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Nonalcoholic fatty liver disease (NAFLD) is a burgeoning
health problem worldwide, ranging from nonalcoholic fatty
liver (NAFL, steatosis without hepatocellular injury) to the more
aggressive nonalcoholic steatohepatitis (NASH, steatosis with
ballooning, inflammation, or fibrosis). Although many studies
have greatly contributed to the elucidation of NAFLD pathogen-
esis, the disease progression from NAFL to NASH remains
incompletely understood. Nuclear receptor small heterodimer
partner (Nr0b2, SHP) is a transcriptional regulator critical for
the regulation of bile acid, glucose, and lipid metabolism. Here,
we show that SHP levels are decreased in the livers of patients
with NASH and in diet-induced mouse NASH. Exposing pri-
mary mouse hepatocytes to palmitic acid and lipopolysaccha-
ride in vitro, we demonstrated that the suppression of Shp
expression in hepatocytes is due to c-Jun N-terminal kinase
(JNK) activation, which stimulates c-Jun–mediated transcrip-
tional repression of Shp. Interestingly, in vivo induction of hep-
atocyte-specific SHP in steatotic mouse liver ameliorated NASH
progression by attenuating liver inflammation and fibrosis, but
not steatosis. Moreover, a key mechanism linking the anti-
inflammatory role of hepatocyte-specific SHP expression to
inflammation involved SHP-induced suppression of NF-�B
p65-mediated induction of chemokine (C–C motif) ligand 2
(CCL2), which activates macrophage proinflammatory polariza-
tion and migration. In summary, our results indicate that a JNK/
SHP/NF-�B/CCL2 regulatory network controls communica-
tions between hepatocytes and macrophages and contributes to
the disease progression from NAFL to NASH. Our findings may
benefit the development of new management or prevention
strategies for NASH.

Nonalcoholic fatty liver disease (NAFLD)3 affects 25.24%
(95% confidence interval: 22.10 –28.65) of the general popula-
tion (1) and is rapidly becoming a major health concern because
of significant increases in the prevalence of obesity, insulin resis-
tance diabetes, and hyperlipidemia (2, 3). Encompassing the
entire spectrum of fatty liver disease in individuals without sig-
nificant alcohol consumption, NAFLD is histologically catego-
rized into nonalcoholic fatty liver (NAFL; steatosis without
hepatocellular injury) and nonalcoholic steatohepatitis (NASH;
steatosis with ballooning, inflammation, with or without fibro-
sis) (4). The chances of developing more serious diseases such
as cirrhosis, hepatocellular carcinoma, and cardiovascular
diseases are increased in patients with NASH (5). NASH is
characterized by hepatocyte damage due to lipotoxicity as
well as macrophage-associated liver inflammation, a process
in which the cross-talk between hepatocytes and macro-
phages is crucial. Emerging evidence highlights that lipid
accumulation in hepatocytes stimulates the production of
proinflammatory cytokines and chemokines, thereby poten-
tially contributing to the initiation of hepatic inflammation
and subsequent liver injury (6, 7). Despite this knowledge,
what controls the release of proinflammatory cytokines and
chemokines leading to the NASH transition is still obscure
and requires elucidation.

Nuclear receptor small heterodimer partner (Nr0b2, Homo
sapiens SHP; Mus musculus Shp) is highly expressed in normal
hepatocytes and acts as an important transcriptional regulator
for bile acid, glucose, and lipid metabolism (8). In support of a
critical role for SHP in metabolic diseases, SHP mutation is
associated with an increase in body weight and morbidity risk of
type 2 diabetes in Japanese populations (9). More recently, SHP
has been shown to suppress toll-like receptor 4 (TLR4)-induced
(10) and NLRP3 inflammasome-mediated (11) inflammatory
responses in monocytes, which suggests a connection between
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SHP and inflammation. Now, hepatocytes are gradually being
recognized as important players involved in the initiation of
inflammation in NASH (6, 7). However, whether hepatocyte
SHP plays a role in this process remains unexplored.

Inflammatory chemokine (C–C motif) ligand 2 (CCL2; or
monocyte chemoattractant protein 1 (MCP1)) is responsible
for attracting monocytes and T cells during liver injury (12).
There are many types of liver cells that produce CCL2, includ-
ing hepatocytes, stellate cells, and Kupffer cells (13, 14). Studies
have shown that high levels of CCL2 in NAFLD contribute to
the conversion of NAFL to NASH (15), and pharmacological
inhibition of CCL2 reduces liver macrophage infiltration in
NASH (16), which makes CCL2 a good therapeutic target for
NASH prevention and treatment. However, how CCL2 is pro-
duced during the disease progression from NAFL to NASH is
incompletely understood. A recent study has demonstrated
that the activation of SHP by a small-molecule activator inhibits
liver cancer cell migration by blocking CCL2 signaling (17),
which potentially links SHP to CCL2 production. Here, we
show that SHP was markedly decreased in the livers of patients
with NASH and in diet-induced mouse NASH. The loss of SHP
in hepatocytes resulted in NF-�B p65-mediated induction of
CCL2, leading to macrophage activation. Meanwhile, overex-
pressing SHP in hepatocytes prevented NAFL progression to
NASH by attenuating liver Inflammation and fibrosis. Taken

together, our study has uncovered a novel regulatory network
in hepatocytes consisting of JNK/SHP/NF-�B/CCL2, which
controls macrophage recruitment during the disease progres-
sion from NAFL to NASH. The findings from our study may
benefit the development of new management or prevention
strategies for NASH.

Results

Decrease of SHP in livers of human NASH

To determine whether the expression of SHP is associated
with NAFLD pathogenesis, we examined SHP mRNA levels in
two sets of human liver specimens. The first set was obtained
through the University of Kansas Liver Center. The liver histol-
ogy of human NAFL and NASH is shown in Fig. 1A. NAFL is
characterized by the deposition of triglycerides as lipid droplets
in hepatocytes. NASH is distinguished from NAFL by the pres-
ence of hepatocyte injury (hepatocyte ballooning and cell
death), inflammation, and/or collagen deposition (fibrosis).
Perisinusoidal/pericellular (chicken wire) fibrosis is the charac-
teristic pattern of liver fibrosis in NASH, which typically begins
in zone 3 due to the deposition of collagen along the sinusoids
and around the hepatocytes. As shown in Fig. 1A, picrosirius
red staining showed the chicken-wire pattern of perisinusoidal/
pericellular fibrosis and periportal fibrosis in human NASH.

Figure 1. Decrease of SHP in the livers of human NASH compared with NAFL. A, human liver specimens were obtained from the University of Kansas Liver
Center, including 12 normal, 12 NAFL, and 8 NASH specimens. Left, representative images of liver sections stained with H&E or Picrosirius red from patients with
NAFL or NASH. Original magnification, �10. Right, relative level of SHP mRNA was determined by qPCR. *, p � 0.05. B, analysis of SHP mRNA expression in a
microarray data set GSE48452. The number of specimens in each group was as follows: normal (n � 14), steatosis (n � 14), and NASH (n � 18). Data are
represented as mean � S.D. *, p � 0.05. C, left, Western blot analysis of SHP in human livers. Right, band intensities were calculated using ImageJ software. The
relative expression of SHP was normalized to the expression of the loading control, �-actin. Data are presented as -fold change relative to that of the control.
NS, no significance. *, p � 0.05.
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Although there were similar SHP mRNA levels in the liver of
normal and NAFL samples, a significant decrease in SHP
mRNA was observed in NASH samples compared with NAFL
samples (Fig. 1A). Consistently, the analysis of microarray data
set GSE48452 also revealed a significant decrease in SHP
mRNA levels in patients with NASH compared with NAFL and
normal controls (Fig. 1B). Western blot analysis confirmed the
decrease in SHP protein in NASH samples compared with
NAFL and normal livers (Fig. 1C). Collectively, our results
strongly suggest the biological relevance of SHP down-regula-
tion during the disease progression from NAFL to NASH in
humans.

