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Abstract

Proteins encountered in biological and environmental systems bind to engineered nanomaterials 

(ENMs) to form a protein corona (PC) that alters the surface chemistry, reactivity, and fate of the 

ENMs. Complexities such as the diversity of the PC and variation with ENM properties and 

reaction conditions make the PC population difficult to predict. Here, we support the development 

of predictive models for PC populations by relating biophysicochemical characteristics of proteins, 

ENMs, and solution conditions to PC formation using random forest classification. The resulting 

model offers a predictive analysis into the population of PC proteins in Ag ENM systems of 

various ENM size and surface coatings. With an area under the receiver operating characteristic 

curve of 0.83 and F1-score of 0.81, a model with strong performance has been constructed based 

upon experimental data. The weighted contribution of each variable provides recommendations for 

mechanistic models based upon protein enrichment classification results. Protein biophysical 

properties such as pI and weight are weighted heavily. Yet, ENM size, surface charge, and solution 

ionic strength also proved essential to an accurate model. The model can be readily modified and 

applied to other ENM PC populations. The model presented here represents the first step toward 

robust predictions of PC fingerprints.
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Upon introduction to a biological system, engineered nanomaterials (ENMs) interact with 

biomolecules, resulting in an alteration of ENM structure, function, and set of 

biophysicochemical properties. The diverse mix of biomolecules sorbed to the ENM include 

proteins that form a complex protein corona (PC) contain dozens to hundreds of proteins1,2. 

This diverse and dynamic PC establishes a biological identity for the ENM that is distinct 

from the synthetic properties of the ENM. The PC influences cell uptake and toxicity of 

ENMs, and complicates studies aiming to correlate structure-activity relationships between 

synthetic properties of ENMs and their observed biological response.2–6

Despite the importance of the PC in mediating the biological fate and reactivity of ENMs,
5,7,8 little progress has been made in developing a predictive model for PC formation. 

Establishing correlations between ENM properties, protein characteristics, and interaction 

conditions is a complex challenge, because of the infinite number of variations within each 

factor. An array of proteomic studies have reported qualitative trends in ENM corona 

populations on an ad hoc basis.1,4,9,10 In assessment of the role of ENM properties in the PC 

fingerprint, studies agree that ENM size, surface functionalization, and core composition 

each mediate PC formation. ENM surface coating dictates the functional groups proteins 

interact with at the surface of the ENM and influences long-range protein-ENM interactions 

that guide PC formation; thus, the ENM surface chemistry often dramatically alters the 

relative abundance of individual ENM adsorbed proteins.7,11–14 Researchers speculate that 

the curvature of the ENM mediates protein interaction and possibly facilitates the deflection 

angle between adjacent proteins in the PC.7,11,14 Other studies have noted that ENM core 

composition also influences the PC fingerprint.7 This is likely because core composition 

alters physicochemical properties of the associated ligands and some PC coatings may 

displace associated ligands upon interaction.

To date, modeling efforts for prediction of ENM-bio interactions focus primarily upon 

cellular response and toxicity.15–18 To improve accuracy, there is a movement toward 

inclusion of PC information in modeling cellular response5,7, but the current models for 

ENM biological response rely upon expansive PC databases7,19–22. Despite this recognition 

that the ENM PC plays a key role in biological response to ENMs5, no modeling efforts to 

date have focused upon prediction of the PC fingerprint. Instead, authors rely upon time-

consuming and expensive proteomic analysis of the ENM PC.

In support of efforts to model biological response to ENMs, we present a model that 

provides a predictive analysis for PC fingerprints. This approach represents the first step 

toward enabling modelers and experimentalists to extend studies beyond the currently 

available PC databases. The importance of expansion beyond the current dataset is a crucial 

step, especially for environmentally relevant systems. At this point, the majority of PC 

studies have focused on PCs formed from human blood serum.4,7,23,24 Yet, accurate models 

of ENM ecotoxicity and fate will also require studies of the PCs from an array of 

environmentally relevant organisms beyond the current dataset25,26. Development of a 

predictive, flexible model for a wide-range of PCs and ENMs would increase accuracy and 

reduce the cost of modeling and experimental efforts in ENM biological response. Here-in, 

we describe the development of a model to relate readily available physicochemical 
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characteristics of proteins, ENM properties, and reaction conditions to the formation of a PC 

population using ensemble machine learning, i.e. random forest classification (RFC).

