measure suggests that the supra-Poisson spike-trains were 

independent of this oscillation. Nonetheless, these analyses of simultaneous recordings from 

6Note that this study used extracellular micro-electrode recordings and thus addressed only task-responsive neurons: the mean rate 
during fixation was 13 Hz, and during delay was 18 Hz; thus this increase was relatively small and likely confined to the long-tail of 
the population firing rate distribution, as illustrated in Figure 4c.
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rat PFC and cat V2 data confirm that, even when using recording techniques with less 

activity bias, much of cortical single neuron activity is still surprisingly well-described by a 

Poisson process, as both have peak CV2 close to 1.

4.1.2 Correlations of regularity and rate in cortical populations—Once we have 

separately characterised distributions of firing rate, p(r1), and distributions of spike-train 

structure, p(r2), for a population, we may want to take the further step in model complexity 

of characterising their co-variation. We illustrate this here for rate and regularity, as rate-

invariant measures of spike-train regularity have made it possible to meaningfully consider 

whether there is a relationship between a neuron’s rate and the regularity of the spikes it 

emits. The proper characterization of this covariation amounts to estimating a joint 

distribution of rate and regularity statistics, which we will denote p(r1, r2).

Both (Compte et al., 2003) and (Hamaguchi et al., 2011) reported that in, respectively, 

primate PFC and motor cortex there was no relationship between rate and CV2 within the 

data-sets they analysed. This is illustrated in Figure 5e, taken from (Hamaguchi et al., 2011), 

which clearly shows the absence of any correlation. However, as noted above, the analyses 

of (Compte et al., 2003; Hamaguchi et al., 2011) pooled single-unit recordings using 

extracellular microelectrodes, with rates estimated over short portions of a trial, and were 

thus limited to neurons with relatively high firing rates; neither data-set contained neurons 

with rates less than 1 Hz. As we saw in Section 3.1, such low firing rates should dominate 

the population distribution. We thus also analysed example simultaneous recordings with 

low-rate dominated distributions to check their joint population distribution of rate and 

regularity.

We found a clear negative correlation between mean firing rate and CV2 in single recordings 

from both rat PFC (Figure 5f) and cat V2 (Figure 5g). While CV2 is notionally rate-

independent, to our knowledge its ability to cope with orders-of-magnitude firing rate 

fluctuations in ultra-low firing neurons (< 1 Hz) has not been tested; thus, plausibly, this 

correlation at such low frequencies could have been an artefact of such rate fluctuations. To 

rule this out, we found the expected CV2 for a null model in which each spike train was 

modelled as an inhomogenous Poisson process with varying rate derived from the data 7. We 

found that this model predicted a relationship between mean firing rate and CV2 (grey 

symbols and lines in panels f and g) that departed strongly from the data. Thus, the 

correlation between mean firing rate and CV2 was not an artefact of rate fluctuations.

We also found the correlation differed between the rat PFC and cat V2: CV2 was a power-

law function of firing rate in awake rat PFC, but a linear function of firing rate in 

anaesthetised cat V2 8. The power-law fit in rat PFC shows that rate-regularity correlation 

occurs at very low firing rates and that there is little correlation above ~ 5 Hz, where the 

power-law function flattens out. Thus in this range there appears no correlation between rate 

7For each spike train we estimated its conditional intensity function λ(t) to generate the inhomogenous Poisson process. We computed 
a rate histogram for the spike train using its mean inter-spike interval as the bin size, then fitted a cubic spline to estimate a smooth 
intensity function λ(t). Using the estimated λ(t), 100 realisations of the inhomogenous Poisson process were then created to compute 
the mean and 95% confidence intervals of the predicted CV2 for each spike train.
8We fitted linear, single exponential (2 and 3 parameter), double exponential, power-law, truncated power-law and stretched 
exponential models to the data; the best model was chosen by lowest BIC score.
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and regularity, consistent with this results of (Compte et al., 2003) and (Hamaguchi et al., 

2011). The linear fit over all rates in cat V2 is potentially a result of the unique spike-train 

structure that occurs under slow-wave inducing anaesthesia. Nonetheless, less-biased 

recordings dominated by low-firing neurons do reveal a different perspective on the the joint 

distributions of rate and regularity.

4.1.3 The single neuron’s perspective: joint distributions of regularity and 
rate modulation—An orthogonal perspective is to ask whether, over longer periods of 

time, each neuron has a correlation between its own rate and regularity, and thus determine 

the population distribution of rate-regularity modulation. (It is possible that the population 

show no correlation between the mean rate and mean CV2 of its neurons, yet each neuron 

has rate-dependent modulation of its own regularity). Ponce-Alvarez et al. (2010) computed 

firing rate and CV2 in windows of 200 ms for a data-set of 214 extracellular recordings in 

primate motor cortex, and found a large sub-set of neurons with a significantly negative 

correlation between their own rate and CV2 (118/214 had r < 0 and p < 0.01). The 

distribution of correlation coefficients is plotted in Figure 5h, and shows a left-skewed 

distribution with a peak close to zero. Thus neurons in primate motor cortex had a broad 

distribution of negative rate-regularity modulations.

Similar to the above problems with the population-level correlation between rate and 

regularity, the data-set in (Ponce-Alvarez et al., 2010) was from extracellular recordings and 

thus biased towards high firing rates. To generalise their results, we applied a similar 

analysis to single recordings of population activity from awake rat PFC and anaesthetised cat 

V2. For each neuron we calculated firing rate and CV2 in sliding windows of 20s advanced 

in steps of 5s 9. Similar to (Ponce-Alvarez et al., 2010), we ensured sufficient data for a 

reliable correlation by omitting from each neuron any window with less than 20 inter-spike 

intervals, and omitted any neuron that had less than 40 windows as a result. Nonetheless, 

despite the dominance of low firing rates, we found a sub-set of neurons in both data-sets 

had strong negative correlations between their own spike rate and regularity: 26/42 in awake 

rat PFC and 20/40 in anaesthetised cat V2 had r < 0 and p < 0.01. Figure 5i,j shows that both 

PFC and V2 had a broad distribution of negative correlation coefficients, and thus seemingly 

a continuum of the strength of regularity modulations.

Moreover, we found that, beyond the simple linear correlation coefficient, most neurons with 

strong modulation of regularity actually have a non-linear correlation between rate and CV2. 

The majority of strongly modulated neurons in both rat PFC and cat V2 had power-law 

relationships, as illustrated in Figure 5i. Thus, similar to the population distribution, for 

individual neurons modulation of regularity happens at low firing rates.

4.2 Beyond spike-train regularity: self-correlation and precision

Measures of spike-train regularity are perhaps the most widely applied measures of spike-

train structure. A wide-range of other measures are possible, but for which we lack 

knowledge of population distributions. We briefly review below two further aspects of spike-

9We used a window and step-size two orders of magnitude larger than that used by Ponce-Alvarez et al., 2010), to account for the 
order-of-magnitude lower firing rates in both PFC and V2 data-sets (Figure 3a)
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train structure that may yield insights into population coding. This is not exhaustive: further 

examples of measures amenable to population distributions include burst structure (e.g. 

Gourevitch and Eggermont, 2007), spiking coherence with an underlying oscillation (e.g. 

Benchenane et al., 2010), and of peak(s) in power spectra (e.g. Bair et al., 1994).

4.2.1 Cortical neurons have varying short time-scale self-correlation—
Neurons can have detectable correlations between their inter-spike intervals (Perkel et al., 

1967). Simulations of simple neuron models have shown these correlations may imply 

improved transmission of information about time-varying stimuli (Chacron et al., 2004). 

Such serial correlations can be computed up to any order n for the correlation between 

intervals Ii and intervals Ii+n, but are typically computed only for adjacent intervals (n = 1) 

because of the length of stationary recording required to compute sufficient higher-order 

interval correlations. Serial correlations between intervals are logically distinct from the 

properties of bursts and oscillations: a bursting or oscillating neuron is likely, but not 

guaranteed, to have serial correlations in its spike-train; a neuron with serial correlations in 

its spike-train does not imply that neuron is bursting or oscillating.

While serial correlations have been reported in a wide range of neural systems (Farkhooi et 

al., 2009), few studies have measured this property in mammalian cortex (Nawrot et al., 

2007; Engel et al., 2008). Nonetheless, consistent with reports from other neural systems, 

this limited evidence suggests that some neurons in both rat S1 and entorhinal cortex have 

significant, negative serial correlations between adjacent intervals: thus long inter-spike 

intervals tend to be followed by short intervals, and vice-versa. As neurons with and without 

negative serial correlations may have different optimal inputs for transferring information 

(Lindner et al., 2005), understanding the prevalence and distribution of serial correlations 

within and between cortical populations could shed light on their information coding 

capacity.

4.2.2 Cortical neurons have variable firing precision—Separate from their 

intrinsic irregularity, a population of neurons may respond to repeated external stimuli or 

internal state transitions with different precision in their trial-to-trial repetitions of spike 

times. There is recent evidence that such changes in spike-time precision are similar for both 

internally- and externally-driven state changes. Luczak et al. (2007) reported that neurons in 

layer 5 of rat somatosensory cortex had a repeating sequential structure of each neuron’s 

mean spike time at the onset of spontaneous UP-states; this ordering of spike-timing 

disappeared during the rest of the subsequent UP-state. The sequence of neuron firing during 

spontaneous activity was recapitulated following sensory input, in both anaesthetized and 

awake animals (Luczak et al., 2009). Peyrache et al. (2010) showed the same sequential 

reinstatement of activity at the onset of spontaneous UP-states in neurons of medial 

prefrontal cortex in sleeping rats; they further confirmed that deriving these sequences from 

mean spike-time at the onset of the UP-states meant that the sequence of neuron firing was 

independent from the overall firing rate of each neuron.

As an approximation to such state transitions, we may also simply study the responses of 

neurons to the onset of noisy current inputs. The degree of input-driven precision is known 

to depend on both the magnitude of the noise in the current (Hunter et al., 1998), the 
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resonant firing frequency of the post-synaptic neuron (Hunter et al., 1998; Fellous et al., 

2001) and the time-scale of correlation in the noise (Galan et al., 2008). Such boundaries on 

reliability suggest there should be different distributions of spike-time reliability between 

different areas and layers, depending on the exact nature of the local microcircuit, and of the 

inputs from other cortical and sub-cortical regions. Consistent with this, data from cat V1 

suggest that layer 4 neurons can produce a reliably timed first spike to a repeated stimulus, 

and that this reliability is subsequently reduced in both layers 2/3 and 5 (Cardin et al., 2010). 

While there have been efforts to quantify the reliability of individual neuron spike-timing 

using correlations between evoked spike patterns (Fellous et al., 2004; Humphries, 2011), to 

our knowledge we lack any in vitro or in vivo characterisation of the population distribution 

of spike-timing precision.

4.3 Implications of distributions of spike-train metrics

In general, distributions of metrics for spike-train structure across cortical populations may 

place strong constraints on either or both of single neuron and network properties. We finish 

this survey by considering several implications for theories and models of cortex that might 

arise from knowing these distributions.

4.3.1 Cell “classes” are inconsistent with unimodal distributions—From the 

perspective of probability distributions for neural populations, the classical physiological 

approach to defining distinct “cell classes” based on spike-train structure is problematic. It is 

typical in electrophysiological studies to make sense of the data by demarcating the firing 

patterns of neurons into categories such as “regular”, “irregular”, “bursting” and so on. But 

by characterising distributions of the spike-train measures used to define these categories 

(e.g. Figure 5a-d), we can see that this approach amounts to drawing an arbitrary threshold 

line somewhere on the distribution – above that line is irregular, below is regular, and so on. 

Similarly, for joint distributions of rate and regularity, we can reasonably fit unimodal 

probabilistic models relating the two; and for single neurons there is a broad distribution of 

correlations between rate and regularity. Attempts to define classes of neurons by spike-train 

structure may be more successful when using multiple defining metrics, as in (Compte et al., 

2003), or when more than one peak is clear in the distribution of a single metric, as 

suggested by the CV2 data in Figure 5b.

4.3.2 The irregularity of cortical firing and the balance of excitation and 
inhibition—The irregularity of cortical spike trains and its implication for single neurons or 

neural networks has been the focus of numerous studies. In vitro studies of cortical neurons 

have shown that they can reproduce spike-trains with millisecond-scale precision to repeated 

injections of the same noisy current, but not to injections of constant current (Mainen and 

Sejnowski, 1995; Fellous et al., 2001; Galan et al., 2008). Such data suggest that, under 

synaptic barrage in vivo, cortical neurons are capable of reproducing specific patterns of 

spike times. There is some evidence from a range of cortical areas for spike-timing precision 

in response to repeated stimuli (DeWeese et al., 2003; Fellous et al., 2004). Consequently, 

the irregularity of cortical neuron firing likely reflects inherently irregular (“noisy”) inputs 

that in turn generate the irregular output.
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Such constraints often act as a major spur for a rich vein of interacting computational and 

experimental work. For example, the report by (Softky and Koch, 1993) that cortical cells 

have consistently irregular spike-trains, inconsistent with a single neuron integrating random 

inhibitory and excitatory synaptic input, inspired a wealth of computational and 

experimental work to explain the source of the irregularity (Stevens and Zador, 1998). 

Computational models were able to account for the consistent irregularity through both 

single cell (Troyer and Miller, 1997; Gutkin and Ermentrout, 1998) and network properties 

(Tsodyks and Sejnowski, 1995; van Vreeswijk and Sompolinsky, 1996); one outcome of this 

work was the proposal of balanced excitation and inhibition in the inputs to cortical 

pyramidal cells (van Vreeswijk and Sompolinsky, 1996; Shadlen and Newsome, 1998; 

Salinas and Sejnowski, 2000). The theoretical studies in turn drove experimental work which 

confirmed that this balance exists (Shu et al., 2003; Haider et al., 2006; Renart et al., 2010). 

These series of studies provide probably the best explanation for the irregularity of firing in 

cortex and have helped to elucidate the “operating point” of cortical neurons in vivo.

The findings of (Compte et al., 2003) that firing irregularity was enhanced in primate PFC 

during a delay period has spurred further theoretical work, as this result refuted the then 

prevalent models of working memory in cortical circuits. The impact of the (Compte et al., 

2003) results has been excellently reviewed by (Barbieri, 2008), whom we briefly 

summarise. The extant models of persistent activity were based on simple attractor 

networks: randomly connected, recurrent excitatory circuits that explained how transient 

stimuli could cause a sustained jump in the firing rates of a select sub-population of neurons, 

and thus act as a short-term memory for that stimulus. However, such networks predict that 

spike-train irregularity should dramatically decrease, not increase, during the persistent 

firing. By introducing either inhibitory feedback that scaled with the excitation or short-term 

depression at the excitatory synapses, a new wave of attractor models could account for the 

maintenance or increase in average irregularity during the persistent activity (Barbieri, 

2008). The next step will be to find the constraints placed on such networks by attempting to 

capture the distributions of irregularity (Figure 5b).