Developing a mouse model of NAFL progression to NASH

To more precisely examine SHP expression during the devel-
opment of NAFLD, we developed a mouse model that carries
the disease progression from NAFL to NASH with obesity and
insulin resistance, the two common features of NAFLD in
humans. Diet enriched in high fat and fructose has been impli-
cated in the development of obesity and NASH in humans (18,
19). Recently, a diet enriched in high fat, cholesterol, and fruc-
tose (research diet D09100301: 40 kcal% fat, 2% cholesterol, 20
kcal% fructose; hereafter referred to as HFCF diet) was utilized
to induce mouse NASH (20, 21). In this diet, excess fat alone
contributes to the development of mild steatosis, whereas the
addition of elevated fructose and cholesterol levels increases
hepatic oxidative stress; combined, these dietary components
predispose animals to necroinflammation and fibrogenesis
(22). We fed 2-month-old C57Bl/6J male mice with either a
chow or HFCF diet for 1 and 5 months. We chose to study male
mice based on our previous observation that male but not
female mice developed NASH after 5 months of HFCF diet,4
which also has been reported by another group (23). The obser-
vation that males are more susceptible to NASH is supported by
human epidemiology studies showing that NAFLD cases more
commonly arise and frequently progress in males, as females
possess a resistance to NAFLD attributed to higher levels of
estrogen (24).

Mice on the HFCF diet developed rapid weight gain and obe-
sity compared with chow-fed controls (Fig. 2A). Although 1
month of HFCF feeding did not significantly change the liver
weight compared with controls, the liver weight was signifi-
cantly increased in mice on the HFCF diet for 5 months (Fig.
2B). This was accompanied by an increase in the liver to body
weight ratio (Fig. 2B). Serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST), two markers of liver
injury, both increased after mice were fed the HFCF diet for 5
months (Fig. 2C). Additionally, 5 months of HFCF feeding led
to a significant increase in fasting glucose levels and total cho-
lesterol levels (Fig. 2D). Meanwhile, mice fed for 1 month on the
HFCF diet developed hypertriglyceridemia, but the levels of
serum triglycerides (TG) at the 5-month time point declined to
levels that were similar to those noted in chow-fed controls
(Fig. 2D). Moreover, the mice displayed glucose intolerance
after 5 months on the HFCF diet (Fig. 2E). Collectively, these

results indicated that mice fed a HFCF diet developed liver
injury with obesity, dyslipidemia, and hyperglycemia with
impaired glucose tolerance.

We next examined the extent of steatosis, cell death, inflam-
mation, and fibrosis in the livers of mice fed chow or HFCF
diets. Liver sections stained with hematoxylin and eosin (H&E)
and oil red O revealed liver steatosis in mice fed a HFCF diet for
1 and 5 months, which was not observed in chow-fed controls
(Fig. 2F). However, the cell death detected by TUNEL staining
was only observed in the livers of mice fed a HFCF diet for 5
months (Fig. 2F). Consistently, immunohistochemistry stain-
ing with the macrophage-specific antibody F4/80 showed a dra-
matic increase in macrophage infiltration in the livers of mice
on the HFCF diet for 5 months (Fig. 2F). Moreover, liver sec-
tions stained with Picosirius red detected an apparent collagen
deposition in 5-month HFCF diet-fed mice, indicative of fibro-
sis development (Fig. 2F). The summary in Fig. 2G shows that
the grades of steatosis, inflammation, necrosis, and fibrosis
became apparent in the livers of mice fed the HFCF diet for 5
months.

At the mRNA levels, peroxisome proliferator-activated
receptor � (Ppar�), a master control of lipid synthesis, sus-
tained an increase in the livers of mice fed a HFCF diet (Fig. 3A).
However, the expression of both apolipoprotein B (ApoB) and
microsomal triglyceride transfer protein (Mttp), two genes
involved in the very-low-density lipoprotein (VLDL) synthesis
that carries TG in the plasma, was decreased in mice fed the
HFCF diet for 5 months (Fig. 3A), consistent with the changes
in serum TG levels shown in Fig. 2D. Tumor necrosis factor �
(Tnf�) and chemokine Ccl2, two important inflammatory
mediators contributing to the inflammatory cell infiltration in
the liver, were both significantly increased over time in mice
on the HFCF diet (Fig. 3A). In addition, a progressive increase in
the expression of macrophage M1 marker nitric-oxide synthase
2 (Nos2) and a decrease in the expression of M2 markers argi-
nase-1 (Agr1) and CD163 were observed in the livers of mice on
the HFCF diet for 5 months (Fig. 3A). Similarly, the liver expres-
sion of collagen 1�1 (Col1A1) increased in 5-month HFCF diet-
fed animals (Fig. 3A), supporting the increase in collagen dep-
osition shown in Fig. 2F. Additionally, the serum levels of CCL2
were markedly elevated in the 5-month HFCF diet-fed mice
(Fig. 3B). Overall, these results indicate the progression of
NAFL to NASH in mice on the HFCF diet for 1 and 5 months as
evidenced by increases in hepatic cell death, macrophage infil-
tration, and liver fibrosis.

Decrease of SHP in diet-induced mouse NASH

We next examined SHP expression in the liver of the HFCF-
dietary mouse model. As shown in Fig. 3C, 1 month of HFCF
feeding did not change liver Shp mRNA levels compared with
those of the chow-fed controls. However, a significant decrease
in Shp mRNA was observed after mice were on the HFCF diet
for 5 months. SHP protein is a rapidly degraded protein with a
very short half-life (25). We employed two anti-SHP antibodies
in Western blotting to determine SHP protein levels in the liver.
SHP (H-160) is a rabbit polyclonal antibody, whereas SHP
(H-5) is a mouse mAb. Both antibodies recognized the epitope
corresponding to amino acids 1–160 mapping at the N termi-

4 A. Zou, N. Magee, F. Deng, S. Lehn, C. Zhong, and Y. Zhang, unpublished
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nus of SHP protein. As shown in Fig. 3D, both antibodies
detected a significant decrease in SHP protein expression in the
livers of mice fed a HFCF diet for 5 months.

A methionine/choline–deficient (MCD) diet induces NASH-
like liver pathology including liver steatosis, inflammation, and
fibrosis, despite weight loss and insulin sensitivity (26). Next,
we explored SHP expression in the livers of mice fed an MCD
diet. As shown in Fig. 3E, the liver morphology indicated the
development of liver steatosis, inflammation, and fibrosis in
mice fed an MCD diet for 1 month. Consistently, the expres-
sion of genes involved in liver inflammation and fibrosis such
as F4/80, Tnf�, Ccl2, IL-1�, and Col1A1 was increased in
mice fed an MCD diet (Fig. 3F). Importantly, we observed a
significant decrease in Shp mRNA level in the livers of mice
fed an MCD diet compared with chow-fed controls (Fig. 3F).
Collectively, our results indicate that the expression of Shp is
decreased dramatically in the liver of mouse NASH. More-
over, our HFCF dietary mouse studies provide convincing
evidence that SHP is suppressed during NAFL progression to
NASH.

c-Jun N-terminal kinase (JNK) is activated during NAFLD
progression and inhibits SHP expression in hepatocytes

Because SHP is highly expressed in hepatocytes (27), we
speculated that SHP suppression during NAFL transition to
NASH results mainly from the decrease of SHP in hepatocytes.
To begin to test our hypothesis, we isolated hepatocytes,
hepatic stellate cells (HSC), and resident macrophage cells (KC)
from mouse liver and compared Shp expression among these
cells. Cell purification was confirmed by the detection of vari-
ous cell-specific markers by quantitative PCR (qPCR), includ-
ing hepatocyte marker albumin (Alb), quiescent HSC marker
Hh-interacting protein (Hhip), and KC marker F4/80. As
expected, Shp mRNA is abundantly expressed in hepatocytes
and low is in KCs and HSCs (Fig. 4A).