Database

A previously published database of yeast protein enrichment on silver ENMs was used for 

the machine learning model because of the ubiquity of yeast in the environment, widespread 

use of Ag ENMs in consumer products, and extensive set of proteins within the database. 

The Ag ENM PC database includes 962 unique yeast proteins characterized for enrichment 

on Ag ENMs as detailed in Eignheer et al.11 Protein enrichment was classified by the log of 

the ratio of protein abundance in solution and on Ag ENMs. Enrichment factors that are 

positive indicate proteins enriched on Ag ENMs or incorporated into the PC and negative 

enrichment factors indicate enrichment in solution, or lack of incorporation into the PC 

(non-PC). The database contains a total of 3012 protein enrichment values recorded as rows 

with 1805 protein particle pairs classified as PC (60%) and 1207 protein particle pairs 

classified as non-PC (40%). Each protein is represented by 1960 columns composed of 

categorical and continuous variables and is assigned to a categorical dependent variable that 

represents the PC or non-PC class. A link to the database is provided in the SI (section S.I.

4.). For each yeast protein evaluated for enrichment, ten biophysicochemical features were 

recorded, along with two solution features and two Ag ENM characteristics. The 

experimental variables comprised in the fourteen training features are listed in Table 1 with 

the corresponding range of each feature.

Across the Ag ENM PC database used for this study, the proteins show a Gaussian 

distribution of enrichment factors. In other words, few proteins are strongly enriched in 

either the PC or non-PC population. Yet, the distribution of enrichment factors for ENMs 

varies significantly with each change in ENM or solution property. For example, the 

distribution of protein enrichment factors for ENMs with positively and negatively charged 

surface functionalization are strikingly different, indicating the importance of surface 

coating in formation of the PC fingerprint. Histograms of the logarithmic enrichment factors 

for all proteins and for each individual sample set are provided and further analyzed in the SI 

(Figure S.I.1).

In part because of the large number of proteins evaluated, logarithmic enrichment factors 

and other protein properties are balanced across the experimental database. By comparison 

to protein features, ENM and solvent properties are under-weighted in the model training 

features. When collecting PC characterization data, variations in ENM and solvent 

properties are more difficult to interrogate than protein properties, since study of new ENMs 

or reaction conditions requires a new protein-ENM reaction and set of proteomics runs.

Model development

RFC was chosen because it is a robust ensemble learning method that combines multiple 

decision trees to form a predictive model that is less susceptible to overfitting than a lone 

decision tree. Although ensemble models have been shown to reduce overfitting,27 RFC can 

still overfit if each lone decision tree becomes overly complex by growing too deep. To 

Findlay et al. Page 3

Environ Sci Nano. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduce overfitting, each decision tree was grown from a bootstrap sample, and grid search 

was employed with 5-fold cross validation to automatically select the model hyper-

parameters that minimized generalization error. Decision Trees were not allowed to branch if 

a node had less than 4 features. Similar approaches have proven successful in analysis of 

other proteomics datasets28 and other predictions of ENM fate29. Each decision tree 

produces a predictive model by splitting data using simple decisional rules.30 RFC then 

returns the majority vote produced by the group of predictive models. Our implementation 

of RFC can be summarized into five steps: (1.) Each protein-particle pair in the database was 

represented as a vector containing a one hot encoding of each categorical variable, and a 

normalized representation of each continuous variable as a dimension. (2.) 90 % of the 

dataset was randomly partitioned from the database to train the model, leaving a stratified 

10% of the data to test the model. (3.) 2,500 bootstrap samples of size log(n) were drawn 

from the training partition and a decision tree was grown from each sample, (4.) The testing 

data was fed into the model, predictions produced by each tree were aggregated and used to 

classify proteins as PC or non-PC based on the majority vote between the trees. Majority 

voting between trees reduces the risk of overfitting as the decision trees containing outliers 

and noise will be outnumbered by the rest of the decision trees during the voting process. 