4.3.3 Implications of distributions of regularity for cortical micro-circuits—
All this previous work focussed on the approximately Poisson output of single neurons. To 

our knowledge, no attempt has been made to capture the population distribution of 

irregularity in a model of the cortex. Hamaguchi et al. (2011) have made a promising initial 

foray. From a data-set of single-unit recordings in primate motor cortex, they determined for 

each neuron the values of, and correlation between, rate and CV2 over a set of short time 

windows in one task condition. They used a single LIF model neuron to replicate this data 

for each neuron, by searching over three parameters that accounted for the neuron’s 

embedding in a sparse, random network: the balance of inhibitory and excitatory synaptic 

strength g, the maximal excitatory synaptic strength J, and the number of excitatory 

synapses Ce. The values of these parameters would thus predict the type of local network 

into which each neuron in the data-set was embedded. They found that most neurons in the 

data were well-fit by a wide range of values for these parameters, suggesting a broad class of 

cortical circuits that could account for the observed rate and CV2 values. They did, however, 

deduce some general predictions from the range of best-fits: most neurons were inhibition-
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dominated (g > 4) with moderate numbers of excitatory synapses (Ce > 100), combined with 

high synaptic strengths J for irregular firing or low synaptic strengths J for regular firing. 

Consequently, their models predict that motor cortex neurons are mostly embedded in an 

inhibition-dominated network, whereas the most regular neurons have few and/or weak input 

connections. Again these data were restricted to high (> 5 Hz) firing rates. The more 

challenging questions remain of how to account for strong correlations between rate and 

regularity at low firing rates (Figure 5h-j), and what networks can actually reproduce the 

population distribution of CV2 (Figure 5a-d).

All of the above work is also focussed on a single area of cortex. Differences in spike-train 

regularity between cortical areas imply either that the neurons in each area have differences 

in their dynamical properties that change the integration of their inputs (e.g. relative 

expression of receptors, or specific ion channels in dendrites) or that the local circuit into 

which they are embedded changes between areas to favour irregular or regular output, 

perhaps moving from a balanced to an unbalanced input regime (Softky and Koch, 1993; 

Stevens and Zador, 1998) – as also suggested by the models of (Hamaguchi et al., 2011). 

Consequently, characterising population distributions of spike-structure across cortex will do 

much to further our understanding of the cortical architecture.

5 Population distributions of feature encoding

The previous sections have described the overall distribution of neural activities (firing rates 

and higher order spiking statistics) in various brain areas and under different experimental 

conditions, including spontaneous activity, stimulus presentation and action execution. One 

key aspect of these distributions p(r) seems to be their overall invariance to the exact feature

—stimulus or motion—encoded (Section 3.2). How are we then to quantify feature encoding 
by neural populations, i.e., reallocations of activity in the population which allow the system 

to encode a particular stimulus, or action, differentially from other possible stimuli or 

actions?

5.1 Information is distributed heterogeneously across neurons

From a statistical perspective, characterizing such distributions amounts to a tremendously 

difficult problem, as it combines dimensionality explosions along two distinct axes: (i) the 

huge number of neurons involved, and (ii) the huge number of possible stimuli (or actions or 

tasks) that the system might be confronted with. In this review, we circumvent the second 

dimensionality explosion by focusing on low-dimensional stimulus spaces. Nonetheless, we 

warn the reader that not many studies (at the scale of sensory neuroscience literature) have 

quantified distributions over stimulus encoding features. Where they have been quantified, 

they likely suffer from some of the biases described in Section 2.2 (Olshausen and Field, 

2005). Apart from reviewing a few seminal studies, we also emphasize how important it is to 

obtain quantitative estimates for these distributions, both for our understanding of what 

cortex does, and for testing theories of feature encoding.

5.1.1 Population distributions of receptive field sizes—We will illustrate the 

main issues with a classical example. Consider one of the oldest characterizations of neural 

encoding: receptive fields, simply defined as the domain of physical space (retinal space for 
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vision, frequency domain for audition, skin location for somatosensation) to which a sensory 

neuron is responsive. Population distributions of receptive field sizes have long been studied 

in early sensory cortical areas such as V1 (e.g. Hubel and Wiesel, 1962; Schiller et al., 1976; 

Dow et al., 1981), A1 (e.g. Schreiner et al., 2000; Moshitch et al., 2006) or S1 (e.g. Sur et 

al., 1980; DiCarlo et al., 1998). A common characteristic of these distributions is that they 

are quite broad (Figure 6). In Figure 6a (Dow et al., 1981), the sizes of V1 receptive fields 

are plotted against their retinal eccentricity (top curve, left ordinate axis), and typically 

display a large spread of sizes at each given eccentricity. In Figure 6b (Schreiner et al., 

2000), the (normalized) receptive bandwidths of A1 neurons are plotted for two intensity 

levels (10 dB and 40 dB). As in V1, the auditory receptive field sizes (or bandwidths) are 

heterogeneously distributed across the population, with over ten-fold variations in their 

(normalized) sizes irrespective of the stimulus’ intensity; though increased intensity leads to 

a broader distribution of receptive field sizes. In Figure 6c (DiCarlo et al., 1998), similar 

histograms are built for receptive field sizes in S1 (plus their excitatory and inhibitory 

subfields), again revealing the same diversity. Visual inspection of Figure 6b-c suggests that 

the distributions are somewhat close to Gaussians in logarithmic space, and therefore 

potentially long-tailed.

Surprisingly, the observed variability in receptive field sizes is not a trivial consequence of 

mapping properties at the level of receptors. Visual and tactile spaces are known to follow an 

inhomogeneous mapping with a high density of representation in key areas (fovea for vision, 

hand and face for somatosensation) and lower density in other areas (visual periphery, limbs 

and trunk for somatosensation). Similarly, from the cochlea on, auditory space is naturally 

endowed with a logarithmic structure over frequencies. However, these factors cannot 

explain the heterogeneity in Figure 6. In panel (a), cortical magnification—the ratio of 

interneuronal distances on the cortex and in sensory space—shows much less variation at 

each given eccentricity (bottom curve, right ordinate axis), so it cannot account for the 

variation of receptive field sizes. In panel (b), all quantities are treated in log-scale, and each 

neuron’s effective bandwidth (i.e., receptive field size) is defined with respect to its preferred 

characteristic frequency, yet variability remains the same. Finally in panel (c), all receptive 

fields come from distal fingertips and have therefore rather constant magnifications (Sur et 

al., 1980). Hence, no matter the sensory modality, over ten-fold variations can be observed 

in the receptive field sizes of the cortical neurons covering any given point in stimulus space.

The diversity of receptive field sizes is therefore larger than expected from peripheral 

processing. In fact, receptive field sizes at the retina are rather homogeneously distributed at 

each retinal eccentricity (Dacey and Petersen, 1992). To a lesser extent, similar principles 

may hold for the cochlea. Especially at lower frequencies, the bandwidths may be more 

narrowly distributed (Carney et al. (1999), reproduced in Figure 9e), although a strict, 

quantitative comparison between peripheral and cortical auditory tuning has yet to be carried 

out. Similarly, we are not aware of quantitative distributions of receptive field sizes for 

mechanoreceptors. A visual inspection of typical sizes in Talbot et al. (1968) reveals some 

level of heterogeneity, as can be expected from their embedding in the irregular skin surface, 

but the mean and standard deviations of receptive field sizes reported suggest less 

heterogeneity than in S1 (Talbot et al., 1968). It thus seems that in each case, stimulus 
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information is actively transformed from a relatively homogeneous tiling of stimulus space 

at the periphery to a relatively heterogeneous tiling in sensory cortex.

5.1.2 The tiling of feature spaces—Naturally, receptive field sizes are just one 

particularly simple example out of the many features which can be encoded in cortical 

neurons. Their tiling of the physical stimulus space, however, provides a natural intuition for 

the characterization of stimulus encoding in neuron populations. Figure 7 illustrates the 

basic ideas by focusing on a two-dimensional stimulus space, i.e., a space in which each 

stimulus is defined by just two numbers, s = (s1, s2). This example maps directly on the 

receptive field example if we assume that the stimulus is the position of a point in the 

physical space, such as an illuminated dot in (two-dimensional) retinal coordinates. Each 

neuron covers a part of this stimulus space, illustrated by the tiles in Figure 7, and responds 

whenever the stimulus falls into that part of the space. This way, the whole stimulus space is 

covered by the population of neurons, and this covering (or tiling) can be arranged in many 

different ways. In Figure 7a, only one neuron will fire for a given stimulus, while all other 

neurons remain silent. In Figure 7b–c, several neurons cover each location in stimulus space, 

and hence several neurons will fire for a given stimulus.

Of course, stimulus space is not two-dimensional. In a complex visual image, for instance, 

every single pixel can have a different light intensity, so that every pixel functions as a 

stimulus dimension. Nonetheless, the intuitive picture developed above generalizes to this 

high-dimensional space. (It also extends to non-sensory information, such as the encoding of 

a specific movement sequence.) The essential question of information encoding in 

populations is always how the neurons tile the respective space. Is the tiling homogeneous 

(Figure 7a,b) or heterogeneous (Figure 7c)? Is it complete (Figure 7a) or over-complete 

(Figure 7b,c)? Do individual neurons cover simple and contiguous (Figure 7a–c), or 

complex and non-contiguous (Figure 7d) regions of stimulus space?

In each case, the contribution of a neuron to the tiling of the respective space can be 

summarized by a few parameters, q = (q1, q2, …), that measure, for instance, the position of 

the neuron’s tile, its extent, shape, and so on. The probability of finding a neuron with the 

respective properties, p(q), can then be characterized by constructing a statistical model of 

the tiling. In the receptive field example discussed above, we studied the sizes of the 

different tiles, thereby providing a first example of how information is distributed in 

populations of neurons. Clearly, the examples in Figure 6 show that tiling is both 

overcomplete and heterogeneous as shown in Figure 7c.

There are, however, two complications that we need to take into account. One complication 

is that a neuron’s response to a stimulus is not binary. Rather, its response should be 

quantified through the average firing rate, or, if we want to be more general, through the 

probabilities of its spikes. In either case, the response becomes analogue, and instead of a 

region or tile in stimulus space, a neuron’s response is better visualized as a cloud that is 

thick wherever the averaged response is large, and thin wherever the averaged response is 

small. In turn, we speak of the tuning of the neuron to the different stimuli, and call its 

response a tuning curve whenever the stimulus space is small. Such a tuning curve is 
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typically characterized by a small set of parameters that measures the width of the tuning, 

the amplitude of the response, etc.

A second, quite fundamental problem appears when we apply the overall approach to higher 

sensory areas. Within the confines of the receptive field example, for instance, the tiling 

becomes more and more complex as we move up the sensory hierarchy. Specifically, 

individual neurons start responding to different, non-contiguous regions in stimulus space. 

Indeed, the receptive fields of neurons are known to have multiple peaks in A1 (Sutter and 

Schreiner, 1991) or S2 (Fitzgerald et al., 2006). Hence, the simple tiling pictures breaks 

down and the tiles of individual neurons acquire quite complex shapes (Figure 7d), making it 

extremely difficult to characterize the stimulus-response function of individual neurons. The 

reason for this complexity is, of course, that the respective cortical systems are extracting 

complex features from the sensory stimuli.

A solution to this problem, at least in principle, is to change the definition of stimulus space. 

As we change the stimulus space (e.g. from sound pressure level to the amplitude of 

different frequency bands, from the light intensities of pixels to the angle and size of a given 

object), the respective tiling changes. In other words, how information is distributed within a 

population of neurons depends on how we choose to represent that information. This 

problem makes it far more difficult to observe commonalities in information representation 

across different cortical populations, as any observed differences (or commonalities) interact 

with the chosen definition of the stimulus space. That said, we believe that there are 

commonalities to be found, and that it will be important to quantify them. An exhaustive 

review of such a complex topic is impossible, and we will just illustrate a few examples.

5.1.3 Population distributions of tuning curves—A particularly common example 

is given by stimuli or actions that have the topology of an angle (orientation, direction of 

movement, direction of reach, etc.). These have been extensively studied because of their 

convenience: they live on a one-dimensional “ring”, so suffer from no problems linked to 

defining boundaries. Experimentally, tuning curves to such stimuli are generally simple, 

displaying a single bump of tuning around the neuron’s preferred angle (e.g., Figure 8a,c); 

this makes them suitable for easy population characterizations. In V1, Busse et al. (2009) 

have recently derived the population distribution of tuning in neurons responding to gratings 

of different orientations and contrasts (Figure 8a-b). They found the neurons’ width of 

tuning w and semi-saturation contrast c to be independently distributed across the population 

(panel b), and suggested that this independence promotes a global contrast-invariance in the 

population response (their Figure 1D). Similarly, in primary motor cortex encoding of hand 

movement direction (Georgopoulos et al., 1982), Amirikian et al. (2000) reported a broad 

distribution of tuning curve widths (Figure 8c-d) with values markedly narrower than the 90° 

used in traditional studies of population decoding in hand movement tasks (Georgopoulos et 

al., 1982). (We note, though, that 39% of the recorded neurons were yet more 

heterogeneous, with bimodal or asymmetric tuning curves that are not included in Figure 

8c.) Because of their simplicity, ring topologies are also favored by theoretical works on 

neural populations, such as attractor networks (Compte et al., 2000) or probabilistic 

population codes (see Section 5.2.2). Ultimately, population distributions of tuning like 

those presented here will set benchmarks to test these theories.
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In some cases, population distributions of tuning parameters can help to infer the nature of 

information encoding in a population. For example, neurons in somatosensory cortex S1 are 

known to be tuned in two ways to the frequency of vibrating stimuli (Salinas et al., 2000). 

Some neurons transmit the frequency value through the periodicity of their own spike trains 

(“periodic neuron” in Figure 8e), while others transmit this value by firing more spikes as 

the frequency increases (“rate neuron” in Figure 8e). When plotted as a distribution, both 

types of tuning were found to be present in the population (Figure 8f), with all possible 

strengths and combinations. Mechanoreceptor afferents typically display strong periodic 

tuning and weak rate tuning (as in the top left corner of Figure 8f); however in S1, 

modulations in rate, not periodicity, have been shown to best covary with behavior on a trial-

to-trial basis (Salinas et al., 2000). Hence, the appearance of aperiodic, rate-tuned neurons in 

cortex (bottom right corner in Figure 8f) is likely due to an active reshaping of periodicity 

information into firing rate information. Figure 8f suggests that this reshaping is a 

population phenomenon, and sets quantitative constraints on future models of how it is 

implemented in the brain.

As a second example, we consider the activity of neurons in various sensory areas during 

two-alternative behavioral tasks. Many studies have shown a population-wide correlation 

between neurons’ sensitivity to a stimulus and their choice probability measure (Figure 8h). 

Choice probability (CP) quantifies the trial-to-trial covariations between the activity of a 

sensory neuron during the presentation of a behaviorally relevant, yet noisy and 

uninformative stimulus, and the animal’s subsequent decision (Britten et al., 1996; Dodd et 

al., 2001; Romo et al., 2002; Uka and DeAngelis, 2004; Nienborg and Cumming, 2006; de 

Lafuente and Romo, 2006; Price and Born, 2010; Hernández et al., 2010). Such covariations 

are intriguing, as they imply that sensory neurons are somewhat tuned to the animal’s future 

decision, even when a stimulus does not provide any information about the required choice. 

