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Abstract

Common bean (Phaseolus vulgaris L.) is an important source of dietary protein and minerals
worldwide. Genes conditioning variability for mineral contents are not clearly understood. Our
ultimate goal is to identify genes conditioning genetic variation for Zn and Fe content. To establish
mapping populations for this objective, we tested mineral content of 29 common bean genotypes.
Chemical analyses revealed significant genetic variability for seed Zn and Fe contents among the
genotypes. Genetic diversity was evaluated with 49 primer pairs, of which 23 were simple
sequence repeats (SSR), 16 were developed from tentative consensus (TC) sequences, and 10 were
generated from common bean NBS-LRR gene sequences. The discriminatory ability of molecular
markers for identifying allelic variation among genotypes was estimated by polymorphism
information content (PIC) and the genetic diversity was measured from genetic similarities
between genotypes. Primers developed from NBS-LRR gene sequences were highly polymorphic
in both PIC values and number of alleles (0.82 and 5.3), followed by SSRs (0.56 and 3.0), and
markers developed from TC (0.39 and 2.0). genetic similarity values between genotypes ranged
from 14.0 (JaloEEP558 and DOR364) to 91.4 (MIB152 and MIB465). Cluster analysis clearly
discriminated the genotypes into Mesoamerican and Andean gene pools. Common bean genotypes
were selected to include in crossing to enhance seed Zn and Fe content based on genetic diversity
and seed mineral contents of the genotypes.
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Common bean (Phaseolus vulgaris L.) is consumed worldwide and is a staple food in many
countries (Broughton et al. 2003). Beans are a rich source of protein, energy (approx. 380
kcal 100 g~1 of seeds), vitamins (thiamine, riboflavin, niacin, vitamin B6, folic acid), dietary
fiber (especially soluble fraction), and minerals (calcium, iron, zinc, phosphorus, potassium,
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magnesium) (Reyes-Moreno and Paredes-Lopez 1993). The role of dry beans as functional
foods in chronic disease risk reduction has been given increasing attention. Several recent
literature reviews have highlighted the positive effects of dry bean on improving serum lipid
profiles in patients with coronary heart disease or Type 2 diabetes (Anderson and Major
2002; Anderson et al. 2004; Winham et al. 2007).

Common bean (2/7=2x=22) represents 50% of the grain legumes consumed worldwide.
Common bean landraces exhibit wide genetic variability for seed color, shape, shininess,
size, and have demonstrated adaptability to several environmental conditions (Rodifio et al.
2003). The genome size for common bean is estimated to be about 450 to 650 million base
pairs (Mb)/haploid (Bennett and Leitch 1995) and is considered to be one of the smallest
genomes among major crop species. Based on phaseolin seed storage protein variation
(Gepts and Bliss 1986; Gepts 1990), marker diversity (Becerra-Velasquez and Gepts 1994),
and morphology (Gepts and Debouck 1991), two major gene pools of wild common bean
were identified. The Middle American gene pool extends from Mexico through Central
America and into Colombia and Venezuela, meanwhile the Andean gene pool is found in
Ecuador, Peru, Bolivia, and Argentina. The two domesticated gene pools appear to converge
in Colombia (Gepts and Bliss 1986). A third, ancestral gene pool, based on a novel
phaseolin type originated in southern Ecuador and northern Peru. The two major
domestication events, Middle America (possibly west-central Mexico) and southern Andes
(Andean) diverged into three races within each of the two major domesticated gene pools
(Singh et al. 1991). The Middle American gene pool, consisting of races Durango, Jalisco,
and Mesoamerica is represented by the medium and small seeded pinto, pink, black, white,
and some snap beans. The Andean gene pool, consisting of races Nueva Granada, Peru, and
Chile, is represented by the large-seeded kidney, cranberry, and many snap beans among
others.

Knowledge of genetic diversity in a crop species is fundamental to its improvement.
Evaluation of genetic diversity among adapted, elite germplasm can provide predictive
estimates of genetic variation among segregating progeny for pure-line cultivar development
(Manjarrez-Sandoval et al. 1997), and may estimate the degree of heterosis in progenies of
some parental combinations (Cox and Murphy 1990; Barbosa-Neto et al. 1996).