(5.) The predictions made by the model were compared to the true PC or non-PC values 

determined experimentally to validate the model’s performance. Steps 1–5 were repeated 50 

times, each time with a random dataset partition. Performance metrics are reported as an 

average over all 50 runs. The machine learning pipeline is summarized in Figure 1.

To remove features with no predictive value from the dataset, recursive feature elimination 

and cross-validation (RFECV) was employed. Although originally included in the model in 

response to suggestions from Rihn and Joubert31, all 1,936 protein InterPro numbers were 

eliminated from the model by the RFECV analysis. With this elimination, data 

dimensionality was reduced from 1,960 to 24 dimensions. Enzyme commission numbers 

were also eliminated from the model through RFECV analysis, reducing the database to a 

final dimensionality of 17 dimensions that include biophysicochemical features of the 

proteins, ENMs, and solvent (vide infra). A correlation plot (Figure S.I.2) was used to 

investigate linear feature correlation. A threshold of (|R|≤ 0.75) was chosen to discriminate 

correlated vs non-correlated variables. As an example of correlated variables, protein length 

and protein weight were highly correlated, leading to the exclusion of protein length from 

the RFC analysis (R= 1.0).

Model validation

Standard machine learning metrics were used to validate the model, including precision, 

recall, accuracy, and the F1-score. Precision and recall are widely used performance metrics 

that offer a well-rounded evaluation of predictive performance. Model precision is 0.76 

± 0.02, indicating that 76 % of the PC assignments made by the model were truly PC 

proteins. Recall is 0.86 ± 0.02. In other words, 86% of the PC proteins in the dataset were 

predicted as PC. The F1-Score, the harmonic mean of precision and recall, was 0.81 ± 0.02 

for this model. With an accuracy of 0.76 ± 0.02, the model has good predictive power for 

both PC proteins and non-PC proteins. A Y-randomization test was carried out to ensure the 

robustness of the predictive model. After one round of randomization the accuracy of the 
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model fell to 0.54, implying the model is robust to perturbations in the dependent variable 

vector. A link to the results of the Y-randomization test is provided in the SI (section S.I.4.).

To further model validation, a receiver operating characteristic (ROC) curve was plotted with 

302 decisional thresholds based on the models outputted probability of binding (Figure 2a). 

Generally, the convex shape of the ROC curve indicates a higher true positive rate at the 

expense of relatively lower false positive rate. In other words, the likelihood of correctly 

classifying a protein as PC is high, while incorrect classifications of PC are low. The area 

under the receiver operating curve (AUROC) for the resulting model is generally considered 

indicative of the predictive power of the model32–34 and can be interpreted as the model’s 

ability to correctly classify proteins as PC or non-PC. With an AUROC of 0.83, the model 

performs significantly higher than the value of 0.5 for a random guess curve. Perhaps more 

specifically, AUROC scores are evaluated relative to the complexity of the classification 

task. As the first to test this approach on ENM PC predictions, this work establishes a 

baseline of AUC performance for future predictive models. To provide a comparative metric 

for a problem of similar complexity, protein-protein binding predictions, Sain et al35 report 

an AUROC score of 0.7, which is typically considered strong for problems of this 

complexity. Related, the Youden index defines the threshold in the ROC curve that gives the 

best performance (Figure 2b). The threshold where the Youden index is maximum is 0.5. In 

other words, our ensemble method performs as expected, where the most proteins are 

properly assigned as PC when 50% or more decision trees assign the protein as PC.

Majority voting results in a probability of PC and non-PC between 0.5–1.0 for each class. 

When using the model, this probability is a metric of model confidence. Proteins classified 

by the model with a probability of their assigned class between 0.5–0.6 were properly 

assigned 55% of the time, in contrast, proteins classified by the model with a probability of 

their assigned class between 0.9–1.0 were properly assigned 95% of the time. This 

demonstrates a level of unreliability when predictions fall in the 0.5–0.6 percent range. In 

our dataset, 22% of predictions fell within this range, when only predictions with a 

probability above 0.6 where considered, on average the model improved to an accuracy of 

0.81, F1-score of 0.85, Recall of 0.91, Precision of 0.8, and AUROC of 0.86. Predictions 

with a probability that falls in the 0.5–0.6 range are not considered reliable, summarized in 

Table 2. All model predictions along with their assigned probability are provided in the SI 

(S.I.4).