Britten et al. (1996) postulated a purely “bottom-up” explanation, whereby trial-to-trial 

fluctuations in sensory neurons’ activities result in trial-to-trial fluctuations of the animal’s 

percept, which can thus influence the subsequent action. A key argument for this hypothesis 

was precisely the type of population-wide correlation displayed in Figure 8h, which shows 

that the most stimulus-sensitive (and thus, task-relevant) neurons are more predictive of the 

animal’s future choice. Later, a similar population-wide correlation argument was used to 

demonstrate the effect of task learning on choice probability values (Uka and DeAngelis, 

2004). Further supporting the bottom-up perspective, choice probability signals seemingly 

increase going up the perceptual/decision pathway from primary sensory areas to prefrontal 

cortex (de Lafuente and Romo (2006), Figure 10b). However, while all these findings are 

necessary predictions of the bottom-up interpretation, they are not a sufficient proof. And 

indeed, by investigating the dynamics of CPs, Nienborg and Cumming (2009) showed a top-

down contribution to the CP signals in primate V2, whereby the animal’s forming decision 

appears to feedback on sensory areas and influence their firing (see Section 6.1.3).

In the examples above, the putative functionality of an area is revealed by studying the 

organization of tuning at the level of the population, rather than the individual neuron. These 

results therefore illustrate the benefits of analyzing population distributions of encoding 

features. As a caveat, we notice that in the above examples, as in the vast majority of the 

literature of sensory systems, the plotted distributions provide only qualitative insights. In 
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particular, unlike the recent experiments reviewed in Section 3, the distributions come from 

populations that are sampled with a strong recording bias for task-related activity. Hopefully, 

future studies will provide us with unbiased and precisely quantified tuning distributions.

5.2 Theories of feature encoding in neural populations

A number of theories of neural population coding are now available, which likely provide 

the future keys to quantitative interpretations of population-wide distributions of activity and 

tuning. In this section, we briefly review two important theoretical frameworks describing 

feature encoding in neural populations. Sparse coding (section 5.2.1) is a theoretical 

framework which explicitly accounts for the heterogeneity of tuning across neurons, and 

associates it with a clear functional explanation. Probabilistic population representations 
(section 5.2.2) is the term we choose to describe frameworks that assume sensory 

populations encode not precise stimulus values, but probabilistic distributions over possible 

stimulus values. Although these probabilistic frameworks have not yet provided quantitative 

predictions of population distributions to our knowledge, they have the potential to do so in 

the near future.

5.2.1 Sparse neural coding—In Section 3.3.2 we saw that the long tails of firing rate 

distributions evoke the influential theoretical concept of sparse neural representations. For 

sensory systems, the theory of sparse coding (Barlow, 1972; Field, 1994) proposes that each 

stimulus triggers only a small and very specific subset of neurons. The neurons in turn 

constitute the basic “dictionary” elements that describe a stimulus in a non-redundant 

fashion. Different stimuli, even if relatively similar, are encoded by different sets of active 

neurons, which correspond to different (albeit similar) dictionary elements. Cortical areas 

could generate such sparse representations because their total number of neurons often 

exceeds the dimensionality of the original stimuli. Thanks to their sparseness, cortical 

patterns of activity could then be more amenable to long-range transmission of information, 

to downstream processing, and even to learning (Olshausen and Field, 2004; Ganguli and 

Sompolinsky, 2012). The theory of sparse coding successfully accounts for several 

properties of sensory systems, such as (i) the huge number of cortical neurons compared to 

subcortical structures, (ii) the qualitative features of receptive fields in early sensory cortical 

areas (Olshausen and Field, 1996; Lewicki, 2002), and (iii) nonlinear suppressive 

interactions between sensory neurons, which are assumed to promote the sparse 

representation of stimuli (Olshausen and Field, 1997, 2004; Asari et al., 2006; Smith and 

Lewicki, 2006; Rozell et al., 2008).

As a result of these successes, the past decade has seen several experimental efforts to test 

the predictions of sparse coding. A first, straightforward test is to assess the levels of 

sparseness in sensory areas. In the neuroscience literature, “sparseness” may either refer to a 

sparse distribution of active neurons across a neural population (population sparseness) or to 

a sparse distribution of stimuli to which a particular neuron is responsive (lifetime 
sparseness). These two indicators measure different properties, and are not necessarily 

correlated (Willmore and Tolhurst, 2001). However, the theory of sparse coding requires 

both forms of sparseness.10 In the insect olfactory system, a sparsification of neural 

responses to odours was observed between primary olfactory relays (PN cells in the antennal 
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lobe) and higher level brain areas (KC cells in the mushroom body) (Laurent, 2002), both at 

the lifetime and population level. In mammalian visual cortex, the observed population and 

lifetime sparseness are much higher than predicted by standard LN (linear-nonlinear) models 

of sensory processing (Weliky et al., 2003), and are strongest in the case of complex 

(“natural”) stimuli covering all of the cells’ non-classical receptive fields (Vinje and Gallant, 

2002; Haider et al., 2010; Wolfe et al., 2010). In rat auditory cortex responding to tone pips, 

Bartho et al. (2009) computed population-wide distributions of lifetime sparseness and 

found a proportion of neurons whose stimulus sparseness increased between the early and 

late phase of response, possibly revealing the dynamics of an active sparsification 

mechanism.

Importantly, the theory of sparse coding reproduces several aspects of the population-wide 

distributions of tuning parameters. Olshausen and Field (1997) first showed how the 

principle of sparse coding, applied to encoding natural images, predicts the structure and 

distribution of V1 receptive fields. Ringach (2002) measured the distribution of receptive 

fields in cat V1 (Figure 9a), revealing several commonalities but also some discrepancies 

with the predictions of Olshausen and Field (1997). In particular, bump-shaped receptive 

fields with little spatial opponency (Figure 9b, blue dots close to origin) occurred far more 

often in V1 than in the prediction (Figure 9b, red dots). Recently, Rehn and Sommer (2007) 

have shown how such bump-shaped receptive fields can be predicted under the assumption 

of “hard” sparse coding, with total silence imposed in all but the most active units (Figure 

9c). In the auditory domain, Smith and Lewicki (2006) demonstrated that a sparse coding 

principle, applied to encoding natural sounds, can reproduce the filter characteristics of 

auditory nerve fibers, both at the single cell (Figure 9d) and population level (Figure 9e). 

Importantly, the predicted distribution matched experimental data only if trained on a full set 

of natural sounds including environmental sounds and animal vocalizations.

New experimental challenges to sparse coding theory may arise from studies using unbiased 

methods for recording neural populations (Section 2.2). Concerning population sparseness, it 

is currently unclear to what extent sparse coding models can account for the largely log-

normal distributions of sensory-evoked activity (Section 3.1). Particularly intriguing in this 

regard are the respective peaks of low but non-zero activity (Figure 4a) which contradict 

current sparse coding models, since these predict peaks at zero. Furthermore, we currently 

do not know whether sparse coding models can predict the global invariance of the activity 

distributions, irrespective of the exact stimulus value (Section 3.2). Concerning lifetime 

sparseness, we would like to know whether sparse coding models can quantitatively predict 

the distribution of lifetime sparseness across neurons.11 Experimentally answering this 

question is quite challenging since, the more specific a neuron (for example, with a very 

small receptive field), the less likely it is to be detected on the basis of its response to an 

10High population sparseness by definition, and high lifetime sparseness because each neuron is silenced by better-tuned neurons in 
all stimulus conditions but those extremely close to the dictionary element represented by that neuron.
11Essentially, the levels of lifetime sparseness predicted by a sparse model depend on the number of neurons participating in the 
representation: the more neurons are present, the less often each one is likely to be active. Furthermore, sparse models of visual 
processing naturally produce a heterogeneous distribution of lifetime sparseness, where units associated with low spatial frequencies 
are often active (low lifetime sparseness) while units associated with higher spatial frequencies have higher lifetime sparseness (Bruno 
Olshausen, personal communication).
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arbitrary test stimulus (Olshausen and Field, 2005). Unbiased recording methods such as 

patch-clamping thus offer a novel opportunity to detect these very specific neurons.12

We note that sparse coding is mostly a theory of sensory systems; one may rightfully ask 

whether similar concepts also apply to descriptions of motor systems. Much less data is 

available regarding the sparseness of motor representation. Firing rate distributions in motor-

related cortices also appear to be well fit by log-normal models (Figure 3), speaking in favor 

of high population sparseness. Furthermore, motor-related cortices seemingly display the 

exquisite sensitivity required for only a few neurons to reliably drive motor commands. 

Brecht et al. (2004) showed that intracellular nano-stimulation, invoking action potentials in 

a single layer 5 or layer 6 rat M1 whisker neuron, caused detectable changes in the 

movement of specific whiskers. Consistent with this, multi-electrode recordings have 

established that the activity of only a few tens of neurons are necessary to accurately decode 

movement in rat (Laubach et al., 2000) and primate (Carmena et al., 2005; Rickert et al., 

2009). However, sparsity in decoding does not imply sparsity of representation (the focus of 

this review); indeed, motor-related activity in cortex appears to contain a degree of 

redundancy (Narayanan et al., 2005). For example, Carmena et al. (2005) found that even 

after removing the top 50 neurons contributing to the decoding of hand position, 60% of the 

total ensemble contribution could still be achieved from the residual population. Whether 

such high levels of information in marginally active neurons agree with the predictions of 

sparse coding still has to be tested.

5.2.2 Probabilistic population representations—Behavioral studies have long 

suggested that perception is akin to a form of probabilistic inference. When faced with 

ambiguous stimuli (e.g., a noisy image), humans and animals alike are capable of combining 

sensory evidence with a priori statistical knowledge about the world (e.g., “what am I likely 

to see in my current situation?”) in order to take optimal decisions. The ability to perform 

probabilistic inference implies that the brain encodes not only the value of a stimulus, but 

also information about its confidence in the specific value. In the extreme case, sensory 

systems may represent a full (posterior) probability distribution over all possible stimulus 

values. And indeed, correlates of confidence and probabilistic inference have been found at 

the single neuron level (Yang and Shadlen, 2007; Morgan et al., 2008; Kiani and Shadlen, 

2009).

Two closely related frameworks have been proposed which explain how probabilistic 

information can be encoded in neural populations. Probabilistic population codes (Pouget et 

al., 2000, 2003; Ma et al., 2006) assume a simple correspondence between the instantaneous 

activity profile of a neural population and the probability distribution p(f) over a set of 

(stimulus) features f. The correspondence itself can vary, depending on the system being 

modeled,13 but the underlying intuition is always the same: Each neuron’s instantaneous 

activity, through inversion of its tuning curve, can be interpreted as a noisy “vote” for a 

given feature value f. When all neural votes are concatenated, the resulting histogram can 

12In V1, spiny stellate cells from layer IV could be a good candidate for such future investigations, as their large number and low 
activity rates suggest a sparse-coding strategy (Bruno Olshausen, personal communication).
13most often, p(f) is obtained as a linear projection from the population activity profile.
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either be peaked around a single value (corresponding to high level of confidence), or much 

more widespread (corresponding to low level of confidence). Sampling-based codes (Fiser et 

al., 2010; Berkes et al., 2011) assume that probability distributions are represented implicitly 

– through samples drawn from them – rather than explicitly. In particular, the framework 

suggests that each successive snapshot of the instantaneous population activity provides a 

new sample from the probability distribution. Such sampling-based codes provide an 

appealing functional explanation of trial-to-trial variability, and allow a straightforward 

implementation of probabilistic learning and inference (Fiser et al., 2010).

These frameworks make strong conceptual claims regarding the embedding of information 

in sensory populations, which should ultimately impact their predicted distributions of 

activity, tuning, and temporal dynamics across populations. These predictions, though, are 

yet to be made. Here, we simply delimit their reach and possible forms. A first important 

remark is that, since these theories deal with the neural representation of uncertainty, they 

can only be assessed in situations where stimulus uncertainty is routinely manipulated. In 

this spirit, Beck et al. (2008) have shown how probabilistic population codes can account for 

the integrative properties of individual LIP neurons during a random dot motion 

discrimination task. While the study focused on single neuron activities, it made several 

qualitative predictions regarding population sparseness: in the context of sensory integration 

tasks, the distribution of neural activities should concentrate around fewer active neurons as 

time passes, reflecting the sharpening of the encoded distribution p(f) thanks to the 

integrated sensory evidence (Figure 9f). Similar arguments can be made for sampling-based 

codes, so that both frameworks predict that population sparseness increases with increased 

confidence in stimulus value. There is currently no evidence for or against such a prediction. 

On the level of single neurons, both frameworks predict that a neuron’s trial-averaged 

activity increases as the feature represented by the neuron becomes more likely, thus 

resulting in population-wide dynamics of ramping up or down. Such ramping behaviors have 

indeed been observed at the population level, as reviewed in Section 6.

Strictly speaking, neither probabilistic population codes nor the sampling-based hypothesis 

are self-contained theories of neural encoding, in the sense that they do not specify the way a 

stimulus s—even with high confidence—is embedded in a population. As a result, to yield 

predictions regarding distributions of tuning and lifetime sparseness, they must be coupled 

with a specific representational hypothesis. So far, these stimulus representations have 

mostly been restricted to simple, homogeneous settings (typically the ring model, see Ma et 

al. 2006; Beck et al. 2008). However, Lochmann et al. (2012) have recently proposed a 

framework that merges aspects of probabilistic population representation with sparse coding. 

In their theory, the neural population still represents a probability distribution, yet individual 

neurons compete via lateral inhibition to represent objects, which increases the overall 

sparseness of the representation. Such a framework has the potential to predict quantitative 

distributions of activity and tuning features, and how they vary with uncertainty.

6 Population distributions of time-varying neural activities

In the previous sections, we have considered simple measures of neural responses such as 

average firing rates (or spike counts), CVs, Fano Factors, etc. These measures are highly 
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reduced descriptions of neural activity. In particular, they do not characterize the time course 
of neural responses. In this section, we present recent approaches that have sought to 

describe the distribution of such time-resolved neural activities in a given population of 

neurons, both for stimulus-free and stimulus-driven conditions.

6.1 The temporal structure of population responses to a stimulus

The simplest measure of a neuron’s temporal course of response is its trial-averaged firing 

rate. In the case of a sensory response, the stimulus onset acts as the initial temporal 

alignment (t = 0), and the subsequent trial-averaged firing rate corresponds to the peri-

stimulus time histogram (PSTH) of the neuron. For a single neuron, we denote by r(t, s) this 

trial-averaged, time-varying, and stimulus-dependent firing rate. In the perspective of this 

review, we then seek to describe how the PSTHs of different neurons are distributed across 

the population. We note that such a stimulus-dependent time course consists of many 

different variables, one for each time step and stimulus condition, so that characterizing a 

distribution over these PSTHs is a formidable task. We will, however, start with something 

much simpler: the distribution of response latencies across neurons.