The advancement of molecular biology has created new opportunities for estimating the
genetic diversity at a molecular level; however, genetic studies are often restricted, both by
the limited number of polymorphic markers and by the low level of variability within self-
pollinated species. Assessing genetic diversity within a narrow genetic pool of novel
breeding germplasm could lead to more efficient crop improvement by marker directed
accumulation of desired alleles. Marker-assisted selection is likely to speed up the breeding
process and decrease the amount of plant material that needs to be screened in such
experiments. A variety of molecular, chemical, and morphological descriptors are used to
characterize the genetic diversity among and within crop species. The development of gene-
and/or expressed sequence tags-derived molecular markers provides opportunities for the
assessment of molecular diversity at selected loci. Such gene-targeted markers can
contribute to the study of genetic resources and to ecological studies (Van Tienderen et al.
2002). For all of these approaches, the availability of highly polymorphic and user friendly
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DNA markers is vital. Genetic variation in common bean has been reported based on
restriction fragment length polymorphism (RFLP) (Becerra-Velasquez and Gepts 1994),
random amplified polymorphic DNA (RAPD) (Duarte et al. 1999; Galvan et al. 2001),
simple sequence repeats (SSR) (Lioi et al. 2005; Diaz and Blair 2006; Blair et al. 2006,
2007; Benchimol 2007), and amplified fragment length polymorphism (AFLP) (Tohme et al.
1996; Beebe et al. 2001).

The first essential question regarding whether any species can be improved for a particular
trait is to determine the degree of variability which exists for this trait within the species.
The existing genetic diversity of a species in gene banks enables plant breeders to choose the
most suitable strategy for improving the species (Lefort-Buson et al. 1988). Thus, the
availability of diverse common bean accessions represents a valuable resource for the
improvement of this species, since co-adapted genes of different accessions can convey
similar response if selected for a specific trait (Harlan 1975). The knowledge of genetic
diversity patterns can increase the efficiency for conservation, utilization and genetic
improvement of common beans (Beebe et al. 2000b; Singh 2001).

Zinc (Zn) and iron (Fe) are essential micronutrients for human growth, development, and
maintenance of the immune system. Zinc is needed for growth and for maintenance of
immune function, which enhances both the prevention of and recovery from infectious
diseases (Black 2003). Iron is needed for psychomotor development, maintenance of
physical activity and work capacity, and resistance to infection (Stoltzfus 2001).

Common bean is an important source of protein and minerals, especially Zn and Fe. Genetic
differences have been reported for seed Zn and Fe concentrations among genotypes and
landraces (Singh et al. 1991; Graham et al. 1999; Moraghan and Grafton 2001). Beebe et al.
(2000a) evaluated a core collection of over 1000 accessions of common beans in the field
and found a range in Fe concentrations from 34 to 89 mg g1, with an average of 55 mg g~1.
Zinc concentrations in these same accessions ranged from 21 to 54 mg g~1, with an average
of 35mg gL

The genetics of Zn and Fe content appears to be complex. Analysis of three RIL populations
at the International Center for Tropical Agriculture (CIAT) revealed that both Zn and Fe
contents had continuous distribution, suggesting that these mineral contents were
quantitatively inherited (Beebe et al. 2000a, Blair et al. 2005). Beebe et al. (2000a) and Blair
et al. (2005) also observed that the parental accessions were very close to the extremes of the
populations, with little evidence of transgressive segregation, suggesting that most of the
favorable alleles came from the high-mineral content parent. A recent inheritance study
(Cichy et al. 2005) demonstrated that a single gene controls seed Zn in navy bean and that
high seed Zn is dominant over low seed Zn. Cichy et al. (2005) also observed transgressive
segregation for seed Zn content in the F, generation and speculated that this was the effect
of additional minor genes. Forster et al. (2002) observed a similar result in a cross between
two navy bean cultivars, Voyager and Albion. Singh and Westermann (2002) reported that a
single dominant gene controls the resistance to soil Zn deficiency in common bean.
Guzmaén-Maldonado et al. (2003) reported two QTLs for seed Fe content and one for Zn
content responsible for 25% and 15% phenotypic variation, respectively, from a

. Author manuscript; available in PMC 2018 June 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Talukder et al.

Page 4

cultivatedxwild P, vulgaris cross. Almost all of these studies were based on seed mineral
contents from plants grown in field conditions subject to various influences of soil
characteristics and environments.