Although RFC is a robust learning method, the algorithm cannot extrapolate beyond the 

conditions under which it is trained. We have assumed that our experimental database is 

representative of the true distribution of enrichment factors over the particles and proteins 

tested, and that the features we selected for training are useful. Due to the size and quality of 

our database, as well as the predictive power of our model, we believe these assumptions to 

be valid. In selecting features, we chose robust and readily available features, either from a 

database (e.g. protein biophysical features) or routine analyses (e.g. particle size). Yet, the 

model is restricted to the applicability domain of yeast proteins, ENM sizes, ENM surface 

functionalities, and solvent conditions detailed in Table 1.
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Features not included in the database may also play a role in formation of the PC fingerprint. 

This includes features that are difficult to measure in complex mixtures, such as protein-

protein interactions and exchange of the ENM surface coating. It also includes features 

simply not evaluated in this database, including ENM shape and core composition, or 

reaction conditions such as temperature or pH. Perhaps most notably, ENMs with a 

hydrophobic coating were not evaluated due to solubility issues making the importance of 

hydrophobicity difficult to evaluate. In the future, expansion of the database and 

corresponding features in the training set will strengthen the model and expand its 

applicability.

Insights into PC fingerprint formation

RCF is useful because it can provide a measure of hierarchical variable importance. Feature 

importance, shown in Figure 3, gives insight into the variables of importance in predicting 

and controlling ENM-protein interactions. The broad trend indicates that protein biophysical 

characteristics are more strongly weighted than solvent and ENM characteristics within the 

model. Although it is tempting to conclude that protein characteristics dominate PC 

formation, comparative sample size for ENM and solvent characteristics is simply too small 

to derive conclusions across protein, ENM, and solvent features. The dataset is simply 

overwhelmed by proteins and protein biophysical characteristics. Relative importance within 

each of these three feature sets are, however, useful to compare.

Among protein features, factors contributing to protein charge, including pI and percent of 

positively and negatively charged amino acids, together make-up nearly 50 % of feature 

importance. This reinforces earlier studies qualitatively reporting the importance of protein 

charge in PC formation11,24. As a long-range interaction, electrostatics must drive initial 

protein-ENM interactions and, as this data suggests, play a role in the stability of the hard 

corona. The slightly higher weight of salt concentration over cysteine within solvent features 

again points to the importance of electrostatics in PC formation.

Across ENM features examined, ENM size and surface charge are weighed nearly evenly. 

The importance of size is consistent with other studies.7,9,36 Although it is somewhat 

surprising that size plays a key role in PC formation, the increased curvature on small 

particles impacts the geometry of available binding surfaces, as well as the reactivity of 

ENM surface ligands. As reported elsewhere, there is some selectivity for protein molecular 

weight within the PC.7,11 This data supports correlations between ENM and protein size and 

contributes to the hypothesis that decreased curvature of large ENMs may more easily 

support larger proteins.

The other protein features that play a role in the model include percentage of hydrophilic 

and aromatic amino acids, along with percentage of cysteine contributing at nearly 25 %. 

Due to the instability of hydrophobic ENMs in solution, our dataset excluded hydrophobic 

ENMs, possibly resulting in an underrepresentation of the role of hydrophobicity in PC 

formation.
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As publicly available databases with quantitative protein enrichment data expand, the model 

can be readily tested on PC populations in other systems. Application of the model to a 

broadened array of ENMs and reaction conditions will refine the model and provide 

additional insight into PC formation. Indeed, application to new datasets will enhance 

insights into the contribution of factors such as hydrophobicity, ENM characteristics, and 

solvent properties in the model.