6.1.1 Population distributions of response latencies—The response latency of a 

neuron is the time between the onset of a stimulus and the response of the neuron. The 

organisation of neural latencies at the population level is of high interest to systems 

neuroscience. It can help determine a global hierarchy of processing through respective area 

latencies (Schmolesky et al., 1998; de Lafuente and Romo, 2006), and also potentially reveal 

neural codes based on spike timing (Abeles, 1991; VanRullen and Thorpe, 2001; Gollisch 

and Meister, 2008). Ideally, we would want to know how these response latencies are 

distributed across a population for a given, fixed stimulus. There are, however, two problems 

that need to be taken into account. First, since most neurons are active even before a 

stimulus is shown, response latencies have to be measured with respect to a baseline. 

However, as shown in Section 3.2, the overall invariance of population distributions of 

activity implies that for every neuron whose activity increases in response to a given 

stimulus, another neuron’s activity decreases. Furthermore, some of the neurons may be 

unresponsive. Since response latencies are traditionally defined with respect to a measurable 

increase in activity, they are ill-defined for part of the population. Second, the response 

latency of any particular neuron depends on the stimulus presented: for some stimuli, a 

neuron may respond faster than for other stimuli.

In the literature, these problems have often been addressed by reporting “minimum 

latencies”. These are defined as the smallest measurable latency across a set of stimuli. For 

instance, Heil (1997) tested neurons in the primary auditory cortex of anaesthetized cats with 

a range of sounds with different onset envelopes. The author found a distribution of 

minimum response latencies that ranged from 6–37 msec, with most of the neurons falling 

within 9–15 msec. In the primary visual cortex of awake behaving monkeys, Maunsell and 

Gibson (1992) found minimum latencies ranging from about 20–70 msec using high contrast 

gratings, with most neurons falling in the range 35-55 msec. In what is probably the most 

comprehensive study of visual response latencies, Schmolesky et al. (1998) measured 

distributions of minimum latencies across several areas of the visual cortex in anaesthetized 
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monkeys, including LGN, V1, V3, MT, MST, V2, and V4, see Figure 10a. They find widely 

distributed minimum latencies in all areas. In the primary visual cortex, the minimum 

latencies range from 34–97 msec, the bulk of which falls within 55–75 msec. In awake 

macaques during a somatosensory detection task, de Lafuente and Romo (2006) measured 

the distribution of response latencies for several areas, from sensory to motor systems (S1, 

S2, VPc, DPc, M1, MPs). The latency distributions were widespread for each area, but 

overall the mean latency was found to increase from sensory to prefrontal areas, and to 

correlate with increased encoding of the animal’s decision (choice probability, see Section 

5.1.3)—as opposed to pure sensory encoding in the earlier-responding areas (Figure 10b). 

These results clearly point out that decision formation is a distributed process, both across 

areas and in time.

As mentioned above, minimum latencies are determined by pooling over a large set of 

stimuli. Consequently, they are suited to measure the speed of information transmission, but 

they do not depict an accurate picture of the population response to a given stimulus. One 

way of obtaining such a picture is to first construct a model for the responses of single 

neurons, and then use this model as a basis for describing the population statistics. For 

sensory systems, the most prominent model is the linear-nonlinear model, which has 

classically been estimated using reverse correlation analysis. The linear part of these models 

is sometimes equated with the receptive field, and we have already discussed the static case 

in Section 5. When equipped with temporal filter components, the linear-nonlinear model is 

called the spatio-temporal or spectro-temporal receptive field (STRF). While many studies 

have measured and characterized receptive fields, few studies have explicitly provided a 

distribution of the receptive field parameters (for exceptions see Valois et al. (1982); Parker 

and Hawken (1988); DeAngelis et al. (1993)). In a seminal study, DeAngelis et al. (1993) 

investigated cells in the primary visual cortex of cats and estimated both the temporal and 

spatial profiles of neurons’ receptive fields. They found latencies to peak responses 

distributed in a range of 30-150 msec, with an average of 68 msec. Although the authors do 

not specify the onset response of the population for a given stimulus, the respective 

population statistics could be reverse engineered from the distribution of STRF parameters 

provided.

6.1.2 The population vector and other linear models—Even though the study by 

DeAngelis et al. (1993) provides a complete, model-based picture of the population 

response, there are two caveats. First, as noted in Section 2.2, the sampling of neurons in this 

(and most other) studies is likely to be biased, therefore providing a potentially inaccurate 

picture of the population dynamics. This problem has to be kept in mind; however, since it 

has not been fully addressed in the literature, we will ignore it here. Second, the distribution 

of the temporal dynamics is based on a two-step approach in which a model is first fit to the 

neural response, and then the population statistics are evaluated. A major disadvantage of 

such a two-step approach is that small systematic deviations of the single neuron model from 

the actual response can potentially add up to major deviations on the population level. In the 

case of receptive field models, this problem is exacerbated by their poor performance in 

predicting a neuron’s response to arbitrary stimuli (Linden et al., 2003; David et al., 2004; 

Machens et al., 2004; Olshausen and Field, 2005). To circumvent this problem and get a 
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better hold of the population dynamics, one should ideally model the population response 

directly. This problem has been addressed in the literature, mostly by reducing the number 

of stimuli considered while expanding the number of neurons, thereby modeling the 

complete (recorded) population in a single shot.

One basic idea for such a population-based approach is to model the time-varying firing rate 

of each neuron as a linear combination of a few “response modes” Ai(t, s) with i = 1 … k 
where k is a small number, typically less than ten. These response modes have to be chosen 

such that they capture the main trends in the population, both in terms of the temporal 

dynamics of the response, and in terms of the stimulus-dependencies. The firing rate of the j-
th neuron can then be written as

r j(t, s) = w j1A1(t, s) + w j2A2(t, s) + … + w jkAk(t, s) (1)

where the parameters wji, sometimes called the “factor loadings”, determine the weights of 

the different modes i for neuron j. Accordingly, each neuron is characterized by its own set 

of parameter values which can be summarized in vector form as wj = (wj1, … wjk). The 

population response can then be represented by the response modes and their distribution 

within the population, as measured by p(w). In terms of linear algebra, the hypothesis that 

the k-dimensional response-mode description is “accurate enough” means that it captures all 

the temporal and stimulus-induced variations of the firing rates in all recorded neurons.

The response modes are usually built as linear combination of the original neural activities, 

r(t, s) = (r1(t, s), r2(t, s), … , rN (t, s)). In linear algebra formulation, we thus seek a k × N 
projection matrix U such that the vector of response modes, A(t, s) = (A1(t, s), … , Ak (t, s)), 

is computed as A(t, s) = Ur(t, s). In the classical “population vector” approach, due to 

Georgopoulos et al. (1986), the matrix U is empirically fixed based on each cell’s individual 

tuning properties, and on the type of information sought by the researcher. For example, the 

original work of Georgopoulos et al. (1986) in rhesus monkey motor cortex aimed at 

reconstructing or decoding an arm trajectory in a plane (so k = 2) from the motor neuron 

population activities. In this case, the reconstruction of the two spatial components x and y 
of the movement was given by a linear weighted sum of the neural activities. In our notation, 

these linear weights correspond to the two rows of the matrix U, whereas the reconstructed 

(x, y)-position of the movement over time corresponds to the evolution of the two first 

response modes so that x(t, s) = A1(t, s) and y(t, s) = A2(t, s), where t is time and s the 

movement target (or stimulus). In the population vector approach, the factor loadings wji 

have usually not been computed, although they could be determined in principle, for 

instance, by using linear regression.

Since this approach makes empirical assumptions about the nature of neural encoding, it 

may lose considerable information compared to the real population code, similar to the two-

step approaches explained above. As a result, other approaches have rather focused on 

unsupervised descriptions, where matrix U is imposed by the data itself. One such method is 

Principal Component Analysis (PCA), in which case the matrix U is constructed of the first 

k eigenvectors of the N × N temporal covariance matrix of r(t, s). Each reconstructed 
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component Aj(t) is then the j-th principal component of the activity. Taken together, the first 

principal components generally account for a majority of the variance in the population 

activity and thereby reveal an intrinsically low-dimensional structure in the population 

activity (see Chapin and Nicolelis (1999) for an early application of PCA in this sense; 

Optican and Richmond (1987); McClurkin et al. (1991) for earlier, but single-neuron based 

applications of PCA). In PCA, the factor loadings are simply given by W= UT where W is a 

matrix with rows wj, and UT denotes the matrix transpose of U.

6.1.3 Temporal dynamics of trial-averaged, stimulus-evoked firing rates—Not 

many studies have investigated population dynamics or their statistics in neural systems. We 

now review how the above linear frameworks have been applied to study population 

dynamics in a variety of sensory systems responding to a stimulus (Figure 11). Some of the 

first applications come from insect systems. While outside the range of topics considered in 

this review, we find it nonetheless useful to briefly consider these results. Figure 11a shows 

the population response of principal neurons in the insect antennal lobe, responding to 

presentations of two different odors (Mazor and Laurent, 2005). Here, the three coordinates 

correspond to the first three response modes, A1, A2, and A3, or equivalently, to a projection 

of the neural population response onto the first three principal component axes. The 

population responses display strong phasic excursions at odor onset and offset, whereas the 

sustained response to odors (“fixed point” FP in the figure) is generally closer to baseline 

activity, with less stimulus differentiation (Mazor and Laurent, 2005; Stopfer et al., 2003). 

Trajectories for different odors diverge strongly and right from stimulus onset, indicating 

that stimulus information is the dominant factor shaping the response of antennal lobe 

principal neurons. Haddad et al. (2010) have similarly analyzed population responses in 

various insect and mammalian olfactory systems, and found that the first PCA components 

have preserved characteristics and interpretation: the first principal component represents the 

overall strength of odor-induced activity in the population and covaries with the animal’s 

approach or withdrawal from the odor, while the second component covaries with odor 

toxicity.

In contrast, activity in mammalian sensory cortices seems to be dominated by a purely 

temporal component, independent of stimulus identity. Figure 11b (Bartho et al., 2009) 

represents the two first principal components of population responses in primary auditory 

cortex of anaesthetized rats. The three lines (or “trajectories”) correspond to the presentation 

of three tone pips of different frequencies. Trajectories appear very similar for different 

stimuli, dominated instead by a stereotyped phasic excursion corresponding to stimulus 

onset. A similar picture arises in the primate somatosensory cortex of awake monkeys 

responding to tactile vibratory stimuli (S2 cortex, Figure 11d-i, unpublished analysis of 

previously published data; Hernández et al. (2010)). The first principal component is again a 

stereotypical transient response (Figure 11f) accounting for an overwhelming amount of the 

population’s total variance (Figure 11d, principal eigenvalues).

In both these experiments, the precise stimulus value is read out in a different linear 

subspace than the temporal transient at onset, and accounts for a much smaller amount of 

total variance. In the macaque S2 experiment, stimulus information appears clearly in the 

second principal component (and also in the third, not shown), taking the form of a 
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stationary shift in activity depending on the exact stimulus value (Figure 11g). In the rat A1 

experiment, the authors must explicitly search for another linear projection matrix U 
emphasizing separation of different stimuli (Figure 11c, Linear Discriminant Analysis), 

because the amount of population activity associated with precise stimulus information is so 

small that it scarcely appears in traditional PCA. To complete this population picture, the 

authors find that population activity undergoes a strong rotation in neural activity space 

between the “transient” and “sustained” phases of response. Moreover, the angular 

separation (of the respective population activities) between these two phases is much larger 

than the angular separation between two stimuli during the same phase (Bartho et al., 2009). 

What could then be the functional signification of the strong initial temporal component? 

One possibility is that it simply represents stimulus onset. Another possibility is that it 

reflects coarse stimulus information (e.g. stimulation of the finger, or stimulation within a 

certain frequency band). Indeed, in macaque IT neurons responding to objects and faces, 

Matsumoto et al. (2005) report PCA components which progressively differentiate object 

indentities, from coarse identity in the early phase of response (object vs. monkey face vs. 

human face) to finer identity (face expression, object shape, etc.) in the latter phase.

To summarize, these results hint at a multiplexing of neuronal responses in mammalian 

cortex, between strong initial dynamics directly after stimulus onset, and precise stimulus 

differentiation involving a smaller number of fired spikes afterwards. The relative impact of 

these two components appears to depend on the exact place of the area in cortical 

processing, with early sensory areas (A1, V1, S1…) potentially displaying a stronger initial 

temporal transient and less differentiation than higher-level areas which are involved in more 

abstract features (MT, LIP, IT…).

Most studies of population dynamics focus exclusively on characterizing the response modes 

Ai(t, s), and ignore the factor loadings or weighting coefficients wj and their distribution 

across the population. These coefficients are likely to provide important additional 

information. This is exemplified in a study by Chapin and Nicolelis (1999), for instance, in 

which simultaneous recordings in the thalamus are used to analyze population responses to 

whisker stimulation in awake rats. They found distributed factor loadings that could be 

related to the topology of the whisker system: neurons coding for different whiskers often 

had quite different factor loadings; however, due to the small (but simultaneously recorded) 

ensembles considered, the statistics of the factor loadings could not be evaluated. In 

macaque IT neurons responding to objects and faces, Matsumoto et al. (2005) find factor 

loadings which seem to follow a long-tailed distribution, but no actual statistics (such as 

kurtosis) are provided. It remains therefore an open question how the distribution of factor 

loadings compares to the long-tailed distributions of neural activities described in Section 3. 

Indeed, the strong phasic component revealed with PCA in the examples above may appear 

incompatible with the notion of a sparse population response to the stimulus.

To explore this question a bit more, we computed the factor loadings, wj, for individual 

neurons in the macaque S2 data (Figure 11h-i). We find that most neurons contribute 

positively to the first principal component, experiencing a rise in activity at stimulus onset 

(whereas negative components indicate a dip in activity). In contrast, neural contributions to 

the second, stimulus-dominated component are balanced, reflecting the long-known 
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existence of positively- and negatively- tuned neurons in this area (Romo et al., 2002). 

Finally, we find a common feature to these two distributions: they are long-tailed, as 

revealed for example by their large (one-sided) CVs. So here again, it seems that relatively 

few neurons take on the largest contributions to the population’s temporal dynamics, 

consistent with the statistics of activity observed during spontaneous activity. All in all, 

although several studies have used PCA or other dimensional reduction methods to study the 

dynamics of sensory populations, little emphasis has been put on interpreting the distribution 

of factor loadings, and in particular how it compares to the distribution arising from 

unstructured (shuffled) data.

6.1.4 Temporal dynamics of trial-to-trial variance and stimulus 
discriminability—In the previous section we have only considered population studies 

based on individual neurons’ trial-averaged firing rates. However, the response of an 

individual neuron can also be characterized by higher-order statistics, such as its trial-to-trial 

variance: How much does the neuron’s activity in a fixed window of time vary from trial to 

trial? Neglecting the aspect of time, we already addressed this question in Section 4.2.2. 

Here we consider the time-resolved version of the Fano Factor (FF, variance-to-mean ratio) 

and ask how the Fano Factor (or other measures of variance) evolve in time, when computed 

at different instants of the sensory stimulation. This question has recently met renewed 

interest, with the findings that, in awake-behaving animals, (i) reduction in trial-to-trial 

variance at stimulus onset is a hallmark of (sensory) cortices (Harris et al., 2011; Churchland 

et al., 2010b), and (ii) the exact temporal evolution of variance can give hints about the 

nature of the underlying neural computations (Churchland et al., 2011).