We conducted our study under greenhouse conditions with an array of common bean
genotypes consisting of various genetic and geographical backgrounds. Our objectives were
(1) to assess genetic diversity among 29 common bean genotypes using molecular markers
developed from various genomic sources, and (2) to select parental genotypes suitable for
mapping loci affecting mineral content in common bean.

MATERIALS AND METHODS

Plant Material

The 29 common bean cultivars/lines in this study consisted of 14 genotypes from CIAT, 13
from the United States of America, and one each from Brazil and India. Among the
cultivars, 13 represent parents of one or more mapping populations developed for various
interests, and vary in terms of growth habit and geographic origin. All common bean
cultivars/lines, and country of origin, are listed in Table 1.

Greenhouse Experiment

Common bean genotypes were grown in the greenhouse in 18-19 cm pots filled with
Sunshine mix 1 (Sun Gro Horticulture Canada Ltd., formulated with Canadian sphagnum
peat moss, coarse grade perlite, gypsum, and dolomitic lime) as substrate. The seeds were
planted on 2007 Mar. 27 following a randomized complete block design with three
replications. Two seeds for each entry were placed in each pot for germination, but one plant
was allowed to grow until harvest of the seeds. Pots were watered periodically with tap
water to the approximate field capacity to facilitate normal plant growth. No additional
fertilizer or pesticide was applied during the period of experimentation.

Chemical Analysis

After harvesting, seeds from each pod of individual plant were mixed thoroughly, and 10
seeds were randomly taken for chemical analysis. Seeds were washed with deionized water
containing Joy® detergent (Proctor and Gamble, Cincinnati, OH), and later rinsed with
deionized water only. Samples were oven-dried at 70°C for 48 h, weighed, and ground in an
agate mortar with an agate pestle (Brinkmann Instruments Co., Westbury, NY). A 300-mg
aliquot of the ground material was processed for concentrated nitric acid digestion, followed
by 30% hydrogen peroxide, before Fe and Zn concentrations were measured in parts per
million (ppm) using atomic absorption spectroscopy (Moraghan and Grafton 2001).

DNA Isolation and PCR Primers

Total genomic DNA was extracted and purified from leaf tissue of 2- to 3-wk-old
greenhouse-grown plants using the CTAB method as described by Doyle and Doyle (1987).
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A total of 49 primer pairs from three different sources were used for genetic diversity
analysis. The primer names, primer sequences and genomic locations in the Phaseolus core
linkage map BAT 93/Jalo EEP558 (BJ) (Freyre et al. 1998) are presented in Table 2.

Primers Collected from Reference Map—Twenty-three SSR primer pairs used in this
study were developed from coding and non-coding sequences of common bean (Blair et al.
2003). McConnell et al. (2006) analyzed £ vulgaris TC (tentative consensus) sequences and
identified 322 primer pairs with their polymorphism. In our study, we used 16 of these
primer pairs.

Primers Developed from NBS-LRR Gene Sequences—Common bean NBS-LRR
type disease resistance gene sequences were downloaded from NCBI GenBank and were
aligned with multiple sequence alignment software CLUSTALX (1.81). Phylogenetic trees
were generated to evaluate the relationship among different sequences using Neighbor-
Joining options of the software. Initially, four NBS-LRR complete coding sequences were
chosen to design a series of primers based on sequence alignment. The large (~5 to 6 kb)
gene sequences were divided into small ordered overlapping fragments, and a total of 37
primer pairs were designed to amplify genomic DNA of ~500 bp using the web-based PCR-
primer designing program ‘Primer 3. Ten of these 37 primer pairs were selected and
included in this study.

PCR Amplification

Each 20 uL amplification reaction consisted of 1 xPCR buffer, 1.88 mM MgCls,, 200 uM of
each deoxyribonucleotide triphosphate, 1 M of primer, 1 unit of 7ag polymerase, and 150
ng of template DNA. Amplification was performed in a 96-well BioRad thermal cycler.