We next sought to investigate the potential mechanisms of
SHP suppression in NASH. Lipotoxicity, the major mechanism
underlying hepatocyte dysfunction in NAFLD, occurs in the
setting of excessive free fatty acid traffic in hepatocytes, espe-
cially saturated fatty acids (28). Palmitic acid (PA) is one of the

Figure 2. A mouse model carries NAFL progression to NASH. Two-month-old C57BL/6J male mice were fed a chow or HFCF diet for 1 and 5 months. n �
5/group. *, p � 0.05 HFCF versus chow-fed. A, body weight change over time. B, liver weight and liver to body weight ratio. C, serum levels of ALT and AST. D,
serum levels of glucose, cholesterol, and triglycerides. E, glucose tolerance test. F, representative images of liver sections stained with H&E, oil red O, TUNEL,
F4/80, or Picrosirius Red. Original magnification, �40. G, histology scores of steatosis, inflammation, cell death, and fibrosis. Data are presented as mean � S.D.
*, p � 0.05 versus respective controls.
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most abundant of the saturated fatty acids presented in diets
and in serum (29). PA binds to TLR4 leading to JNK activation
(30, 31). We next employed a primary mouse hepatocyte cul-
ture as an in vitro model and explored whether PA or TLR4
ligand lipopolysaccharide (LPS) could alter SHP expression.
Treatment with PA (0.5 mM) or LPS (100 ng/ml) for 6 h signif-
icantly decreased Shp mRNA expression (Fig. 4B). To further
investigate the potential mechanisms of SHP suppression by PA
and LPS, we superimposed various signaling pathway inhibi-
tors, including JNK inhibitor SP600125 (50 �M), NF-�B inhib-
itor BAY 11-7082 (5 �M), and phosphatidylinositol 3-kinase
(PI3K) inhibitor LY294002 (50 �M) on a PA or LPS treatment
regimen. Interestingly, co-treatment with the JNK inhibitor
completely obviated the decrease of Shp mRNA by PA or LPS
(Fig. 4B). Thus, our results indicate that JNK activation medi-
ates the suppression of SHP by PA and LPS in hepatocytes.
Moreover, JNK activation was observed in the livers of mice fed
a HFCF diet for 5 months as evidenced by the induction of
phosphorylated JNK (Fig. 4C, p-JNK, activated form of JNK).
Importantly, the activation of JNK correlated positively with
SHP suppression in the livers of 5-month HFCF diet-fed mice
(Fig. 3D). Collectively, our in vitro and in vivo results indicate,
for the first time, that JNK activation suppresses Shp expression
in NASH.

c-Jun is activated by JNK and targets Shp promoter for Shp
suppression

JNK was originally identified because of its capability of spe-
cifically phosphorylating c-Jun on its N-terminal transactiva-
tion domain at two serine residues, Ser-63 and Ser-73 (32). In
our study, HFCF feeding for 5 months led to JNK activation,
which was accompanied by c-Jun phosphorylation at Ser-73
(Fig. 4C), potentially connecting JNK activation and c-Jun
phosphorylation to Shp suppression during NAFLD progres-
sion. The SHP gene contains a consensus 12-O-tetradecanoyl-
phorbol-13-acetate response element (TRE; core sequence
TGAGTCA) located on its promoter region (�295 to �289
on human SHP gene and �333 to �326 on mouse Shp gene),
which is predicted to be a c-Jun response element (Fig. 4D). We
cloned the mouse Shp proximal promoter (2 kb) into a lucifer-
ase reporter (Shp-Luc) and examined the effect of c-Jun on Shp
promoter activity in the mouse hepatocyte AML12 cell line.
Nuclear receptor liver receptor homolog-1 (LRH1) binds to the
Shp promoter and induces Shp-Luc activity (33); thus, LRH1
was included as a positive activator. Overexpressing c-Jun
decreased the basal activity as well as the induction of Shp-Luc by
LRH1, which was completely blocked in the reporter construct
containing a mutated TRE site (Shp-Luc Mut) (Fig. 4E), suggesting

Figure 3. SHP level is decreased in the livers of mice NASH. A, qPCR analysis of relative mRNA levels of genes related to lipid metabolism, inflammation, and
fibrosis in the livers of mice fed chow or HFCF for 1 and 5 moths. n � 5 mice/group. *, p � 0.05 HFCF versus chow-fed. B, serum level of CCL2 was measured by
ELISA. n � 5 mice/group. *, p � 0.05 HFCF versus chow-fed. C, qPCR analysis of Shp mRNA level in the livers of mice fed chow or HFCF. n � 5 mice/group. *, p �
0.05 HFCF versus chow-fed. D, left, Western blot analysis of SHP protein in the livers of mice fed chow or HFCF for 5 months. SHP H-160 is a rabbit polyclonal
antibody and SHP H-5 is a mouse mAb. Both antibodies recognize the epitope corresponding to amino acid 1–160 mapping at the N terminus of SHP protein.
Right, band intensities were calculated using ImageJ software. The level of SHP was normalized to the expression of loading control �-actin, and -fold changes
relative to that of the controls are plotted. n � 5 mice/group. *, p � 0.05 HFCF versus chow-fed. E, representative images of liver sections stained with H&E in
mice fed chow or MCD diet for 1 month. Original magnification, �40. F, qPCR analysis of gene expression in the livers of mice fed chow or MCD diet for 1 month.
n � 5 mice/group. Data are presented as mean � S.D. *, p � 0.05 versus respective controls.
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that c-Jun inhibits Shp promoter activity through the TRE site.
Moreover, blocking JNK activation by a specific inhibitor,
SP600125, increased Shp-Luc activity, which was completely dis-
rupted in the Shp-Luc Mut (Fig. 4E), indicating for the first time
that the suppression of Shp by JNK is facilitated primarily by c-Jun.

A chromatin immunoprecipitation (ChIP) assay was per-
formed in AML12 cells overexpressed with c-Jun, confirming
the recruitment of c-Jun to the Shp promoter (Fig. 4F). Addi-
tionally, PA (0.5 mM) treatment in AML12 cells dramatically
stimulated the recruitment of endogenous c-Jun to the Shp pro-
moter, which was completely abrogated by the co-treatment of
a specific JNK inhibitor, SP600125 (Fig. 4F). The mouse Shp
proximal promoter contains three LRH1 binding sites (Fig. 4D,
GAGACCTTGG at �383 to �374, TCAAGGTTG at �116 to
�108, and TCAAGGATA at �83 to �75), which are close to
the TRE site. To understand how c-Jun inhibits LRH1-induced

Shp-Luc activity, we performed a ChIP assay that examined
whether c-Jun would interfere with the recruitment of LRH1 to
Shp promoter. As shown in Fig. 4G, overexpressing c-Jun in
AML12 cells dramatically decreased the recruitment of LRH1
to all three LRH1 sites on the Shp promoter. Similarly, PA treat-
ment in AML12 cells also significantly decreased the recruitment
of LRH1 to the Shp promoter (Fig. 4G). Thus, our data suggest that
the binding of c-Jun to the Shp promoter inhibits the recruitment
of LRH1 to the Shp promoter. Taken together, these results indi-
cate that JNK activation induces the binding of c-Jun to the Shp
promoter, leading to suppression of Shp transcription.