The first finding—quenching of variance at stimulus onset—bears a natural interpretation 

given the relationships between spontaneous and sensory activity described above (Section 

3.2). From the point of view of the trial-to-trial variance, switching from spontaneous 

activity (and its trial distribution pt(r)) to stimulus-driven activity (with trial-distribution pt(r|
s)) is akin to a probabilistic conditioning operation, which leads to a decrease in variance. 

Such “variance quenching” can be observed in Figure 12a, as a marked decrease in Fano 

Factor around stimulus onset. Other studies have extended this study of variance quenching 

to populations of simultaneously recorded neurons (Luczak et al., 2009; Yu et al., 2009; 

Churchland et al., 2010b).

The second finding—interpreting the temporal course of variance as a trace of the 

underlying neural computations—has been the subject of a recent article by Churchland et 

al. (2011), whose main point is illustrated in Figure 12a-b. In area LIP of macaques 

performing a random dot discrimination task, trial-to-trial variance grows continuously 

during the course of sensory stimulation (Fano Factor, panel b). This behavior is at odds 

with Poisson-like spiking processes, for which the Fano Factor is constant (and equal to 1 in 

the Poisson case). Instead, such a temporal growth of FF is expected in the case of internally 

generated dynamics which vary on a trial-to-trial basis. Two main candidate mechanisms 

are: (i) integrative mechanisms of sensory signals, with random-walk-like dynamics, and (ii) 

attractor dynamics resulting from a top-down biasing of sensory signals on a trial-by-trial 

basis. Model simulations by Churchland et al. (2011) suggest that either mechanism could 

be at play in the present data.
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Figure 12a-b only depicts the mean behavior across all neurons tuned to a particular 

movement direction, and we found that population descriptions of the “growing variance” 

effect are rare in the literature. Uka and DeAngelis (2003) have led such an analysis in area 

MT of macaques performing a binocular depth discrimination task, summarized in Figure 

12f-h. They considered the temporal evolution of three spike statistics for each recorded 

neuron (Figure 12f): (i) its tuning to binocular depth (TU, difference in trial-averaged firing 

rate between the two binocular conditions), (ii) its Fano Factor (FF), and (iii) its noise auto-
correlation (AC), assessed from the trial-to-trial covariance between spike counts of disjoint, 

adjacent 200ms time windows. Figure 12g depicts the temporal evolution of the population 

mean for the three indicators. Note the rise in Fano Factor during stimulation, reminiscent of 

Figure 12b.

A fourth statistic was also computed for each neuron: its neurometric threshold (TH), 

measuring how precisely different stimuli can be discriminated on a trial-to-trial basis by 

looking at the spike count of the neuron—high TH corresponding to poor sensitivity. If the 

neuron behaves as a stationary Poisson process, TH is expected to scale as T−1/2, where T is 

the length of the temporal window used to count spikes. A striking finding of the authors 

was that for most neurons this scaling does not occur: when computing thresholds using 

either the initial 300 ms period, or the full 1500 ms stimulation period, one finds that the full 

period adds surprisingly little additional information, resulting in a ratio TH(300)/TH(1500) 

often much lower than its predicted value of 5 for Poisson statistics (dashed lines in Figure 

12h). The greater importance of early neural responses for stimulus discrimination has been 

found in other systems as well (Luna et al., 2005; Price and Born, 2010; Stanford et al., 

2010).

All these results hint at neural population statistics which vary qualitatively between the 

early and late phases of stimulus response. To assess these effects, Uka and DeAngelis 

(2003) summarized each neuron’s behavior by four scalar indicators: (i) its tuning ratio 
(TUr) between early and late period, (ii) its Fano Factor ratio (FFr) between early and late 

period, (iii) its average level of noise autocorrelation, AC, across the stimulation, and (iv) its 

threshold ratio (THr) between early and late periods. Figure 12h shows the population 

distribution for these four indicators. The neurons’ relative loss in sensitivity during late 

stimulation (THr < 5) correlates, at the population level, with a decrease in tuning (TUr> 1), 

an increase in trial-to-trial variance (FFr< 1), and a strong level of noise autocorrelation 

implying non-Poisson statistics (AC> 0). Furthermore, a significant correlation is found 

between indicators AC and FFr: neurons with strong autocorrelation levels (i.e., large AC) 

tend to experience more drift on a trial-by-trial basis, leading to higher variance towards the 

end of the stimulation (i.e., small FFr). Again, this is the type of behavior expected if 

internally generated dynamics develop in the population during the late period. Finally, we 

note that the two variance indicators (FFr and AC) are not correlated with the tuning 

indicator (TUr), showing that the putative internally generated dynamics are not directly 
related to each neurons’ individual sensory content.

The internally generated dynamics shown in these examples are likely to reflect 

computations, e.g., about an upcoming decision or action. In sensory areas, such 

computations can be measured by choice probabilities (see Section 5.1.3, Figure 8g and 
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Figure 10a). The dynamics of these decision-related signals in turn allow us to learn 

something about the information flow in cortex. An intriguing result came from a study of 

Nienborg and Cumming (2009) in primate V2 cortex, which revealed an intrinsically top-

down contribution to the neurons’ choice probability signals (Figure 12c-e). Studying a 

disparity discrimination task, the authors found a dissociation between (i) the causal 

influence of a stimulus on the animal’s decision and (ii) the measurement of choice 

probability. In the bottom-up interpretation, choice probabilities merely represent the former 

causal influence, so both (i) and (ii) should display a similar temporal evolution. Instead, 

their results indicated that the causal influence of a stimulus on the animal’s decision is 

larger in the early period of stimulation (Figure 12d), while choice probabilities are larger in 

the late period of stimulation (Figure 12e). These findings can only be explained if the 

forming decision itself—and not the mere stimulus values—progressively influences the 

firing of V2 neurons. Decision formation is thus a likely candidate to explain the growing 

trial-to-trial variance and loss of stimulus discriminability shown in the rest of Figure 12.

For the moment, these statistical accounts of the “growing variance” effect are purely 

descriptive. Ultimately, we need population assessments of the effect that are more 

quantitative and model-based, and again focus on tools of dimensionality reduction to get a 

better understanding of the internally generated dynamics. Likely, such analysis will have to 

operate on trial-to-trial recordings of correlated neural populations (Section 7). However, the 

examples of Figure 12 show that even independent cell recordings, when combined in 

population distributions, can start to unveil the complex dynamics at play in the late phases 

of sensory stimulation in awake behaving animals.

6.2 The temporal structure of internally generated population responses

In contrast to stimulus-locked responses, neural activity that maintains past sensory 

information, plans future actions, or causes movements, is generated internally. We will here 

briefly review what we know about such internally produced population activity, considering 

both activity that precedes an event as well as activity that follows an event. In both cases, 

the trial-averaged and time-resolved neural response is often called a PETH (peri-event time 

histogram).

6.2.1 Temporal dynamics of anticipation—Probably the first to investigate the 

population dynamics of internally generated activity were Georgopoulos et al. (1989). They 

studied population activity in the motor cortex of a monkey deliberating and performing an 

arm movement. As described in Section 6.1.2, every cell in their recordings was 

characterized by its preferred direction, ui, in the physical space. In turn, the direction that 

the population of neurons is encoding at any particular time can be read out by the 

population vector, A(s, t) = Σi uiri(s, t), i.e., a weighted linear combination of the firing rates 

ri of the individual neurons. Here, t is the time and s the desired direction of the arm 

movement, and the population vector may change with either variable. As before, we can 

also write this as a matrix-vector multiplication, A(s, t) = Ur(s, t), where the columns of U 
are given by the preferred directions ui. The authors show that this population vector, A(s, t), 
initially points in the direction of a light signal that indicates where the monkey has to move 

its hand. In trials where the light signal indicates a movement in a perpendicular direction, 
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the population vector still points into the original direction initially, but then rotates over the 

course of 260+-30 msec to point towards the perpendicular direction. Immediately after this 

rotation, the monkey moves its arm.

Interestingly, this finding of a rotating population vector is not specific to the motor cortex. 

Using an oculomotor delayed-response task, Takeda and Funahashi (2004) constructed an 

analog version of the reaching task, and showed that a similar rotation of the population 

vector takes place during a three-second delay period in the PFC of a monkey (Figure 13a). 

In this task, as well as in the reaching task of Georgopoulos et al. (1989), the population 

vector provides a straightforward interpretation of the information represented in the 

population activity—it corresponds to a location in space. However, its gradual change over 

time requires that the firing rates of some neurons decrease, namely those tuned to the initial 

direction, while those of other neurons increase, namely those tuned to the final, 

perpendicular direction. Such increasing and decreasing firing rates, often called “ramping”, 

have been found in many cortical areas whenever an animal actively anticipates an event in 

time (Durstewitz, 2004), suggesting that the observed population dynamics may generalize 

to other periods of waiting, deliberating, or anticipating, beyond the confines of the specific 

arm reaching or oculomotor tasks.

Such temporal dynamics were probably first reported by Kojima and Goldman-Rakic 

(1982). A systematic study of the varying dynamics of firing rates in a population of 

prefrontal neurons was carried out in Brody et al. (2003). The authors focused on the delay 

period of a task in which monkeys were discriminating two frequencies of a vibrating 

stimulus applied to the fingertip, and separated by three seconds. Brody et al. (2003) report 

neurons whose firing rates either increase or decrease. They show that these increases (or 

decreases) can be ramp-like, with a smooth change of the firing rate over three seconds, or 

jump-like, meaning that neurons fire at a relatively constant level, and then suddenly shift 

their firing rates to a higher (or lower) level at some point in the delay period. Since then, 

several authors have confirmed these findings, both in the PFC (Mita et al., 2009) and OFC 

of monkeys (Ichihara-Takeda and Funahashi, 2007), in the dmPFC of rats (Narayanan and 

Laubach, 2009), and in the rat’s medial agranular cortex (Matell et al., 2011). In all cases, 

cells’ firing rates increase, decrease, and sometimes follow more complex dynamics while 

anticipating an event. Generally, the activity of individual neurons is extremely heterogenous 

(Brody et al., 2003).

In many of these tasks, there is no simple equivalence to the population vector. In the 

original interpretation put forward by Georgopoulos et al. (1989), neurons have a fixed and 

preferred tuning, and the rotation of the population vector indicates a change in the spatial 

information represented (or mused upon) by the monkey. An alternative interpretation is to 

assume that the represented information remains the same, while the neurons’ preferred 

direction changes over time relative to the movement onset (Sergio et al., 2005; Hatsopoulos 

et al., 2007; Rickert et al., 2009). Such a change in a neuron’s preferred tuning can be 

evaluated in other tasks as well. Machens et al. (2010) reinvestigated population activity in 

the prefrontal cortex, using the same delay-period data set as Brody et al. (2003). The 

authors used a version of PCA that seeks to capture the maximum amount of variance while 

also demixing the dependencies on time t and stimuli s in the task (Machens et al., 2010; 
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Brendel et al., 2011). They find that six components (or response modes Ai) suffice to 

represent more than 95% of the variance in the population activity during the delay period of 

a task (see Figure 13c). Using their method, the authors find three response modes that only 

carry information about the task timing (upper three panels in Figure 13c) and three 

response modes that carry information about the stimulus frequency (lower three panels in 

Figure 13c). The latter three response modes capture the temporal evolution of stimulus 

tuning in the population.

Similar to the population vector rotation, the authors find a rotation of the original stimulus 

tuning in anticipation of the upcoming second stimulus frequency. This rotation can be 

visualized by replotting components 5 and 6 from Figure 13c, as done in Figure 13b, left 

panel. The angular change from the initial tuning direction to the direction at the end of the 

delay period is plotted in the right panel, showing a similar, almost orthogonal rotation as in 

Takeda and Funahashi (2004), albeit counterclockwise and with different temporal 

dynamics. In their work, due to the constraints of the task, it must be the neurons’ tuning 

that changes, rather than the information stored in the monkey brain. We note that the PCA-

based analysis also illustrates that the rotation of the stimulus tuning does not capture the 

complete dynamics in the population. Rather, a large part of the overall activity is related to 

purely temporal components (Figure 13c, first row) which do not exhibit any tuning to the 

stimuli.

The separation of timing information and tuning information into orthogonal subspaces, as 

shown in Figure 13c, is similar to the separation of time and stimulus-information shown in 

Figure 11b,c. Indeed, a similar separation of timing, stimulus, and decision-related 

information for a whole task was recently reported by Brendel et al. (2011), suggesting that 

these types of orthogonal representations could be a general organization principle for 

higher-order areas in the brain.

6.2.2 The population statistics of temporal dynamics and the lacking 
evidence for cell classes—The description of firing rates in terms of decreasing versus 

increasing “ramps” implies that there may be different classes of cells, such as up-ramping 

versus down-ramping neurons. There is, however, no evidence for that if all of the recorded 

neurons are included in the analysis. For instance, Narayanan and Laubach (2009) analyze 

delay-period activity in the dmPFC of rats using PCA. They show that most of the firing rate 

variance in the delay period data is captured by a few components. The factor loadings of 

these components, however, follow a unimodal distribution. A similar result was obtained by 

(Machens et al., 2010) in their analysis of delay-period activity in monkey PFC (described 

above), showing sparse and unimodal distributions of factor loadings with exponential tails 

(see Figure 13d).

Of course, the existence of cell classes could require more sophisticated analysis than the 

plotting of factor loadings from PCA. We note that to the extent that researchers have found 

distinct classes of cells, this has often been based on a priori exclusion of neurons that 

showed “insignificant” responses with respect to the feature under investigation. This 

exclusion of cells, however, is prone to turn a unimodal distribution into a bimodal 

distribution, thereby artificially introducing classes of cells. Systematic attempts to find 
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classes of cells should be based on clustering analysis. This was done in a recent study by 

Jin et al. (2009), for instance, who identified 66 classes of cells by analyzing the responses 

of more than 2000 neurons in the dlPFC of monkeys performing a sequential saccades task, 

i.e., a task that stretched over more than one delay period. Apart from the large number of 

cell classes, we note that about one third of the neural responses could not be attributed to 

any of these classes. Accordingly, if there are different classes of cell responses, these are 

not likely to be easily interpretable.

6.2.3 Single trials and the anticipation of variable delays—Most of the work 

reviewed in the last section was concerned with delay activity recorded from animals 

performing tasks with a fixed delay period. What happens when the length of the delay 

period changes? Once the animal has adjusted to the new length, several authors have found 

that the dynamics of the activity rescales (Komura et al., 2001; Brody et al., 2003; Mita et 

al., 2009; Machens et al., 2010; Shinomoto et al., 2011). While the extent to which these 

activity changes constitute a real rescaling still has to be quantified, the evidence clearly 

suggests that the population of neurons reaches exactly the same state, i.e., combination of 

firing rates, at the end of the longer delay period that it reached at the end of the shorter 

period. These observations suggest that the system uses the delay period to move between 

two states in state space, one at the onset of the delay and one at the offset. We note that the 

end of the delay period is usually identical with the onset of a stimulus or a movement.