The PCR program for SSR primers and primers developed from NBS-LRR gene sequences
consisted of one cycle of 95°C for 3 min; 40 cycles of 95°C for 1 min, from 55 to 57°C for 1
min, and 72°C for 2 min; and one cycle of 72°C for 10 min. For primers developed from TC
sequences, the PCR protocol was one cycle of 95°C for 3 min, followed by 40 cycles of
95°C for 20 s, from 52 to 58°C for 20 s, and 72°C for 2 min, one cycle of final extension for
72°C for 7 min. In all cases, the amplified products were separated on 2% agarose gel with
60 V and run for 200 min.

Data Collection and Statistical Analysis

Seed Zn and Fe content data were subject to analysis of variance (ANOVA) for a treatment
effect. ANOVA were performed using general linear model of the statistical package,
Minitab® Release 13.2 (Minitab Inc.). If a significant difference among the genotypes was
detected with ANOVA at P< 0.05, means comparison was performed (a=0.05) using
Fisher’s least-significant-difference (LSD) test.

After gel electrophoresis of the PCR products the presence or absence of each single
fragment was coded by 1 or 0, respectively, and scored for a binary data matrix. The
resulting matrix was used to estimate genetic similarity (GS) among all pairs of lines by
Dice coefficient of similarity (Nei and Li 1979) as follows:
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2N
GS;; = N+N,

Where Njjis the number of alleles (scored bands) shared by lines 7and / and Ajand Njare
the total number of scored bands in lines 7and j; respectively.

Polymorphism information content provides an estimate of the discriminatory power of a
locus, or loci, by taking into account not only the number of alleles that are expressed, but
also the relative frequencies of those alleles. Polymorphism information content values were
calculated by the algorithm as described by Anderson et al. (1993):

n
pic=1- Y (P’
i<

Where £ is the frequency of the /th allele in the population.

Polymorphism information content values range from 0 (monomorphic) to 1 (very highly
discriminative, with many alleles each in equal and low frequency).

Genetic diversity analyses were conducted using numerical taxonomy and the multivariate
analysis system, NTSYSpc v. 2.2 (Rohlf 2000). Genetic similarity values were computed
between all possible pairs with the SIMQUAL option and ordered in a similarity matrix. The
similarity matrix was run by sequential, agglomerative, hierarchical, nested (SAHN)
clustering (Sneath and Sokal 1973) with the unweighted pair group with arithmetic
averaging (UPGMA) method as an option (Sokal and Michener 1958). The dendrogram and
cluster groupings were constructed by the UPGMA clustering algorithm from the SAHN
option of NTSYSpc v.2.2. Principal coordinate analysis was performed using EIGEN and
graphs were plotted using MXPLOT module, again in the same software package.

An estimate of the confidence limits for the grouping produced by each dendrogram was
obtained by performing 2000 bootstrap re-samplings in WinBoot (Yap and Nelson 1996).

RESULTS

The Zn and Fe contents in the seeds of the 29 common bean genotypes are presented in
Table 1. There were significant differences for both Zn (< 0.05) and Fe (£< 0.01) content
of the seeds among genotypes. In general, the Zn and Fe content of the Middle American
genotypes were 16.1 and 11.3%, respectively, higher than the Andean genotypes.

The variability for seed Fe content among the genotypes was high, ranging from 8.9 to 112.9
ppm. The highest seed Fe content was observed in the USA navy bean cultivar Vista and one
of the CIAT lines, NUA 56-1770, bred for high iron content in the redmottled seed class of
the Andean gene pool. The Brazilian breeding line, Jalo EEP558, a parent of the common
bean core mapping population, contained the lowest seed Fe content from the set studied.
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The genetic location of SSR primers and primers developed from TC sequences were known
and used in this study to give a uniform coverage for the common bean genome. These
markers detected a total of 153 polymorphic alleles (Table 2). The number of alleles per
locus ranged from two to nine, with an average of 3.1. The PIC values ranged from 0.19 for
the size-indel 2685 and SNP 2285 to 0.99 for pv 2758 (Table 2). In general, the magnitude
of PIC value is higher in primers developed from NBS-LRR gene sequences followed by
SSR primers and primers developed from common bean TC sequences.