Increasing hepatocyte SHP levels in steatotic livers does not
alter liver steatosis

We next asked whether treating mice with SHP overexpres-
sion in hepatocytes could prevent the progression of NAFL to

Figure 4. Activation of JNK induces c-Jun targeting of Shp promoter leading to Shp suppression. A, qPCR analysis of gene expression in primary
hepatocytes (Hepa), HSC, and resident macrophage KC isolated from mouse liver. Data are represented as mean � S.D. *, p � 0.05. B, qPCR analysis of Shp mRNA
expression in mouse hepatocytes. Hepatocytes were incubated with 0.5 mM PA or 100 ng/ml LPS for 6 h in the presence or absence of various inhibitors such
as JNK inhibitor SP600125 (50 �M), NF-�B inhibitor BAY 11-7082 (5 �M), and PI3K inhibitor LY294002 (50 �M). The relative expression of Shp is normalized to the
expression of internal control HPRT1. The -fold changes relative to that of the controls are plotted and presented as mean � S.D. *, p � 0.05. C, Western blot
analysis in the livers of mice fed chow or HFCF for 1 and 5 months. D, diagram shows the location of the TRE (core sequence TGAGTCA) site on the Shp
promoter/reporter (Shp-Luc) and Shp-Luc mutant with a mutated TRE site. Three LRH1 binding sites are close to the TRE site. E, left, AML12 cells were transfected
with Shp-Luc or its mutant with or without various expression plasmids. Luciferase activities were determined at 24 h post-transfection. Right, AML12 cells were
transfected with Shp-Luc or its mutant for 24 h followed by incubation with SP600125 (50 �M) for 6 h. Data are displayed as the ratio of firefly luminescence
divided by Renilla luminescence and represented as mean � S.D. for triplicate experiments/group. *, p � 0.05. F, ChIP assay to determine the enrichment of
c-Jun to Shp promoter. Left, AML12 cells overexpressed with c-Jun were harvested at 24 h post-transfection. pcDNA served as a transfection control. Right,
AML12 cells were incubated with BSA control or 0.5 mM PA with or without JNK inhibitor SP600125 (50 �M) for 6 h. The cross-linked chromatin was immuno-
precipitated by an antibody against c-Jun. The enriched DNA was amplified by qPCR and normalized to the input. -Fold changes relative to that of the controls
are plotted and represented as mean � S.D. *, p � 0.05. G, the enrichment of LRH1 to Shp promoter was revealed by ChIP assay. Left, AML12 cells overexpressed
with c-Jun were harvested at 24 h post-transfection. Right, AML12 cells were incubated with 0.5 mM PA or BSA control for 6 h. The cross-linked chromatin was
immunoprecipitated by an antibody against LRH1. The enriched DNA was amplified by qPCR and normalized to the input. The -fold changes relative to that of
the controls are plotted and represented as mean � S.D. *, p � 0.05.
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NASH. For this purpose, we used adeno-associated virus type 8
(AAV8) in which FLAG-tagged SHP was driven by a thyroxine-
binding globulin (Tbg) promoter (AAV8-Tbg-FlagSHP). Use of
the Tbg promoter ensures that AAV8 specifically targets hepa-
tocytes (34). C57Bl/6J mice were placed on the HFCF diet for 1
month to induce liver steatosis followed by tail vein administra-
tion of AAV8-Tbg-FlagSHP or control vector AAV8-Tbg-GFP.
The mice remained on the HFCF diet for an additional 3
months (Fig. 5A). The overexpression of SHP in hepatocytes
was confirmed by qPCR (Fig. 5A) and immunohistochemistry
staining of FLAG-tagged SHP protein (Fig. 5E). The body
weight, liver weight, liver to body weight ratio, and serum levels
of fasting cholesterol and TG were similar in SHP and GFP mice
(Fig. 5, B and C). However, serum ALT and AST, two markers of
liver injury, were significantly decreased in SHP-overexpress-
ing mice compared with GFP control mice (Fig. 5C). To inves-
tigate whether over-expression of SHP could affect glucose
metabolism, we performed a glucose tolerance test. The results
showed that SHP-overexpressing mice displayed no differences
in glucose tolerance when compared with GFP control mice
(Fig. 5D). Further quantification of areas under the curve of the
glucose tolerance test (GTT) showed no statistical differences
in GFP control and SHP-overexpressing groups (Fig. 5D). We
next examined liver histology. Liver steatosis and inflammation
were apparent in the livers of GFP mice fed a HFCF diet (Fig.
5E). A similar level of lipid accumulation was observed in the
livers of SHP-overexpressing mice on the HFCF diet compared
with GFP controls; however, there was less inflammation in

SHP-overexpressing mice (Fig. 5E). Consistently, liver TG and
cholesterol levels were similar in GFP and SHP mice fed the
HFCF diet (Fig. 5F). Taken together, our results suggest that
overexpressing SHP in steatotic livers improves liver injury
without altering liver steatosis and glucose tolerance.

Hepatocyte SHP overexpression prevents NAFL progression to
NASH by attenuating liver inflammation and fibrosis

Liver inflammation and fibrosis exacerbate NASH progres-
sion (35). Next, we evaluated the extent of liver inflammation
and fibrosis in GFP and SHP-overexpressing mice. The results
showed that increasing the hepatocyte SHP levels dramatically
attenuated liver inflammation and fibrosis in mice fed a HFCF
diet, as evidenced by the marked reduction in the staining of
F4/80-positive KCs and collagen deposition in the livers of
SHP-overexpressing mice (Fig. 6A). Consistently, the liver
hydroxyproline level was reduced in SHP mice (Fig. 6B). Over-
expressing SHP in HFCF diet-fed mice led to a robust reduction
in liver expression of genes related to inflammation, such as
IL-6, Tnf�, and Ccl2 (Fig. 6C). Meanwhile, overexpressing SHP
altered macrophage polarization in the liver with a decrease in
the expression of the proinflammatory M1 marker Nos2 and
increases in the expression of anti-inflammatory M2 markers
such as Arg1 and CD163 (Fig. 6C). Furthermore, overexpressing
SHP significantly decreased the expression of genes related to
fibrosis, including Tgf�1, Ctgf, Col1A1, and Col1A2 (Fig. 6C),
without altering the mRNAs related to lipid metabolism such as
fatty acid biosynthesis (Ppar�, Srebp-1c, Me1, ACC1, and Acly),

Figure 5. Increasing hepatocyte SHP levels in steatotic liver does not change liver steatosis. Two-month-old male C57BL/6J mice were fed a HFCF diet for
1 month to develop liver steatosis followed by tail vein administration of AAV8-Tbg-FlagSHP or control vector AAV8-Tbg-GFP. The mice remained on the HFCF
diet for an additional 3 months. A, left, schematic diagram showing experimental design. Right, qPCR analysis of Shp mRNA levels in the liver. n � 5 mice/group.
*, p � 0.05 SHP versus GFP. B, left, body weight change over time; middle, liver weight; right, liver weight to body weight ratio. n � 5 mice/group. C, serum levels
of cholesterol, triglycerides, ALT, and AST. n � 5 mice/group. *, p � 0.05 SHP versus GFP. D, left, GTT. Right, the area under the curve (AUC) of GTT was calculated.
n � 5 mice/group. E, representative images of liver sections stained with H&E, immunohistochemistry staining (IHC) of FLAG-SHP, and oil red O. Original
magnification, �40. n � 5 mice/group. F, liver triglycerides and cholesterol content. n � 5 mice/group.
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fatty acid oxidation (Cpt1a and ACC2), VLDL secretion (Mttp
and ApoB), and cholesterol metabolism (Srebp2, Abca1, and
Abcg5) (Fig. 6C). Thus, hepatic SHP overexpression improved
the key parameters of NASH progression that are related to
liver inflammation and fibrosis without affecting liver steatosis.