Conclusions

A machine learning model was developed that predicts the PC population using protein 

biophysicochemical characteristics, basic ENM properties, and solution conditions. The 

model was proven robust with a strong AUROC, Youden index evaluation, and has 

demonstrated high precision and recall. A key feature of the machine learning method is the 

ability to provide a weighted list of feature importance in the model, and suggest factors 

mediating protein and ENM charge are most important, followed by secondary features such 

as protein and ENM size.

The results demonstrate that an applied machine learning approach can enable prediction of 

a PC population with routine experimental data and easily accessed protein biophysical 

characteristics. Moreover, the model has proven robust without mechanistic insights or 

experimentally complex variables such as protein-protein interaction maps. Since it relies 

upon routinely collected PC data, the model can be readily applied to new systems for 

refinement and to gain new insights into PC formation. As we work towards a strong and 

flexible model for PC fingerprints, we may eventually be able to save the time and costs of 

expensive experimental characterization of PCs and enable complete modeling from ENM 

properties to PC formation and subsequent ENM biological effects.

Methods section

Database development

Protein abundance and enrichment factors were obtained from Eigenheer et al.11 For each 

protein identified by MS proteomics, biophysical characteristics were obtained from 

Uniprot37, including molecular weight, pI, enzyme commission numbers37, and amino acid 

sequence. Interpro numbers38 were also included when available for a protein. ENM 

characteristics were assigned based upon experimental characterization. This includes ENM 

size rounded to 10 or 100 nm and zeta-potential assigned as a binomial (either negative or 

positive)11. Finally, solvent conditions were summarized as two categorical variables. For 

the first variable levels were either 0, 0.8, or 3.0 mM NaCl, while for the second variable 

levels were set at either 0 or 0.1 mM cysteine.

Random forest regression and classification

RFC was chosen as the predictive algorithm due to its relative insensitivity to outliers and 

noise, and ability to internally produce a list of feature importance.30,39. Python and the 

Scikit-learn package was chosen to employ RFC to generate the machine learning model and 

were derived from the Goldberg et al model to predict ENM transport behavior29. Source 

code is provided at this link <https://github.com/mfindlay23/ENM-Protein-Predictor>.
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Dimensionality Reduction

To remove noise from the dataset Recursive Feature Elimination and Cross-Validation was 

employed (RFECV). RFECV is a popular dimensionality reduction algorithm that 

recursively constructs the model, chooses the least important variable (based on mean 

decrease impurity), removes the variable, and reconstructs the model. At each iteration, 5-

fold cross-validation is conducted to determine the predictive power of the model. The 

iteration with the best power contains the optimum number of features to train the model.

Hyper-parameter tuning

To reduce overfitting, grid search and cross validation was employed to automatically select 

the hyper-parameters that reduced the generalization error of the model. Several hyper-

parameters limiting the growth of each decision tree were inserted into a grid. Each 

combination of hyper-parameters was run and validated with 5-fold cross-validation. The 

hyper-parameters that offered the best generalization error were used to grow the final 

model.

Validation of the model

To give a clear and unbiased validation of our model, several validation metrics common in 

the fields of biostatistics and machine learning were employed. These metrics include 

precision, recall, F1-score, area under the receiver operating characteristic curve (AUROC),
32–34,40 and accuracy. In a binary decision problem, a classifier labels data as either positive 

or negative. In this case, positive means that a protein will be part of the PC, and negative 

means the protein will be Non-PC. This gives our classifier four possible outcomes: (1.) A 

protein is properly classified as PC (True positive). (2.) A protein is improperly classified as 

PC (False Positive). (3.) A protein is properly classified as Non-PC (True Negative) (4.) A 

protein is improperly classified as Non-PC (False Negative). These four possible outcomes 

can be counted and summarized using our validation metrics. Recall is the number of true 

positives divided by the total PC-proteins in the dataset. Precision is the number of true 

positives divided by the sum of true positives and false positives produced by the model. The 

F1-Score is simply the harmonic mean of precision and recall. Accuracy is the number of 

true positives and true negatives divided by the total number of classifications made by the 

model. The ROC curve shows how the number of true positives varies with the number of 

false positives produced by the model at different cutoffs. The AUROC is the area under the 

ROC curve, AUROC is typically reported as it gives a normalized score between 0 and 1 

produced by the ROC curve.