A GS matrix based on all possible pairs of genotypes ranged from 14.0 to 91.4% (Table 3).
The lowest pairwise GS was observed between the Andean common bean genotype Jalo
EEP558 and the Mesoamerican common bean genotype Dorado. The highest pairwise GS
was observed between two related Mesoamerican genotypes MIB 465 and MIB 152. Among
the Andean genotypes, the GS values ranged between 32.7 and 89.1%, while they were
between 31.7 and 91.4% among Mesoamerican genotypes. However, the mean GS within
the Mesoamerican genotypes (60.5%) was higher than among the Andean genotypes
(55.5%), indicating a higher overall diversity within the Andean group, similar to
observations by Tofifio et al. (2007).

For a better understanding of the genetic relationship among common bean genotypes, the
GS values of Table 3 were submitted to hierarchical clustering by UPGMA. The cluster
analysis primarily separated the cultivars in close correspondence to two major clusters
representing their primary gene pools (Fig. 1). Principal coordinates analysis revealed the
global structure similar to the dendrogram analysis, but the distribution of these accessions
was shown more clearly in three dimensions. Principal coordinate analysis showed that the
first three eigen values explained 73.8% of the cumulative variation. These values were then
plotted to identify the diversity of the genotypes (Fig. 2). Overall, the clustering pattern of
the genotypes in the principal coordinates analysis corresponds with the dendrogram derived
from UPGMA (Fig. 1). The Andean common bean cultivars were separated from the Middle
American cultivars convincingly by PC1 (principal coordinate 1).

DISCUSSION

The highest seed Zn content was observed in our trial among genotypes MIB 465 and MIB
466, both belonging to the Middle American gene pool. The MIB lines were developed by
the CIAT breeding program for improved nutritional quality. Beebe et al. (2000a) analyzed
the seed Zn and Fe contents of over 1000 accessions in the CIAT core collection and
suggested that the seed Fe content in the Andean gene pool tended to present higher values
than those from the Mesoamerican pool under field grown conditions. The NUA lines were
also developed by CIAT breeding program for high Fe content. These NUA lines previously
observed with high Fe content at CIAT were variable in our trial. We conducted our study in
greenhouse conditions, where there is no influence of soil differences as usually observed
under field trial conditions. The variability for Zn and Fe contents in our study also could be
due to the small sample size and inclusion of some genotypes selected for high Zn and Fe
contents.
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The UPGMA clustering analysis divided the genotypes into two major clusters. Two main
branches of the dendrogram showed more than 50% GS, suggesting that genetic diversity is
low between two distinct 2 vulgaris gene pools. The genotypes Jalo EEP558, G122, NY
6020-4, Benton, and all four NUA breeding lines from CIAT originating from Andean gene
pool, formed a distinct cluster separating from the other large group constituting the Middle
American gene pool. Within the Andean group, the NUA lines, as expected, formed a
subgroup. These CIAT lines were developed for high seed Fe content and share the same
backcross pedigree, which includes one Mesoamerican bean parent, but seed class and plant
selection for the Andean morphology. Likewise, within the large Mesoamerican group, the
genotypes clearly formed three sub-groups. In the first sub-group, the genotypes BAT 93,
Dorado, Aztec, BelNeb RR-1, Voyager and Albion, all are being used as parents of mapping
populations developed for disease resistance and other trait attributes. Among these parents,
the pinto bean cultivar Aztec and navy bean cultivar Voyager were bred for commercial
cultivation in the United States of America. In the second sub-group, most of the black beans
grouped together with a few pinto and navy bean cultivars. The six MIB accessions selected
for nutritional quality traits in CIAT were placed into this second group and the other three
formed a separate third group. MIB lines 465 and 152 grouped very closely, as they
originated from the same pedigree. The other light-tan colored CIAT accession, MIB151
also has the same pedigree as of MIB465 and MIB152. However, a genetic shift appears to
have occurred between these MIB lines, as these accessions clustered in two separate
groups. This shift may be associated with selection for favorable alleles.

Several breeding strategies can be derived from the results of our genetic diversity analysis;
however, our interest at present is to develop populations to map Zn and Fe content traits and
to breed common bean cultivars with enhanced Zn and Fe contents. Substantial genetic
variation existed among the genotypes under study that could be exploited for selection for
mineral content. The clustering of the Andean accessions separate from the Mesoamerican
accessions suggests that these common bean genotypes represent distinct germplasm and
could be used to construct highly polymorphic populations. CIAT developed nutritionally
enriched common bean lines clustered in both gene pools. Broad-based populations could be
constructed by crossing selected cultivars from the two gene pools as well from
combinations of several of the elite cultivars within each gene pool. We are currently using
both approaches to develop common bean populations for further breeding and selection.