We next sought to explore potential mechanisms by which
hepatocyte SHP inhibits liver inflammation. NF-�B signaling
controls inflammation (36), and growing evidence indicates
that NF-�B p65 activation contributes to the pathogenesis of
NASH (37). SHP has been shown to inhibit TLR4-triggered
activation of NF-�B p65 signaling in monocytes (10). We therefore
hypothesized that increasing SHP in hepatocytes may lead to a
repression of NF-�B p65 signaling and inhibit subsequent
liver inflammation. As expected, overexpressing SHP in
hepatocytes dramatically decreased HFCF diet feeding-in-
duced nuclear translocation of total p65 and phospho-p65
(Ser-536) (Fig. 6D), an active form of p65, supporting the
overall decrease in liver inflammation in SHP-overexpress-
ing mice compared with GFP controls.

In vitro deletion of Shp increases CCL2 production leading to
macrophage proinflammatory M1 polarization

To understand how hepatocyte SHP regulates liver inflam-
mation, we isolated hepatocytes from Shpfl/fl mice and deleted

Shp using adenovirus expressing Cre recombinase (Ad-Cre).
We sought to assess the effect of hepatocyte conditioned
medium (CM) on macrophage M1or M2 polarization and
migration (Fig. 7A). We chose Ad-Cre for in vitro Shpfl/fl hepa-
tocyte infection based on our experience that Ad-Cre is more
potent than AAV8-Cre in knocking down Shp in vitro. The
knockdown of Shp mRNA in hepatocytes was confirmed by
real-time PCR (Fig. 7B). Interestingly, the loss of SHP in hepa-
tocytes dramatically induced p65 nuclear translocation (Fig.
7B), suggesting an activation of p65 in Shp-deficient hepato-
cytes. A significant increase in CCL2 was subsequently detected
in Shp-deficient hepatocytes and in its CM (Fig. 7C), indicating
that loss of Shp in hepatocytes induces the secretion of CCL2.
Next, we treated RAW 264.7 cells, a mouse macrophage cell
line, with CM for 6 h and assessed the polarization of macro-
phages. The CM from Shp-deficient hepatocytes increased the
expression of M1 markers such as Nos2, IL1, IL6, and Tnf� and
repressed the expression of the M2 marker Arg1 in RAW 264.7
cells (Fig. 7D), suggesting that Shp-deficient CM stimulated
macrophage proinflammatory M1 polarization. In addition,
CM from Shp-deficient hepatocytes stimulated a significant
increase in migration of RAW 264.7 cell (Fig. 7E), which was
mimicked by exposure to control CM supplemented with 40
ng/ml recombinant mouse CCL2 protein or inhibited by block-

Figure 6. Hepatocyte SHP overexpression attenuates liver inflammation and fibrosis. Two-month-old male C57BL/6J mice were fed a HFCF diet for 1
month to develop liver steatosis followed by tail vein administration of AAV8-Tbg-FlagSHP or control vector AAV8-Tbg-GFP. Mice were continued on the HFCF
diet for an additional 3 months. A, representative images of liver sections stained with F4/80 and Picrosirius red. Original magnification, �40. n � 5 mice/group.
B, liver collagen content was determined by hydroxyproline assay. n � 5 mice/group. Data are represented as mean � S.D.; *, p � 0.05 SHP versus GFP. C, relative
mRNA levels of genes related to inflammation, fibrosis, and lipid metabolism in the liver were determined by qPCR. Data are represented as mean � S.D. for 5
mice/group; *, p � 0.05 SHP versus GFP. D, left, Western blot analysis of cytosolic and nuclear proteins (Pt) in the liver. Middle and right, band intensities were calculated
using ImageJ software, and the intensities relative to that of the control were plotted. Data are represented as mean � S.D.; *, p � 0.05 SHP versus GFP.
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ing of CCL2 action by a CCL2 antibody (500 ng/ml) (Fig. 7E).
Thus, our findings suggest a novel mechanism in which the loss
of Shp in hepatocytes stimulates macrophage proinflammatory
M1 polarization mediated through CCL2 secretion from
hepatocytes.

SHP inhibits Ccl2 transcription in hepatocytes

To understand how Shp represses Ccl2 expression, we ana-
lyzed the proximal promoter of mouse Ccl2 and identified two
I�B sites (Fig. 7F). We cloned a 3-kb mouse Ccl2 proximal pro-
moter fragment into a luciferase reporter and examined the
effect of SHP on Ccl2 promoter activity in AML12 cells. Over-
expression of p65 increased Ccl2 promoter activity, which was
inhibited by co-expression of SHP (Fig. 7F). EIA-like inhibitor

of differentiation 1 (EID1) is a common co-repressor that inter-
acts with SHP (38). Co-expression of SHP and EID1 synergisti-
cally diminished p65-induced activation of the Ccl2 promoter
(Fig. 7F). Additionally, we overexpressed FLAG-SHP and
HA-p65 in AML12 cells, and the immunoprecipitation results
showed the protein-protein interactions between SHP and p65
(Fig. 7G). Taken together, the results suggest that SHP interacts
with p65 and inhibits p65-induced Ccl2 transcription.

Discussion

The pathogenesis of NASH is not yet entirely understood,
and the mechanisms leading to NASH appear multifactorial.
Recent retrospective studies using liver biopsies from patients
with NAFL or NASH highlight the possibility that rather than

Figure 7. Deletion of Shp in hepatocytes increases CCL2 production leading to macrophage proinflammatory polarization. A, schematic diagram
shows experimental design. Primary hepatocytes from Shpflox/flox mice were infected with adenovirus expressing Cre recombinase (Ad-Cre) or vector control
(Ad-Null). CM was collected at 24 h post-adenoviral vector infection and used for RAW cell treatment. B, left, relative Shp mRNA levels were determined by qPCR.
Data are represented as mean � S.D. for triplicate experiments/group; *, p � 0.05. Right, representative images of immunofluorescence (IF) staining of p65 in
hepatocytes. C, left, qPCR analysis of relative Ccl2 mRNA levels in hepatocytes. Right, CCL2 protein level in CM measured by ELISA. Data are represented as
mean � S.D. for experiments/group; *p � 0.05. D, RAW cells were incubated with CM from hepatocyte culture for 6 h, and the relative expression of genes
involved in inflammation was determined by qPCR. Data are represented as mean � S.D. for triplicate experiments/group; *, p � 0.05. E, left, representative
images of RAW cell migration. RAW cells were incubated with CM in the presence or absence of recombinant mouse CCL2 (40 ng/ml) or anti-mouse CCL2
antibody (500 ng/ml). Cell migration was assessed after incubation for 12 and 24 h, respectively. Right, quantitation of cell migration was determined by
measuring the pixel density of crystal violet–stained cells using ImageJ software. Data are represented as mean � S.D. for five fields/sample. *, p � 0.05. F, left,
diagram shows the location of two I�B sites on the mouse Ccl2 promoter reporter (Ccl2-Luc). Right, AML12 cells were transfected with Ccl2-Luc with various
expression plasmids. Luciferase activities were determined at 24 h post-plasmid transfection. Data are calculated as the ratio of firefly luminescence divided by
Renilla luminescence and presented as mean � S.D. for triplicate experiments/group. *, p � 0.05. G, AML12 cells were overexpressed with FLAG-SHP or HA-p65
and harvested at 24 h post-plasmid transfection. Immunoprecipitation (IP) followed by Western blotting (WB) was employed to detect protein-protein
interactions between FLAG-SHP and HA-p65.
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being distinct entities, NAFL and NASH represent different
stages in the progression of NAFLD (39 –41). However, the
mechanisms underlying the disease progression from NAFL to
NASH remain poorly understood. No pharmacological treat-
ment has been proven effective for NASH. Thus, a better
understanding of what drives the transition of NAFL to NASH
to develop effective prophylactic and therapeutic strategies is
an urgent medical need. Here we have identified a novel regu-
latory network in hepatocytes consisting of JNK/SHP/NF-�B/
CCL2, which regulates macrophage recruitment and initiation
of inflammation for NAFLD progression (Fig. 8).