Comparison to other models

Support Vector Machines (SVM)41 and Logistic Regression (LR)42 were employed along 

with the RFC algorithm on the dataset to produce a well-rounded understanding of the 

predictive power that could be generated from database. SVM and LR were chosen due to 

their extensive use in the fields of biostatistics and machine learning. SVM was employed 

for classification with a radial basis function kernel, and binary LR was fit with a logit 

model. Both models performed well on the dataset suggesting that future work may benefit 

from the use of several machine learning algorithms.
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Assessing feature importance with random forests

A measure of variable importance was calculated as the mean decrease impurity in the 2,500 

implemented decision trees.27

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Environmental significance statement

The fate and transport of engineered nanomaterials (ENMs) in the biota is mediated by 

proteins that coat ENMs in a protein corona (PC). An array of in-depth experimental 

studies have demonstrated the importance of the ENM PC for accuracy in prediction of 

ENM fate and cell uptake; however, the current approaches to PC characterization require 

costly and time-consuming approaches that must be repeated for each new ENM, protein 

population, and reaction condition. The random forest classification approach developed 

here-in can model PC populations for an array of ENM properties and reaction 

conditions, while providing insight into feature importance to define which aspects of 

protein, ENM, and solvent chemistry are most important to defining the PC population. 

The model has the potential for prediction of ENM PC fingerprints across a wide range of 

ENMs, protein populations, and reaction conditions.

Findlay et al. Page 11

Environ Sci Nano. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. A Graphical depiction of the machine learning pipeline. This pipeline describes the 
operations chained together to produce the predictive model
Data acquired by LC-MS/MS was normalized and non-numerical values were replaced with 

mean values during the pre-processing step. Grid search was then employed to minimize the 

generalization error of the model and RFECV was then carried out to optimize the 

dimensionality of the database. Grid search was then employed again to reduce 

generalization error on the optimized database. The model was then run and validated 50 

times on randomly selected stratified database partitions to produce performance metrics.
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Figure 2. Receiver operating curve (a) and Youden index curve (b) for the final model
The receiver operating curve for the model (a) is shown with a solid line, error bars are in 

light blue, and the random guess curve is shown with a dashed line. The area under the curve 

for the receiver operating curve (AUROC) is 0.83. The Youden index curve (b) for the model 

is shown with a solid black line and error bars in grey-blue.
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Figure 3. Weighted importance of each feature included in the final model
Protein features are shown in green, ENM features in blue, and solvent features in red. Error 

bars are shown with black lines.

Findlay et al. Page 14

Environ Sci Nano. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Findlay et al. Page 15

Table 1

Domain of physicochemical features within the training and target dataset used for the machine learning effort.

Training Features Range within dataset (method of determination) Variable Type

Protein characteristics

Isoelectric point 3.77 to 12.55 Continuous

Protein weight 6 to 559 kDa Continuous

protein abundance 10−7.40–10−4.17 Continuous

% positive amino acids 4.72–39.00 Continuous

% negative amino acids 0–33.33 Continuous

% hydrophilic amino acids 13.80–60.66 Continuous

% aromatic amino acids 0–11.86 Continuous

% cysteine 0–7.14 Continuous

InterPro numbers range of 1,932 Categorical

Enzyme Commission Number Range of 7 Categorical

ENM characteristics

ENM size 10 nm and 100 nm Categorical

ENM surface charge Positive (+) and Negative (−) Categorical

Solvent characteristics

Cysteine concentration 0, 0.1 mM Categorical

NaCl concentration 0, 0.8 mM and 3.0 mM Categorical

Target features

Protein corona (PC) or not (non-PC) PC or non-PC Categorical
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Table 2

Model accuracy in different likelihood ranges.

Likelihood of correct prediction Accuracy Percentage of predictions that fall into likelihood range

0.9–1.0 0.95 0.21

0.8–0.89 0.87 0.19

0.7–0.79 0.74 0.2

0.6–0.69 0.68 0.2

0.5–0.59 0.54 0.2
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