One can make similar observations if the delay period is variable as well. This can happen if 

the delay is not known to the animal beforehand, or if the animal itself has some influence 

on the length of the delay period. In these cases, it is much harder to compare activity across 

trials, and the study of population activity essentially has to rely on simultaneous recordings 

of cells. Nonetheless, a common observation in these studies concerns what happens with 

the population activity in the neighborhood of a measured or controlled event (such as a 

movement onset). In this case, firing rates converge to the same point independent of their 

time course beforehand (Churchland et al., 2010a). This type of threshold crossing is 

important for proactive movements (Maimon and Assad, 2006; Churchland and Shenoy, 

2007; Afshar et al., 2011), and suggests that part of the computations carried out during the 

delay period may be a mechanistic preparation of the system for the arrival of a new 

stimulus or the initiation of a motor act (Churchland et al., 2010a).

We note that even in studies with a fixed delay period, averaging over trials to construct 

PETHs will obscure part of the population dynamics. Such averaging generally assumes that 

there are no systematic differences between trials, i.e., that the dynamics of the system 

unfolds equally every single time. This, however, is unlikely to be the case, since it would 

require very precise timing of changes in neural activity, far more precise than what is 

known from psychophysics. Evidence from the motor systems clearly points to significant 

trial-to-trial differences in the unfolding of anticipatory delay activity (Churchland and 

Shenoy, 2007; Churchland et al., 2010a; Afshar et al., 2011). Even in the absence of 

stimulation, we therefore run into the same phenomena that we studied in Section 6.1.4. The 

measured PETHs could, therefore, be generated by various combinations of heterogeneous 

single trials. Several authors have suggested, for instance, that neurons with ramping activity 

could simply be neurons that show stepwise increases in firing rates, yet these increases 
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occur at different times of the delay period for different trials (Durstewitz, 2004; Mongillo et 

al., 2003). Indeed, Brody et al. (2003) showed that some neurons have sudden changes in 

firing rate. While a systematic investigation of ramping activity on the single-trial level is 

still to come, we note that the answer is likely to be both: there are neurons that rapidly 

change firing rates during the delay period at different time points, and there are neurons 

whose firing rates increase smoothly and almost linearly during the same period (Kesseli, 

Romo, Machens, personal communication).

7 Population distributions of correlations

So far we have limited our survey to descriptions of population activity where neurons are 

considered independently; in the “urn” metaphor of Figure 1e, we randomly picked neurons 

one by one. This approach, although powerful, neglects functional (and anatomical) 

relationships which may exist between neurons as a result of their embedding in the same 

connected network. These inter-neuron relationships generally bear the name of neural 

correlations. Because of combinatorial explosion, correlations are most often studied on a 

pairwise basis; in the image of Figure 1e, this is equivalent to drawing pairs of neurons from 

the urn, rather than individual neurons.

Neurons can be correlated along several dimensions. First, anatomical correlations can be 

defined, e.g., based on the spatial position of neurons in cortex. Second, correlations can be 

defined at a functional level, on the basis of individual neurons’ trial-averaged firing rates. 

Such correlations take the generic name of signal correlations, from the traditional notion 

that signals are encoded only in trial-averaged firing rates. Third, correlations can be studied 

on a trial-to-trial basis. Trial-to-trial covariations of activity between neurons have long been 

observed and take the generic name of noise correlations; they arise because the neurons are 

involved in common pathways of information processing, e.g., through shared connectivity. 

Measuring such noise correlations is a technical challenge, as it requires the simultaneous 

recording of several neurons. In Section 7.1 we discuss the distribution of anatomical and 

signal correlations, and justify the interest in studying them. We then turn in Section 7.2 to 

the harder, yet more widely-studied subject of noise correlations.

7.1 Anatomical and signal correlations

Since anatomical and signal correlations can be derived from individually recorded neurons, 

one may question whether they contain any useful information per se. For example, 

anatomical information can directly be translated into a physical mapping of neurons, which 

completely determines the distribution of inter-neuronal distances. Similarly, signal 

information (i.e., trial-averaged responses) can directly be translated into a distribution of 

tuning (Section 5) and/or dynamics (Section 6) which completely determines the structure of 

signal correlations. In primary sensory cortices, such anatomical and signal (tuning) 

information have been combined into a fair understanding of feature mapping (orientation 

columns in V1, tonotopy in A1, body maps in S1), without any need to resort to pairwise 

correlations.

However, precisely the simplicity of anatomical and signal correlations renders them useful 

in complex situations where full population distributions are difficult to construct. For 
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example, signal correlation matrices are the typical objects on which Principal Component 

Analysis is performed to extract the dominant dynamics in a population’s trial-averaged 

response (Section 6.1.2). Moreover, signal correlations can prove useful in higher sensory 

areas, since here the objects encoded bear complex relations to the raw stimulus information, 

and the concept of a tuning curve becomes unwieldy. Figure 14a shows a typical situation 

where the full distribution of population tuning is out of reach. Here, Sato et al. (2009) 

recorded from macaque IT neurons responding to a variety of objects and faces. Each blue 

cross in Figure 14a represents a pair of neurons and their signal correlation, computed as the 

linear correlation between the two neurons’ tuning curves to the complex set of stimuli. 

Exact encoding properties are lost in this process, but not their repartition across neurons; 

the authors could thus reveal the presence of “activity spots” in the upper layers of IT, that 

is, localized regions with broadly similar tuning properties.

Even in primary sensory cortices, the well-known feature maps have strong limitations. 

First, they do not apply uniformly across species—for example there are no orientation 

columns in rodent V1. Second, recent calcium imaging studies have revealed that these 

mappings can display strong discontinuities (Ohki et al. (2005), direction maps in cat V1) or 

even totally break down at the single-cell resolution (Rothschild et al. (2010), tonotopy in 

mouse A1). In such settings too, signal correlations and inter-cellular distance become a 

useful way of statistically describing the embedding of tuning properties on cortical surface 

(see, e.g., Rothschild et al. (2010)).

Finally, the study of anatomical and signal correlations acquires further importance when 

considering their relation to noise correlations. Since all three forms of correlations have the 

same pairwise structure, one may ask how they are linked, and how they constrain each 

other. In particular, signal correlations play an important role in studies of population 

coding: coupled with measures of noise correlation, they allow us to assess the decoding 

capacities of a neural population. These issues are reviewed in the next section.

7.2 Noise correlations

Noise correlations have attracted a lot of interest, because their precise form can completely 

change the overall picture of neural activity in the population. For instance, noise 

correlations can reveal clustered patterns of activation between neighboring neurons; they 

can show balanced influences between mutually inhibitory populations; and they can 

uncover synchronous waves of activation across large stretches of cortex. Furthermore, the 

amount of (Fisher) information about a stimulus which can be read out from a sensory 

population relies on the relationship between the signal and noise covariance matrices 

(explained below, see Abbott and Dayan (1999); Averbeck et al. (2006)), so knowledge of 

the latter is mandatory for any quantitative estimate. Also, noise correlations allow us to 

track population-wide modulations of activity resulting from attentional effects (Roelfsema 

et al., 2004; Cohen and Newsome, 2009; Mitchell et al., 2009; Cohen and Maunsell, 2011), 

thus explaining some of the uncontrolled variability inherent to single neuron recordings.

Unfortunately, noise correlations are also a difficult subject to study. First, there are 

technical limitations on the number of neurons which can be simultaneously recorded, 

although powerful techniques such as microelectrode arrays, tetrodes, or optical imaging 
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have increased this number during recent decades. Second, it is essentially impossible to 

reliably estimate all the statistics which fully define a population’s joint firing process 14. It 

generally takes more trials to estimate the pairwise distribution of two neuron’s firing than to 

estimate their respective mean firing rates, and again more trials to estimate the distributions 

for triplets of neurons, and so on. When time is added in the process this combinatorial 

explosion is yet larger, and even the pairwise structure of neural activity, assessed through 

the neurons’ Joint Peri-Stimulus Histograms (Aertsen et al., 1989), becomes difficult to 

measure with the number of trials usually granted to experimenters.

As a result, although noise correlations are central to population descriptions of neural 

activity, we know little of their population-wide distributions. While it is straightforward to 

estimate noise correlations from simultaneous recordings, this is not the same as estimating 

their distribution. To clarify this point, imagine we record simultaneous activities from an 

ensemble of 20 neurons using a tetrode, and compute for each pair of neurons (i, j) the 

Pearson index of noise correlation, ρij. What do these measures tell us about the noise 

correlations we should expect to find in the next session run, when implanting the tetrode in 

another site from the same neural area? In this section, we will distinguish a neuron 

ensemble, simultaneously recorded neurons during a session run, from a neuron population, 

which denotes a much larger set of neurons with anatomical and functional coherence. To 

understand the structure of noise correlations in the full population, one must assess their 

statistical organization from the set of recorded ensembles.

Because estimating noise correlations is challenging in itself, most experiments limit 

themselves to the simplest account of neural activity, spike counts. The object describing 

neural activity is then the N-dimensional vector r = (r1, r2, … , rN) collecting the spike count 

from each neuron in the ensemble. Because of noise correlations, the values taken by r1, 

r2… on each trial are not independent, but undergo common variations. The most 

straightforward way to encompass these covariations is the linear noise correlation (Pearson) 

coefficient, expressed for each pair of neurons (i, j) in the ensemble as:

ρi j =
(ri − ri )(r j − r j )

(ri − ri )2 (r j − r j )2
,

where the symbol 〈·〉 denotes averaging over trials. The Pearson correlation coefficient ρij 

ranges between −1 and 1, with value 1 indicating complete covariation across trials, and 

value −1 indicating complete anti-covariations across trials. A value of zero indicates the 

absence of any (linear) dependency between the two neurons on a trial-to-trial basis. The 

concatenation of all these measures in a single matrix ρ = (ρ11, ρ12, …) defines the so-called 

noise correlation matrix of the population.

14The so-called Janóssy measures, in the nomenclature of point-processes (Daley and Vere-Jones, 2007). For example, the neurons’ 
PSTHs define the first order Janóssy measure of the population process, whereas all pairwise JPSTHs define the second order 
Janóossy measure. Full description of a population of neurons would require knowledge of Janóssy measures up to order ∞.
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7.2.1 Noise correlations relate to anatomical and functional structures of 
cortex—Such noise correlation coefficients are routinely estimated for pairs of neurons in 

present-day experiments. However, less work has concentrated on determining their 

statistical patterns across the population. Where this has been done, noise correlations have 

generally been measured in relation to two other indicators: distance between neurons, a 

measure of anatomical correlation, and similarity of tuning, a measure of signal correlation. 

Figure 14b (Smith and Kohn, 2008) depicts an example of such analysis: the two 

dimensional plot shows the average strength of noise correlations between pairs of recorded 

neurons, as a function of the distance between the two recording electrodes, and of similarity 

of orientation tuning. The resulting pattern is stereotypical and has been observed in several 

studies: noise correlations are statistically stronger (i) for nearby neurons and/or (ii) for 

neurons with similar tuning properties.

The dependency of noise correlation strength on interneuronal distance reflects the increased 

chance that nearby neurons share common inputs, leading to covariations in their activities 

on a trial-to-trial basis. This dependency is a robust result which has been observed in a 

variety of settings (Lee et al., 1998; Petersen et al., 2001; Constantinidis and Goldman-

Rakic, 2002; Kerr et al., 2005; Yu et al., 2008; Ohiorhenuan et al., 2010; Rothschild et al., 

2010), suggesting that cortical activity often involves the co-occurrent activities of local 

circuits of cells. Noise correlation strengths have also been related to other anatomical 

indicators. In two-photon imaging of rat barrel cortex responding to whisker deflection, Kerr 

et al. (2005) reported increased noise correlations between pairs of neurons closer to the 

barrel center for the stimulated whisker, likely resulting from increased levels of shared task-

related inputs. In primary visual cortex of anaesthetized macaques, Constantinidis and 

Goldman-Rakic (2002) reported different strengths of noise correlations between (putative) 

excitatory and inhibitory cells, with higher levels of noise correlation between inhibitory 

neurons15.

The dependency of noise correlation strength on tuning similarity observed in Figure 14b is 

a first example of the numerous studies which have explored the statistical link between 

noise correlations and various measures of signal correlations. Although the precise 

definition of the term signal correlation varies between authors,16 all versions aim at the 

same goal: characterizing neurons with similar responses to the task. Similarly, Figure 14c 

presents the joint distributions of signal and noise correlations in macaque S2 cortex (data 

re-analyzed from Wohrer et al. (2010), Hernández et al. (2010)). Figure 14b-c both display 

the most commonly found pattern: an increased chances of finding positive noise correlation 

in pairs of neurons with positive signal correlation (Lee et al., 1998; Bair et al., 2001; 

Constantinidis et al., 2001; Constantinidis and Goldman-Rakic, 2002; Kohn and Smith, 

2005; Rothschild et al., 2010). This observation again has an intuitive explanation: shared 
tuning reveals shared input. Similarity in tuning between two neurons is likely to occur from 

their involvement in a shared processing pathway, resulting from shared connectivity. In 

turn, this shared connectivity will often result in covariations of activity on a trial-by-trial 

15We note however that these higher correlation coefficients may also be a confound of higher firing rates in inhibitory cells—see (de 
la Rocha et al., 2007), also detailed further down.
16For example, signal correlation can be computed across different stimuli and/or different instants in time.
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basis. Ko et al. (2011) have recently provided explicit evidence for this intuition in mouse 

V1 cortex, where the probability of finding a direct synaptic connection between two 

neighboring neurons increases with the strength of their signal and/or noise correlation.

7.2.2 The statistical distribution of correlations constrains the neural code—
Signal and noise correlation have a particular importance in the field of neural coding, as 

their joint organization defines the form, and overall amount, of information conveyed by the 

population in the task. For example, the (Fisher) information about a stimulus that is 

embedded in a sensory population depends on the respective strengths and orientations of 

the signal covariance matrix and the noise covariance matrix (Abbott and Dayan, 1999; 

Averbeck et al., 2006; Shamir and Sompolinsky, 2006) 17. The “signal/noise” distributions 

shown in Figure 14c can be interpreted as an element-wise statistical link between these two 

matrices. Thus, these distributions are likely to encompass the core information needed for 

estimates of coding capacity in the population.

Following this intuition, Wohrer et al. (2010) proposed a specific method to generate noise 

correlation matrices on the basis of a signal correlation matrix, while respecting the element-

wise statistical relationship between the two (Figure 14c); using this extrapolation method, 

they could predict the coding efficiency of a full population of recorded neurons in macaque 

primary somatosensory cortex. In contrast to a common assumption (Shadlen et al., 1996; 

Sompolinsky et al., 2001), noise correlations were not detrimental to coding efficiency. The 

overall distribution of sensitivity in the population actually resembled that estimated when 

assuming neuronal independence, although the population did display an important amount 

of noise correlations. As an important note, predicted results changed significantly whether 

one considered only the mean signal/noise relationship (plain red curve in Figure 14c) or 

also incorporated its statistical variations across the population (dotted red curves in Figure 

14c). Indeed, neglecting these statistical variations underestimated the number of neural 

pairs with signal- and noise- correlations of opposite signs (i.e., the upper left and bottom 

right quadrants in Figure 14c), whereas these pairs typically induce high synergetic encoding 

(Romo et al., 2003; Averbeck et al., 2006). This result exemplifies the need to strive for 

more precise statistical descriptions of the noise correlation structure, instead of simply 

computing population averages.