An important finding of our study is the demonstration that
SHP is markedly decreased during the progression of NAFL to
NASH, which was observed in the livers of patients with
NAFLD and in diet-induced mouse NAFLD. The study of SHP
expression in NAFLD has been inconsistently reported in liter-
ature. An earlier study showed that SHP protein levels are
reduced in NASH, whereas mRNA levels are not affected (42).
Another study demonstrates that SHP mRNA is similarly
reduced in obese patients with NAFL or NASH compared with
the lean NAFLD (43). These discrepancies may be because SHP
protein is not stable and degrades rapidly (25); thus, protein
expression and mRNA levels may not change in parallel. Addi-
tionally, not all commercial SHP antibodies are good for detect-
ing SHP protein, which may explain the inconsistent results
reported. In a recent study, Benet et al. (44) compared SHP
expression levels in different mouse models of NAFLD, dem-
onstrating that SHP is repressed in advanced NAFLD livers
(NASH with fibrosis) such as tetracycline-treated rat livers,
MCD diet livers, and glycine N-methyltransferase– deficient
(Gnmt�/�) mice livers but is not suppressed in the steato-
tic livers of methionine adenosyltransferase 1A– deficient
(Mat1a�/�) mice. Similarly, our study showed that SHP is
not suppressed in NAFL but is suppressed in NASH, suggest-
ing that a gradual decrease in SHP occurs during the disease
progression.

Our findings also indicate that the activation of particular
signals during NAFLD progression is required for SHP sup-
pression. Several signaling pathways have been implicated in
the regulation of SHP. For instance, the mitogen-activated pro-
tein kinase kinase 1/2 (MAPKK 1/2) pathway activates SHP
expression, whereas PI3K pathway suppresses it (44). In the
present study, we uncovered a new pathway governed by JNK
activation of c-Jun that binds to the Shp promoter and sup-
presses Shp transcription in NASH. This is supported by several

pieces of evidence: 1) in vitro hepatocyte culture with PA or LPS
suppresses SHP expression mediated by JNK activation; 2) JNK
activation promotes c-Jun binding to the Shp promoter thereby
suppressing Shp transcription; and 3) a positive correlation
between JNK activation and SHP suppression is observed dur-
ing NAFL transition to NASH. Consistent with our data is the
observation that sustained JNK activation by saturated fatty
acids plays a key role in lipotoxicity and the pathogenesis of
NASH (31). Further investigation is warranted to explore
whether the inhibition of JNK could rescue SHP suppression
and ameliorate the disease progression of NAFLD.

In our HFCF diet-induced NAFLD model, overexpressing
SHP in steatotic liver did not affect liver lipid content. This is a
somewhat unexpected finding, because SHP is known to regu-
late hepatic lipid metabolism (8). An earlier study showed that
SHP is essential for bile acid–mediated suppression of hepatic
lipogenesis, as it inhibits the expression of Srebp-1c, a key lipo-
genic activator (45). Consistently, acute liver-specific SHP
overexpression in C57BL/6J mice via adenovirus-mediated
gene delivery decreases hepatic TG levels (46). These studies
suggest that SHP plays a role in alleviating lipid accumulation in
the liver. In contrast, increasing hepatic lipid accumulation by
SHP has been reported in transgenic mice with chronically ele-
vated hepatic SHP (47). In addition, studies show that whole-
body Shp-deficient (Shp-KO) mice display resistance to high-
fat diet–induced fatty liver (48 –50). Thus, the role of SHP in
NAFLD is very controversial. These discrepancies may be
because of the acute versus chronic manipulation of SHP levels
in mice or the effects of nonhepatic tissues on the overall energy
balance and metabolic outcomes. It is also crucial to note that
hepatic SHP is a critical suppressor of bile acid synthesis
through the direct regulation of Cyp7a1 (51, 52), a critical rate-
limiting enzyme in bile acid synthesis (53). Accumulated evi-
dence highlights that changes in bile acid synthesis and com-
position can alter gut microbiota, which may affect liver
physiology and be involved in NAFLD development (54). Thus,
it is possible that SHP deletion or SHP overexpression may
affect bile acid synthesis, composition, and gut microbiota dif-
ferently, which may result in distinct roles for SHP in NAFLD.

Here, we have shown that SHP was decreased during NAFL
transition to NASH (Figs. 1 and 3), indicating that SHP may
play an important role during NAFLD progression. To test our
hypothesis, we employed a mouse model of NAFLD that carries
the progression of NAFL to NASH and overexpressed SHP spe-
cifically in hepatocytes. Increasing the hepatocyte SHP levels in
steatotic liver did not change the hepatic lipid content but dra-
matically attenuated liver inflammation and fibrosis, two criti-
cal events responsible for NAFLD progression, indicating that
SHP plays a protective role during NAFLD progression.
Because these mice had been on a HFCF diet for 1 month and
developed liver steatosis at the time we overexpressed SHP in
hepatocytes, the unchanged hepatic lipid content may be
because manipulating the SHP levels in the steatotic livers did
not change the expression of genes involved in fatty acid bio-
synthesis, oxidation, and TG secretion. Combined, these stud-
ies indicate that SHP plays distinct roles in different stages of
NAFLD, and the sustained decrease in SHP expression could
worsen the disease progression. Supporting this summary is an

Figure 8. Hepatic cascade JNK/SHP/NF-�B/CCL2 regulates liver in-
flammation in NAFLD. Schematic diagram illustrates a novel regulatory
network in hepatocytes, consisting of JNK/SHP/NF-�B/CCL2, that regu-
lates macrophage recruitment and inflammation initiation critical for
NAFLD progression.
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earlier study showing that the prevention of liver fibrosis in
NASH by AMP-activated protein kinase (AMPK) is SHP-de-
pendent, as the protective effect of AMPK is absent in Shp�/�

mice (55).
Another important finding from our study is that the expres-

sion of hepatic SHP attenuates chemokine CCL2 production.
Overnutrient-induced aberrant synthesis and accumulation of
proinflammatory mediators within the liver are major culprits
in the pathogenesis of NASH (35). More specifically, an
increased level of CCL2 is associated with a high risk of NASH
in animal models and humans (15). Here, we have identified
that the expression of SHP in hepatocytes is essential to sup-
press overnutrition-induced CCL2 production. More impor-
tantly, our study demonstrates that the cross-talk between p65
and SHP in hepatocytes is one of the key events in regulating
CCL2 production. The identification of this regulatory axis is
important, as it will shed light on our understanding of farne-
soid X–activated receptor (FXR; nuclear receptor subfamily 1,
group H, member 4), a very well-known up-stream regulator of
SHP (56 –60), in the alleviation of hepatic inflammation. FXR
has been recognized as an interesting target for NAFLD treat-
ment, and the FXR agonist obeticholic acid has been used in
NAFLD treatment (61). However, the mechanism underlying
FXR-mediated reduction of hepatic inflammation remains
undetermined. Therefore, future research is warranted to
determine whether the mechanism governed by SHP/p65/
CCL2 could contribute to FXR-mediated alleviation of hepatic
inflammation in NAFLD.

In summary, we have provided compelling evidence that a
novel regulatory network in hepatocytes consisting of JNK/
SHP/NF-�B/CCL2, is critical to the regulation of macrophage
recruitment and initiation of inflammation for NAFLD pro-
gression. Additionally, we have demonstrated that overexpres-
sion of SHP in steatotic liver prevents NAFL progression to
NASH, suggesting that specifically targeting a component of
this network is beneficial for NASH prevention and treatment.