Selection of genotypes for breeding purpose based on micronutrient variability and genetic
diversity has been suggested in many crop species including common bean (Beebe et al.
2000a), rice (Gregorio 2000), wheat (Monasterio and Graham 2000), and maize (Banziger
and Long 2000). We have designed crossing programs based on seed Zn and Fe contents of
the genotypes and their genetic divergence at the molecular level. The crossing program for
seed Zn content was designed to cross genotypes with high Zn content, Jalo EEP558,
MIB465, and MIB466, with the low Zn content genotypes, NUA56-1770 and NUAS59 (Table
1). The high Zn content MIB lines belong to the Mesoamerican gene pool, while both the
low Zn content NUA genotypes and the high Zn content genotype, Jalo EEP558, belong to
the Andean gene pool. The GS values of genotypes NUA56-1770 with Jalo EEP558,
MIB465, and MIB466 are 51.9, 35.5, and 49.1%, repectively, (Table 3) and those of NUA59
with Jalo EEP558, MIB465, and MIB466 are 43.4, 34.9, and 46.6%, respectively. These
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values indicate that the selected genotypes are very divergent at the molecular level and
could result in better segregation and recombination of the desired alleles in successive
generations during population development.

For the crossing plan to enhance seed Fe content, our choices for high Fe are genotypes
Vista and NUA 56-1770 (Table 1), which belong to the two divergent gene pools (Fig. 1).
The genotypes Jalo EEP558, NY6020-4, XAN176 and Mayflower have low seed Fe content
(Table 1) and are included in the crossing program. Both the genotypes Jalo EEP558 and
NY6020-4 are from the Andean gene pool, while the genotypes XAN176 and Mayflower
represent the Mesoamerican gene pool. The selection of parents from both gene pools
enables us to study inter- and intra-gene pool recombination events. The GS values of
genotype Vista with the low Fe genotypes, Jalo EEP558, NY6020-4, XAN176 and
Mayflower are 34.9, 42.1, 69.0, and 78.3%, respectively (Table 3). The high GS value
between the genotypes Vista and Mayflower is obvious as both of them are navy bean
cultivars adapted and selected for commercial cultivation in the United States of America.
Although, these two genotypes belong to the same market class and are not genetically
divergent, they differ significantly for seed Fe content. It can be expected that the
introgression of a desired trait would be easier in this cross without sacrificing valuable
trait(s) and/or adding unwanted trait(s) as a consequence of linkage drag. The GS of other
high Fe genotype, NUA56-1770, with the low Fe genotypes, Jalo EEP558, NY6020-4,
XAN176 and Mayflower, are 51.9, 33.0, 45.0 and 34.8%, respectively, (Table 3) indicating
that the selected high Fe content Andean parent is genetically widely divergent from both
Andean and Mesoamerican genotypes selected as low Fe content parents. The extent of
genetic diversity present within the selected genotypes suggests that the introgression of
genes for mineral nutrient might also benefit in the recombination of other economically
important traits, especially when some of these selected genotypes (Jalo EEP558, NY
6020-4 and XAN 176) are being used as parents in mapping populations known to segregate
for important biotic and abiotic resistance genes.

In order to generate advanced breeding lines with higher seed Zn and Fe contents, additional
crossing programs may be considered. The Andean genotypes, Jalo EEP558 and Benton,
and the Mesoamerican MIB genotypes, 151, 152, 465 and 466, have high Zn content in their
seeds (Table 1). Similarly, the genotypes NUA45, NUA56-1770, Benton of the Andean gene
pool and the genotypes MIB154, MIB465, Dorado, Voyager and Vista in the Mesoamerican
gene pool have high Fe content in their seeds (Table 1). Crossing combinations with
genotypes between and within gene pools having high genetic diversity and mineral content
would be expected to accumulate positive alleles derived from unique sources and generate
breeding lines with even higher seed mineral contents.
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Abbreviations

CIAT International Center for Tropical Agriculture
GS genetic similarity

PIC polymorphism information content

SAHN sequential, agglomerative, hierarchical, nested
SSR simple sequence repeats

TC tentative consensus

UPGMA  unweighted pair group with arithmetic averaging
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