In summary, even limiting oneself to spike counts, understanding the structure of cortical 

activity on a trial-to-trial basis will require establishing better population-wide relationships 

between (i) cortical anatomy, (ii) tuning properties, and (iii) noise correlations. Much work 

is left on this road; even more since the object of study itself—pairwise spike count 

correlation—is a somewhat tricky measure18 which can be subject to a number of 

experimental artifacts. First, de la Rocha et al. (2007) have shown how pairwise spike count 

correlations do not only reflect a degree of correlation in the neurons’ inputs, but also 

systematically correlate with the two neurons’ output firing rates. This phenomenon, due to 

the integrate-and-fire nature of neurons, was systematically observed both in models and in 

17More precisely, Fisher information can generally be expressed as the largest eigenvalue of matrix SN−1, where S and N are 
respectively the signal- and noise-covariance matrices pertaining to the system.
18For example it is highly nonlinear, since it involves division by the variance terms.
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vitro recordings. Second, measures of spike count correlations are very sensitive to various 

experimental artefacts which may artificially increase their values (Brody, 1999), such as 

attentional states (Mitchell et al., 2009; Cohen and Maunsell, 2011), up and down states 

during anesthesia (Harris and Thiele, 2011), reaction times, electrode migrations, etc. 

Various lines of work have actually suggested that active neuronal mechanisms may promote 

either cortical decorrelation (Montani et al., 2007; Ecker et al., 2010; Renart et al., 2010) or, 

more generally, correlation structures that are transparent to downstream neural decoders—

in the sense that a decoder assuming neural independence does not lose much information 

compared to a full decoder (Nirenberg et al. 2001; Latham and Nirenberg 2005, but see also 

Graf et al. 2011). Several breakthroughs are to be expected in the near future on the subject 

of noise correlations. We believe that these breakthroughs will ultimately bear a statistical 

expression across full populations.

7.2.3 Beyond spike count correlations—There are more features of correlated 

activity than simply spike count correlations. Studies having addressed these issues can 

grossly be divided according to two main focuses: (i) to characterize assemblies of 

simultaneously active cells, or (ii) to characterize sequential structures of firing in a 

population. These are complex problems whose study now represents large and dynamic 

areas of research in neuroscience. Yet, to date, population-wide statistical descriptions of the 

phenomena are still rare.

Several recent lines of work have striven to better characterize synchronous co-activations in 

cell ensembles, in a variety of experimental settings (Schneidman et al., 2006; Shlens et al., 

2006; Osborne et al., 2008; Yu et al., 2008; Peyrache et al., 2009; Humphries, 2011; 

Ohiorhenuan et al., 2010; Yu et al., 2011; Lopes-Dos-Santos et al., 2011). These studies 

generally consider the ongoing succession of ensemble activity patterns (r1, r2, … , rN) 

computed in short successive time windows, and search to characterize the overall 

distribution of occurrences of specific patterns across long streaks of little constrained brain 

activity (e.g., spontaneous activity, or ongoing responses to natural stimuli). In particular, a 

number of studies have tried to characterize “instantaneous” distributions p(r1, r2, … , rN) 

where all ri are binary activations in very short time windows. The Ising model has recently 

been proposed as a natural fit for this distribution (Schneidman et al., 2006; Shlens et al., 

2006; Osborne et al., 2008; Yu et al., 2008), since it is the model which accounts for 

pairwise correlations with the least model-related assumptions (maximum entropy 

distribution). It has further been suggested that the pairwise coupling strengths Jij in the 

fitted Ising model may have a more direct link with underlying neural connectivity, than 

corresponding spike count correlations ρij (Schneidman et al., 2006; Yu et al., 2008). Figure 

14d-g (Yu et al., 2008) shows population distributions for coupling strengths Jij in several 

10-neuron ensembles from V1 cortex. Values for Jij covary with, but are not equivalent to, 

corresponding spike count correlations ρij (panel d). One finds again the functional 

relationship to tuning similarity (signal correlation, panel e), and the anatomical relationship 

to interneuronal distance (panel g). Further work along this line has found discrepancies 

between neural activities and the Ising model, especially for nearby neurons (Ohiorhenuan et 

al., 2010). An alternative model based on a dichotomized Gaussian process has been 

Wohrer et al. Page 47

Prog Neurobiol. Author manuscript; available in PMC 2018 June 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



proposed to yield better fits to observed pattern occurrences (Macke et al., 2009; Yu et al., 

2011); we know yet of no population distributions for the resulting model parameters.

The temporal aspects of noise correlations have also met renewed interest, and specific 

attempts have been made to unveil causal dependencies between the spikes of different 

neurons in an ensemble. The traditional and most straightforward way of estimating these 

dependencies is to build a cross-correlation histogram for each pair of simultaneously 

recorded neurons. Oddly, although building such cross-correlograms is very common 

practice, we have not found any statistical descriptions of how the temporal features of these 

cross-correlograms (width of peak, time of peak) are distributed in a neural population. 

Recently, a particular family of point processes (Generalized Linear Models, Paninski 2004; 

Pillow et al. 2008) has been proposed to account for spiking dependencies between 

correlated neurons, including temporally structured dependencies. Generalized Linear 

Models have the advantage of bearing a convenient mathematical expression allowing easy 

fits from large sets of data (unlike Ising models). We know of no work having studied the 

population statistics of the temporal structure embedded in Generalized Linear Model 

descriptions of neural ensembles. A population description of retinal interaction strengths, 

based on Generalized Linear Models, is pictured in Figure 14h-i (Pillow et al., 2008). More 

advanced descriptions of the kind appear a promising way of describing spiking interactions 

at the population level.

8 Conclusion

The perplexing heterogeneity of cortical responses has long been known to 

electrophysiologists. We have here described straightforward statistical ways of 

characterizing this heterogeneity, be it through simple distributions of firing rates, through 

distributions of tuning parameters, or through the more complex distributions or statistics of 

the temporal dynamics of activity. A majority of these results took the form of purely 

empirical measures, where (i) experimental features (such as firing rates or tuning 

parameters) are purely descriptive statistics of activity, and (ii) the population distributions 

are scatter-plots of experimental data. This approach is simple and often leads to results 

directly interpretable by eye or in terms of simple statistics, e.g., a positive correlation 

between two indicators across the population.

Although many classical studies (e.g., Hubel and Wiesel (1962)) have taken great care in 

describing and characterizing this heterogeneity, we were surprised in our survey of the 

literature how atypical such statistical descriptions have become. The most common 

approach nowadays seems to be to calculate means over classes of neurons. However, we 

have found little evidence for distinct, functional classes of neurons. The prevalent notion of 

cell classes seems to stem from two faulty concepts: (1) an a priori exclusion of cells based 

on the “insignificant responses”. This exclusion tends to eliminate cells at the center of a 

distribution, thus turning a unimodal distribution into a bi- or multi-modal distribution; and 

(2) an a priori determination of cell classes by eye. While our eyes can help us in identifying 

features of data, any presumed cell classes should nonetheless by verified by statistical 

methods. Cell classes do exist in certain cases (see e.g. Cohen et al. (2012)), but should not 
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be presupposed. We note that even in V1 the distinction between simple and complex cells is 

less clear than thought, as shown in Ringach et al. (2002).

As statistical descriptions get finer, one may start considering a move from histogram and 

scatter plots to a quantitative characterization of neural response heterogeneity. For instance, 

is a distribution of firing rates exponential or log-normal? Such quantitative 

characterizations rely on statistical methods and the fitting of specific probabilistic models to 

a set of data. At the population level, we can assemble the response features of individual 

neurons, q, and then construct and fit a distribution p(q) to the data, as exemplified in Figure 

1. As we have seen, such quantitative fits are still very rare.

Such model-based descriptions of neural activity bear a number of practical and conceptual 

advantages that could boost the study of population distributions. First, model-based 

analysis allows for better statistical assessment. It can help produce error bars for complex 

experimental measures, or quantify the goodness of a fit thanks to various techniques of 

model assessment and selection (Hastie et al., 2009). Second and more importantly, model-

based analysis allows us to generate new data. If a neural population is totally described by 

statistical models for its population-wide distributions, including its trial-to-trial variability, 

then it becomes possible to pick random samples from these distributions, and thus consider 

neural ensembles from that population of any size, possibly much larger than the actual 

number of recorded neurons. Model-based descriptions could thus help to extrapolate from 

the recorded data to the whole population, allowing us to make quantitative predictions at 

the level of the full neural population. Third, the statistical quantification of population 

activity allows us to compare neural activity across areas, observing commonalities and 

differences in the population responses. Firing rate distributions, for instance, seem 

remarkably conserved across areas, from sensory to decision-making to motor areas. Only a 

surprisingly small subset of neurons seems to be active at any point in time. There are likely 

similar preserved features in the tuning of neurons across a population, some of which we 

have pointed out in Section 5. Even on the level of dynamics, there are interesting 

similarities that can be observed after the onset of sensory stimuli, during the anticipation of 

stimuli or movements, or during delay periods. We believe that the investigation and 

clarification of these commonalities will continue to yield important constraints for any 

theory of the cerebral cortex.

Last but not least, in reviewing such a large section of the literature we are likely to have 

missed some studies. To the extent that this is the case, it has been an oversight.
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Abbreviations

A1 primary auditory cortex

LIP lateral intraparietal cortex

IT inferotemporal cortex

M1 primary motor cortex

M2 secondary motor cortex

MT mediotemporal cortex

OFC orbitofrontal cortex

PFC prefrontal cortex

S1 primary somatosensory cortex

S2 secondary somatosensory cortex

V1 primary visual cortex

V2 secondary visual cortex
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Figure 1. The statistical approach to population responses.
(a) We assume that data are recorded from awake behaving animals engaged in simple tasks. 

(Figure adapted from Feierstein et al. 2006). (b) The spike trains of a small subset of 

neurons in one area are recorded. (c) Recordings are sorted by trials over identical 

conditions. (d) For each neuron, we extract certain features from the spike trains, e.g., the 

stimulus-dependence of the firing rate or of the change in firing rate. (e) The distribution of 

these features across the recorded population leads to a probabilistic model of the population 

response. Such a model is usually generative, so that we can simulate data by randomly 

drawing neurons from the model (f), here depicted as an urn. (g) The simulated data should 

ideally be similar to the original data. This similarity is then quantified to evaluate the 

probabilistic model.
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Figure 2. The effect of recording biases on the estimation of distributions.
(a) Statistical approaches rely on unbiased sampling. Within a population, neurons usually 

have different activity levels, here shown as different grey levels. Most extracellular 

recording techniques are more likely to find active cells, thus providing a biased sample (red 

box) as opposed to the desired unbiased sample of the population (green box). (b) A 

recording bias in single-cell recordings causes systematic errors in estimating population 

mean firing rates. Using a log-normal distribution of firing rates across neurons (see Section 

3.1) to describe a simulated population, we took 500 samples of N individual firing rates; we 

repeated this for different levels of bias in the sample, by only taking samples above a 

certain firing rate, mimicking the bias in single-cell recordings. We plot the histograms of 

every sample’s mean rate, for a range of sample sizes and biases; the red line gives the mean 

value of the population distribution. The top row, with no bias, shows the central limit 

theorem in action: increasing the sample size causes the estimates of the mean firing rate to 

converge around the true mean value. However any bias in the sampling causes the 

convergence to occur around an incorrect mean firing rate for the population. (c) Increasing 

bias increases error in the estimate. We plot the mean ± s.d. of the error in estimating the 

true firing rate mean, taken over every sample for N = 1000 units. The error increases 

linearly, as expected, and is approximately twice the size of the recording bias.
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Figure 3. Distributions of firing rates across neural populations in cortex.
(a) Violin plot (Allen et al., 2012) of firing rate distributions across cortical regions, in both 

spontaneous and task-aligned conditions. Width of bar is proportional to the fraction of 

neurons in that bin. Optimal histogram widths separately derived for each data-set 

(Wasserman, 2004). (b) Summary of data-sources in panel (a) and best-fit model to each 

data-set. Exponential, gamma, and log-normal distributions were fitted using maximum 

likelihood; best-fitting model was chosen using the Bayesian Information Criterion; p(best): 
the posterior probability of that being the best model within those tested (Wagenmakers and 

Farrell, 2004; Wasserman, 2004). The Session column indicates whether the data were from 

a single recording session or pooled across sessions and/or animals. (c) Probability-

probability plots showing the correspondence between the cumulative probability 

distributions of the firing rate data and of the fitted models. A perfect fit would lie on the 

diagonal. Left: the V2 data was the only data-set best-fit by the exponential distribution; 

Middle: the prefrontal cortex data was best-fit by a log-normal distribution; Right: the 

orbitofrontal cortex data-set was best-fit by a gamma distribution. These examples show not 

only the best fitting model, but also that it was a good fit to the data. Data sources: A1, from 

(Otazu et al., 2009), data supplied by Gonzalo Otazu; V2: data recorded by Tim Blanche 

(see Blanche et al., 2005), available from crcns.org; PFC: from (Peyrache et al., 2009), data 

supplied by Adrien Peyrache; OFC, from (Feierstein et al., 2006), data supplied by Claudia 
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Feierstein; M1, extracted from Figure 6A of (Goldberg et al., 2002); M2: data supplied by 

Masayoshi Murakami and Zach Mainen, unpublished.
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Figure 4. Evoked changes from baseline firing-rate distributions are small.
(a) Distribution of spike counts across neurons in the auditory cortex (A1) of awake rats 

responding to a pure tone pip. Activity distributions are shown before (‘spontaneous’), 

during (‘early’, ‘late’) and after (‘offset’) the tone pip. Best model fits are provided, using 

respectively an exponential (gray) and a log-normal (black) distribution. The log-normal 

provides a markedly better fit. Loose patch clamp recordings, from Hromadka et al. (2008a). 

(b) Distribution of spike counts in the layers of barrel cortex (S1) of awake mice involved in 

a tactile detection task. The mean level of activity is plotted for each neuron against its 
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cortical depth, both during (‘localization+response’) and between (‘intertrials’) periods of 

whisker contact with the stimulus. Loose patch clamp recordings from O’Connor et al. 