Experimental procedures

Cell lines, chemicals, plasmids, adenoviruses, and antibodies

Mouse macrophage RAW 264.7 cells (ATCC TIB-71) were
maintained in Dulbecco’s modified Eagle’s medium with 100
units of penicillin G–streptomycin sulfate/ml and 10% heat-
inactivated fetal bovine serum (FBS). AML12 (ATCC CRL-
2254), a cell line established from hepatocytes from a mouse
transgenic for human TGF�, was maintained in Dulbecco’s
modified Eagle’s medium containing 10% FBS supplemented
with 0.005 mg/ml insulin, 0.005 mg/ml transferrin, 5 ng/ml
selenium, and 40 ng/ml dexamethasone. Reagents including
palmitic acid (P5585), lipopolysaccharide (L2654), JNK inhibi-
tor SP600125 (S5567), NF-�B inhibitor BAY 11-7082 (B5556),
PI3K inhibitor LY294002 (catalog no. 440202), and D-glucose
anhydrous (catalog no. 346351) were purchased from Sigma.
Luciferase reporters containing a 2-kb mouse Shp proximal
promoter fragment (Shp-Luc) and a 3-kb mouse Ccl2 proximal
promoter fragment (Ccl2-Luc) were engineered in our labora-
tory and confirmed by sequencing. Expression plasmids for
c-Jun, FLAG-LRH1, FLAG-SHP, HA-p65, and EID1 and

adenoviruses for GFP and SHP were described previously (62).
The following antibodies were used for Western blotting,
immunofluorescent staining, and immunoprecipitation: SHP
(Santa Cruz Biotechnology, sc-30169 and sc-271511), �-actin
(Sigma, A-1978), phospho-JNK (Thr-183/Tyr-185) (Cell Sig-
naling Technology, 4668), JNK (Cell Signaling Technology,
9252), phospho-c-Jun (Ser-73) (Cell Signaling Technology,
3270), FLAG-HRP (Sigma, A8592), �-tubulin (Sigma, T6074),
histone H3 (Cell Signaling Technology, 14269), NF-�B p65
(Cell Signaling Technology, 8242), phospho-p65 (Ser-536)
(Cell Signaling Technology, 4764), LRH1 (R&D Systems,
PP-H2325-00). Recombinant mouse CCL2 protein (479-JE-
010), and anti-mouse CCL2 antibody (AF-479-SP) for neutral-
ization were obtained from R&D Systems.

Human liver samples

Two sets of human liver specimens were included. The first
set was obtained through the Liver Center at University of Kan-
sas, including 12 normal, 12 NAFL, and 8 NASH specimens.
The exclusion criteria were excessive alcohol use (�20 g of
alcohol daily for women and �30 g for men) and chronic liver
diseases, including chronic viral hepatitis, autoimmune, Wil-
son’s disease, and drug-induced hepatitis. A NAFLD activity
score (NAS) representing the sum of scores for steatosis, lobu-
lar inflammation, and ballooning (20) was applied in our study.
Cases with NAS 0 were classified as normal. Cases with a stea-
tosis score � 1 without inflammation, ballooning, or fibrosis
were defined as NAFL. Cases with NAS � 5 were classified as
NASH. The studies were approved by the University of Kansas
Medical Center Institutional Review Board for Human
Research Committee and abide by the Declaration of Helsinki
principles. All liver samples were deidentified, and the
researchers were not able to ascertain individual identities asso-
ciated with the samples. The second set was obtained through
GEO data set GSE48452, which contained 14 normal, 14 NAFL,
and 18 NASH samples.

Animal studies

C57BL/6J mice (stock no. 000664) were obtained from The
Jackson Laboratory. Shpfl/fl mice were generously provided by
Drs. Johan Auwerx and Kristina Schoonjans at the Ecole Poly-
technique de Lausanne and back-crossed into C57BL/6J back-
ground for 10 generations. Mice were maintained in a 12-h
light/dark cycle (light on 6 a.m. to 6 p.m.), temperature-con-
trolled (23 °C), and virus-free facility with free access to food
and water. Experiments on the mice were performed on males
at the age of 8 –10 weeks unless stated otherwise (n � 5/group).
For dietary NAFLD models, C57BL/6J mice were either placed
on a MCD diet (Harlan Laboratories, TD.90262) for 1 month or
on a diet enriched in high fat, cholesterol, and fructose
(Research Diet, D09100301; 40 kcal% fat, 2% cholesterol, 20
kcal% fructose) for 1 or 5 months. Mice fed normal chow served
as controls. In the SHP overexpression experiment, AAV8,
including AAV8-Tbg-FlagSHP and AAV8-Tbg-GFP, was
obtained from the University of Pennsylvania Vector Core.
C57BL/6J mice were on the HFCF diet for 1 month followed
by administration of either AAV8-Tbg-FlagSHP or control
AAV8-Tbg-GFP at a dose of 2 � 1011 genome copies/mouse
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through tail vein injection. The mice remained on the HFCF
diet for 3 months. Samples were collected after the mice had
been fasted for 16 h. All experiments were performed in accord-
ance with relevant guidelines and regulations approved by the
Institutional Animal Care and Use Committee (ICAUC) at the
University of Kansas Medical Center.

Glucose tolerance test

Mice were fasted for 16 h followed by intraperitoneal injec-
tion of glucose at 2g/kg body weight. Blood was collected by tail
vein puncture. Glucose levels were determined before and at
different times after glucose administration.

Serum analyses

Blood was collected from anesthetized animals via cardiac
puncture and deposited into blood collection tubes (Fisher Sci-
entific, 22-225516). Serum was isolated to measure triglycer-
ides (Pointe Scientific, T7532), total cholesterol (Pointe Scien-
tific, C7510), AST (Pointe Scientific, A7561), ALT (Pointe
Scientific, A7526), and glucose (Pointe Scientific, G7521)
according to the manufacturer’s suggestions.

Liver histology

Fresh liver tissues were fixed with 10% formalin (Fisher Sci-
entific, SF100). Paraffin sections at 4 �m were stained with
H&E. The severity of steatosis, inflammation, cell death, and
fibrosis were assessed and scored by a pathologist according to
the NASH Clinical Research Network criteria (63, 64). Specifi-
cally, the amount of steatosis was scored as 0 (�5%), 1 (5–33%),
2 (�33– 66%), and 3 (�66%). Hepatic cell death was scored as 0
(none), 1 (few cells), and 2 (many cells). Foci of lobular inflam-
mation were scored as 0 (no foci), 1 (�2 foci), 2 (2– 4 foci), and
3 (�4 foci). Fibrosis was scored as 0 (no fibrosis), 1 (perisinusoi-
dal or periportal fibrosis), 2 (perisinusoidal and portal/peripor-
tal fibrosis), 3 (bridging fibrosis), and 4 (cirrhosis).

Oil red O staining of liver lipids

Fresh liver tissues were immediately embedded in Tissue-
Tek O.C.T. compound (VWR 25608-930). To visualize lipid in
the liver, frozen sections were cut at 8 �m, fixed by 10% forma-
lin, and stained with oil red O (Sigma O0625) followed by coun-
terstaining with hematoxylin. Images were acquired with a
BX60 microscope (Olympus, Lake Success, NY).