(2010). (c) Distribution of firing rates for spontaneous (baseline) activity in each layer of 

area V1 of monkeys observing a uniform-luminance screen; note firing rates are plotted on a 

log-scale (single extracellular micro-electrode recordings; adapted from Ringach et al., 

2002). (d) Changes in mean firing rate distributions for two data-sets from Figure 3: 

stimulus-evoked changes in A1 (tetrodes; data from Otazu et al. 2009), and movement-

evoked changes in OFC (tetrodes; data from Feierstein et al. 2006). Top: the empirical 

cumulative probability distributions for the baseline (‘spontaneous’) and task-aligned firing 

rates. Bottom: difference in probability distribution functions for the best-fitting models to 

spontaneous activity, p(r – baseline), stimulus-evoked activity, p(r – stimulus), or action-

related activity, p(r – action) (the models are given in Figure 3b), showing the smooth extent 

of the increase in higher firing rates in both A1 and OFC. (e) From rat OFC data (Feierstein 

et al., 2006), the distribution of rate changes between baseline and movement for every 

sampled firing rate (every neuron in every trial): no change occurred between baseline and 

movement in 62.1% of samples. (f) From rat OFC data (Feierstein et al., 2006), the 

distribution of the proportion of trials on which each neuron showed a difference in rate 

between baseline and movement; median proportion was 0.42.
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Figure 5. Distributions of spike train regularity in cortex.
(a) Distributions of rate-invariant irregularity measure CV2 in primate PFC during the 

fixation (top) and delay (bottom) period of an oculomotor task; neurons pooled over multiple 

single-unit recordings. Taken from Compte et al. (2003). (b) Distribution of CV2 in primate 

motor cortex, averaged over all task stages; neurons pooled over multiple single-unit 

recordings. Taken from (Hamaguchi et al., 2011). (c) Distribution of CV2 in a single tetrode 

recording from awake rat PFC. Data from study of (Peyrache et al., 2009). (d) Distribution 

of CV2 in a single polytrode recording from anaesthetised cat V2. Data recorded by Tim 

Blanche (see Blanche et al., 2005), available from crcns.org. (e) Correlation between mean 

firing rate and CV2 in primate motor cortex, calculated over all task stages. Note the lack of 
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data-points below 10 Hz. Taken from (Hamaguchi et al., 2011). (f) Correlation between 

mean firing rate and CV2 in a single recording from awake rat PFC; data: black symbols; 

best-fit model: red line. The grey symbols and lines give the predicted relationship if each 

spike-train was a rate-varying Poisson process: each point is the mean predicted CV2 for a 

spike-train of that mean rate; 95% confidence intervals are too small to see on this scale. 

Data from study of (Peyrache et al., 2009). (g) Correlation between mean firing rate and 

CV2 in a single polytrode recording from anaesthetised cat V2. Grey lines and symbols as in 

panel e. Data recorded by Tim Blanche (see Blanche et al., 2005), available from crcns.org. 

(h) Distribution of coefficients r for the correlation between rate and CV2 for each neuron in 

a data-set of single-unit extracellular recordings from primate motor cortex during a joystick 

task. Taken from (Ponce-Alvarez et al., 2010). (i) Distribution of coeefficients r for the 

correlation between rate and CV2 for a population of neurons simultaneously recorded in 

awake rat PFC; the inset shows an example neuron that had a power-law relationship 

between rate and CV2. Data from study of (Peyrache et al., 2009). (j) Distribution of 

coecients r for the correlation between rate and CV2 for a population of neurons 

simultaneously recorded in anaesthetised cat V2. Data recorded by Tim Blanche (see 

Blanche et al., 2005), available from crcns.org.
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Figure 6. Cortical receptive fields sizes are broadly distributed.
(a) Distribution of receptive field sizes (top curve, left ordinates) and inverse cortical 

magnification (bottom curve, right ordinates) in monkey V1 neurons as a function of retinal 

eccentricity; from Dow et al. (1981). (b) Top panels: sample responses of A1 neurons to pure 

tones, as a function of tone frequency, and intensity (measured in dB above the neuron’s 

threshold of response). Bottom panel: distribution of relative response bandwidths (best 

frequency divided by bandwidth) in cat A1 neurons, at respectively 10 dB and 40 dB above 

threshold; from Schreiner et al. (2000). (c) Distribution of receptive field sizes in monkey S1 

neurons from the distal digit pads. From left to right, population histograms are shown for 

the excitatory subfields, inhibitory subfields, full receptive fields, and for the exc/inh ratio of 

areas; from DiCarlo et al. (1998).
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Figure 7. Schematics for tiling of stimulus spaces by a neural population.
Each tile corresponds to the part of stimulus space to which a given neuron is responsive. 

(a,b) Representations of peripheral systems are often quite homogeneous. (c) Cortical 

representations appear usually more heterogeneous, resulting in broader population 

distributions. (d) In higher cortical areas, individual neurons may develop fragmented 

representations of the original stimulus space. Here, different neurons are depicted with 

different colors. For visual clarity, only a few neurons are shown.
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Figure 8. Population-wide distributions of tuning parameters provide qualitative hints about the 
nature of feature encoding in different areas.
(a) Population response of V1 neurons to oriented gratings (anaesthetized cats, multi-unit 

electrode array). Left: Single neuron tuning curves to grating orientation. Right: Single 

neuron responses as a function of grating contrast. (b) Population distribution of two tuning 

features, namely sharpness of orientation tuning and contrast sensitivity, from the data in (a). 

Taken from (Busse et al., 2009). (c) Example of a “sharp” tuning curve for arm movement in 

primate M1 cortex. Symbols: the neuron’s mean firing rate as a function of the angular 

distance from the neuron’s preferred direction (at 0°). Black line: best-fit of a von Mises 

function; grey line: approximate fit of the classic cosine tuning curve for comparison. (d) 

Distribution of tuning curve width in primate M1 cortex, taken as the half-width of the von 

Mises function (blue lines in panel e). A half-width of σ = 90° is the cosine tuning curve 

assumed in (Georgopoulos et al., 1982). Taken from (Amirikian et al., 2000). (e) Population 

response of S1 neurons to vibratory stimulation on the fingertip (awake macaques, multi-

electrode recordings). S1 neurons can display tuned responses to the vibration frequency, 
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either through conservation of the stimulus periodicity (“periodic” neuron), or through their 

overall amount of firing (“rate” neuron). (f) Joint distribution of these two forms of tuning 

across recorded S1 neurons. Rate tuning is not correlated with periodic tuning, supporting a 

plausible specific role of the former in tactile perception. Taken from (Hernández et al., 

2000). (g) Trial-to-trial distributions of activity for an MT cell conditioned on the animal’s 

subsequent decision, when the stimulus is ambiguous (0% binocular disparity). Choice 

probability quantifies the amount of separation between the two distributions. (h) Choice 

probability and neuronal sensitivity are correlated at the population level, indicating that the 

animal’s ultimate decision correlates more with neurons tuned to the stimulus. Macaque MT 

during a binocular discrimination task, taken from (Uka and DeAngelis, 2004).
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Figure 9. Theories of feature encoding yield predictions for population-wide distributions of 
activity or tuning.
(a) Receptive fields of V1 cells are fitted by Gabor functions, and plotted in the “shape 

domain” consisting of each field’s length and width divided by its characteristic spatial 

frequency. Receptive fields with a single bump fall near the origin, while receptive fields 

with several oscillations fall away from the origin. Taken from (Ringach, 2002). (b) 

Distribution, in the same shape domain, of receptive fields predicted by the sparse coding 

model of Olshausen and Field (1997) (red dots); blue dots are the experimental data from 

(Ringach, 2002). (c) Same as (b), but red dots are receptive fields predicted by the “hard” 

sparse coding model of Rehn and Sommer (2007). Panels b and c taken from (Rehn and 

Sommer, 2007). (d) Transfer filters measured from cat auditory nerve fibers (blue) have 

similar shapes as the transfer filters predicted by a sparse analysis of natural auditory signals 

(red). Gray bars represent 5 ms. (e) Population distribution of centre frequency and 
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bandwidth for cat auditory nerve fibers (blue dots) and for sparse kernels learned from 

natural auditory signals (red dots). Panels d and e taken from (Smith and Lewicki, 2006). (f) 

Evolution of population activity in a probabilistic population code model of sensory 

integration in area LIP. Population sparseness is predicted to increase as a result of the 

inferred distribution over stimuli becoming sharper. Taken from (Beck et al., 2008).
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Figure 10. Distribution of response latencies across cortical areas.
(a) Cumulative distributions of (minimum) response latencies in several areas of the visual 

system of anaesthetized monkeys. Taken from (Schmolesky et al., 1998). (b) Latencies and 

choice probabilities in different areas involved in a tactile discrimination task. Latencies and 

choice probabilities increase along the putative processing pathway of information. Taken 

from (de Lafuente and Romo, 2006).
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Figure 11. The temporal structure of the population response to sensory stimuli.
(a) Principal Component Analysis (PCA) of insect antennal lobe principal neurons 

responding to two odors. From Mazor and Laurent (2005). B: baseline, bold traces: stimulus 

onset, FP: fixed point (persistent activity), thin traces: stimulus offset. (b)-(c) Population 

dynamics of rat auditory cortex responding to tone pips is visualized thanks to PCA (panel 

b) and Linear Discriminant Analysis (panel c, segregates responses to different stimuli). 

From Bartho et al. (2009). (d)-(i) Population dynamics (determined using PCA) of macaque 

S2 neurons responding to a vibratory frequency on the fingertip. Colors from blue to orange 
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indicate increasing frequency values. (d): First 10 eigenvalues of signal covariance matrix. 

(e): Population activity in the 2 first Principal Components (PC). (f),(g): Temporal activity in 

the first two PCs. (h),(i): Population histograms of neural factor loadings on the two first 

PCs. CV+ and CV– are the respective coefficients of variation for the positive and negative 

parts of the distributions. Reanalysis of published data (Hernández et al., 2010).
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Figure 12. Temporal dynamics of trial-to-trial variance and stimulus discriminability.
(a)-(b) Mean firing rate and Fano Factor amongst LIP neurons with a given preferred 

direction, responding to a random dot motion stimulus. The Fano Factor is not constant as 

predicted by Poisson-like statistics (panel b). Instead, it reveals variance quenching at 

stimulus onset and offset, and a rise of variance during the course of sensory stimulation. 

Taken from (Churchland et al., 2011). (c)-(e) Causal influence of stimulus and choice 

probabilities in area V2, in macaques during a binocular disparity discrimination task. The 

psychophysical kernel for the animal (panel c, overall amplitude in panel d), which reflects 
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the causal influence of stimulus disparity across time on the animal’s ultimate decision, has 

a different temporal evolution than choice probability signals (panel e, average CP in the V2 

population). This is inconsistent with a purely bottom-up interpretation of choice probability 

signals. Taken from (Nienborg and Cumming, 2009). (f)-(h) Temporal evolution of 

neurometric thresholds and other spiking statistics in macaque MT neurons during a 

binocular depth discrimination task. (f): Overall scheme of the analysis. A neuron responds 

to two possible stimuli with different binocular depths (stimulus 1: plain red curves, mean 

response plus trial-by-trial standard deviation, stimulus 2: dashed blue curves). From its 

spike counts on a trial-by-trial basis, a neurometric threshold (TH) can be derived measuring 

the neuron’s sensitivity to the stimulus, based either on the neuron’s spike count over the 

whole stimulation period (1500 ms), or over the sole initial response (first 300 ms). 

Candidate statistics influencing the value of the threshold are: neural tuning (TU) to the 

stimulus, variance-to-mean ratio (Fano Factor, FF), and noise autocorrelation (AC) for the 

neuron on a trial-by-trial basis. (g): Population mean across neurons for the three statistics. 

The mean amount of tuning is constant across the response, as well as the mean noise 

autocorrelation (with a value around 0.1). The Fano Factor increases in the second half of 

the stimulation, indicating a global divergence of the population response on a trial-by-trial 

basis. (h) Correlation analysis for early/late ratios across the population. Different symbols 

indicate the two animals in the experiment. The dashed line is the predicted threshold ratio 

(THr) for homogenous Poisson processes. The whole analysis hints at a progressive loss of 

sensitivity to the stimulus in the neural population, as resulting from the influence of 

internally generated dynamics on a trial-by-trial basis (see main text). Taken from (Uka and 

DeAngelis, 2003)—panel h, unpublished recomputation from the data.
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Figure 13. Population statistics of delay activity.
(a) Rotation of the population vector in monkey PFC during an oculomotor-delayed-

response task. Shown is the angle of the population vector over time with respect to the 

population vector at time t = 0 (adapted from Takeda and Funahashi 2004). (b) Rotation of 

neural tuning in monkey PFC during the delay period of a somatosensory discrimination 

task. The left panel shows the population activity during the delay period for different 

stimuli (colored). Shown is the activity of the recorded population (N = 842 neurons) 

projected onto the two response modes with the strongest stimulus tuning. The right panel 
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shows the angle between the original direction of tuning at time t = 0, and subsequent 

tunings. (c) Demixed principal components of PFC population activity during a delay 

period, from a monkey performing a working memory task. The components show that 

temporal and stimulus-related activities can be separated (demixed) into orthogonal 

subspaces. Inset numbers are the percentages of total variance accounted for by each mode. 

Adapted from (Machens et al., 2010). (d) Factor loadings for the principal components from 

above. The factor loadings show that there are no clear separate classes of cells. For 

instance, the first panel shows that some cells have large positive loadings (and hence firing 

rates that ramp up according to the first panel in (c)), some cells have large negative loadings 

(thereby ramping down), but most cells cluster around zero, so that their firing rates ramp 

neither up or down (adapted from Machens et al. 2010).
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Figure 14. Population distributions of correlations.
(a) Distribution of signal correlations in IT neurons responding to various visual objects. 

Each blue cross depicts a pair of recording sites at the same cortical depth (ordinate), with 

the abscissa encoding signal correlation strength (similarity of tuning to a set of 60 objects) 

between multiunit activities at the two sites. The black curve and bars are mean and standard 

deviation of pairwise tuning similarity. The red line is the p = 0.05 significance threshold. 

The clear dependency between cortical depth and signal correlations is the mark of “activity 

spots”, whose neurons have broadly similar tuning and which are located mostly in the 
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upper layers of cortex. Taken from (Sato et al., 2009). (b) Average pairwise noise correlation 

strength in macaque V1, plotted as a function of distance and tuning similarity (orientation) 

between the recorded neurons (Smith and Kohn, 2008). (c) Joint population distribution of 

signal correlation and noise correlation coefficients between pairs of neurons in secondary 

somatosensory cortex of macaques during a tactile discrimination task. The signal 

correlation between two neurons is computed as the overall similarity of their trial-averaged 

firing rates across time and stimuli (as in (Wohrer et al., 2010)). Blue histograms on the 

sides are marginalized distributions. Red curves represent conditional mean and standard 

deviation of noise correlation value at a given level of signal correlation. The width of the 

standard deviation plays an active role in estimating the overall sensitivity to stimulus in the 

population. Adapted from (Wohrer et al., 2010), a re-analysis of data from (Hernández et al., 

2010). (d)-(g) Statistics of coupling strengths in an Ising model fit to cat V1 neurons. 

Coupling strengths relate, but are not equivalent, to classical noise correlation coefficients 

(panel d). Coupling is higher for similarly tuned neurons (orientation, panel e) and for 

nearby neurons (panel g). Taken from (Yu et al., 2008). (h)-(i) Statistics of coupling 

strengths in a Generalized Linear Model fit to retinal ganglion cell activity. On and Off cells 

are mostly interacting through mutual inhibition, whereas cells of the same polarity are 

positively coupled. Mean coupling strength decreases with interneuronal distance. Taken 

from (Pillow et al., 2008).
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