Immunohistochemistry

For immunohistochemistry staining of F4/80, 4-�m paraffin
sections were rehydrated and treated with 0.3% H2O2 in meth-
anol for 15 min to block endogenous peroxidase activity. Anti-
gen retrieval was acquired by incubation of slides in 20 �g/ml
proteinase K solution (Fisher Scientific, PRMC5005) for 3 min
at room temperature. Slides were then treated with 10% normal
serum for 30 min followed by incubation with rat anti-mouse
F4/80 antibody (Abd-Serotec, MCA497R) overnight at 4 °C. An
ImmPRESS peroxidase polymer detection kit (Vector Labora-
tories, MP-7444) and ImmPACT 3,3�-diaminobenzidine per-
oxidase substrate (Vector Laboratories, SK-4105) were used for
the final detection. Sections were then counterstained with

hematoxylin, dehydrated, cleared, and mounted. Images were
acquired with a BX60 microscope.

Picrosirius red staining of liver fibrosis

Paraffin sections were cut at 4 �m, rehydrated, and incubated
in 0.1% Sirius red F3B (Sigma, direct red 80, 365548) containing
saturated picric acid (Sigma, p6744) for 1 h. After washing three
times in 0.5% glacial acetic acid, sections were briefly dehy-
drated, cleared, and mounted. Images were acquired with a
BX60 microscope and collagen density was quantified using
ImageJ software.

Detection of cell death by TUNEL staining

TUNEL staining for detection of cell death in the liver was
performed using an in situ alkaline phosphatase cell death
detection kit (Sigma 11684809910) according to the manufa-
cturer’s suggestions.

Hepatic TG and cholesterol content

Liver tissues (100 mg) were homogenized in 300 �l of chlo-
roform:methanol (1:2 volume) for 2 min followed by a second
homogenization for 30 s with the addition of 300 �l of chloro-
form. The homogenates were mixed with 100 �l of H2O and
homogenized again for 30 s. The lipid layer (	600 �l) was sep-
arated via centrifugation at 800 � g for 10 min at room temper-
ature. The lower phase, enriched in lipid, was transferred and
dried using nitrogen gas. The lipid extract was suspended in 300
�l of 5% Triton X-100 in PBS, pH 7.4. The measurement was
performed using respective kits for triglycerides (Pointe Scien-
tific, T7532) and cholesterol (Pointe Scientific, C7510). The
hepatic TG or cholesterol content was defined as �g of TG or
cholesterol/mg of liver tissue.

Hepatic collagen determination by hydroxyproline assay

Liver tissues (10 mg) were homogenized in 100 �l of H2O.
The homogenates were mixed with 100 �l of 12 M HCl and
incubated at 120 °C for 3 h for acid hydrolysis. The homoge-
nates were then centrifuged at 10,000 � g for 10 min. Aliquots
of the hydrolyzed samples (10 �l) were incubated with 100 �l of
chloramine T solution (1.27% chloramine T and 10% isopropa-
nol in acetate-citrate buffer, pH 6.0) at room temperature for 25
min followed by a second incubation with 100 �l of Ehrlich’s
solution (Sigma, 03891) at 60 °C for 35 min. A plate reader mea-
sured the sample absorbance at 550 nm. The hepatic collagen
content was defined as �g of collagen/mg of liver tissue.

Western blotting and immunoprecipitation

Mouse liver tissues were homogenized using a PowerGen
700 homogenizer (Fisher Scientific) in lysis buffer (50 mm Tris,
pH 7.5, 1% Nonidet P-40, 150 mm NaCl, 0.5% sodium deoxy-
cholate, and 0.1% SDS) containing protease inhibitors (Fisher
Scientific, protease inhibitor mixture PI78410) to obtain whole
protein lysates. Nuclear and cytoplasmic protein extraction was
carried out using a commercial kit (Fisher Scientific, PI78833).
Protein lysates (60 �g) were resolved by SDS-PAGE and trans-
ferred to nitrocellulose membranes according to standard pro-
cedures. Membranes were blocked and incubated with primary
antibodies followed by incubation with the corresponding
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horseradish peroxidase– conjugated secondary antibody. Anti-
body binding was visualized using either SuperSignal West Pico
Plus chemiluminescent substrate (Fisher Scientific, PI34580) or
SuperSignal West Femto chemiluminescent substrate (Fisher
Scientific, PI34094). Equal loading of protein was verified by
loading controls such as �-actin, �-tubulin, and histone H3.
Quantitative analysis of band intensity was performed by
ImageJ software, and relative expression levels were normalized
to loading controls. For immunoprecipitation experiment, 800
�g of whole protein lysates from AML12 cells overexpressed
with FLAG-SHP or HA-p65 were incubated with 2 �g of anti-
p65 antibody, and immune complexes were captured by sheep
anti-rabbit IgG M-280 Dynabeads (Fisher Scientific, 11-203-
D). The immune complexes were then eluted by 2� SDS load-
ing buffer. The pulldown of p65 and FLAG-SHP were detected
by Western blotting. A TrueBlot� anti-rabbit IgG HRP (Rock-
land, RL18-8816-33) was used as a secondary antibody to detect
p65; this antibody does not interfere with immunoprecipitating
immunoglobulin heavy and light chains.

RNA isolation and real-time qPCR

Total RNA was isolated using TRIzol reagent (Invitrogen),
and cDNA was synthesized as described (65). Real-time PCR
was carried out using SYBR Green PCR Master Mix (Applied
Biosystems). The specific primers used are shown in Table S1.
The amount of PCR product was measured by threshold cycle
(Ct) values, and the relative ratio of specific genes to HPRT1
was calculated and presented as the -fold change in the tested
group relative to the control group.

Transient transfection and promoter activity assays

AML12 cells in 24-well plates were transfected with lucifer-
ase reporters along with various expression plasmids using
Lipofectamine 2000 (Invitrogen). Firefly luciferase and Renilla
luciferase were examined in cells after a 24-h transfection using
luciferase and Renilla assay systems (Promega, Madison, WI).
Data are displayed as the ratio of firefly luminescence divided by
Renilla luminescence. Each point is the average of triplicate
experiments, of which one representative is shown.

ChIP assays

AML12 cells were fixed by 1% formaldehyde followed by
nuclei isolation and sonication. Chromatin samples were pre-
cleared and subjected to immunoprecipitation with specific
antibodies or rabbit normal IgG, respectively. The chromatin
immune complexes were captured by sheep anti-rabbit IgG
Dynabeads (Fisher Scientific, 11-203-D) and eluted. After
reversing the cross-links, DNA fragments were purified and
used as templates in qPCR. Four sets of primers (Table S1) were
designed for ChIP assays. P1 was specific for the TRE site (c-Jun
binding site) on mouse Shp promoter, whereas P2 was located 4
kb upstream from TSS, thus serving as a negative control. L1
and L2 
 3 were specifically to amplify LRH1 sites on mouse
Shp promoter.

Perfusion and separation of hepatocytes, HSCs, and KCs

Cell isolation and purification was performed at the Kansas
University Medical Center Cell Isolation Core using the

method described previously (66) with a slight modification.
Mouse liver was perfused with 25 ml of solution I (9.5 g/liter
Hanks’ balanced salt solution, 0.5 mmol/liter EGTA, pH 7.2)
followed by 50 ml of solution II (9.5 g/liter Hanks’ balanced salt
solution, 0.14 g/liter collagenase IV, and 40 mg/liter trypsin
inhibitor, pH 7.5). After digestion, a single-cell suspension was
filtered through a 100-�m Falcon cell strainer (Fisher Scien-
tific, 08-771-19), and the cells were centrifuged at 50 � g for 5
min at 4 °C to pellet hepatocytes. The supernatant was then
centrifuged at 300 � g for 10 min at 4 °C to enrich nonparen-
chymal cells. To isolate HSCs and KCs, the nonparenchymal
cells were gently resuspended in PBS-BSA solution and
mixed with Percoll (Sigma, P1644) followed by a two-step
Percoll gradient (50 and 35% Percoll) and centrifugation at
900 � g for 30 min at 4 °C. Three different cell bands were
obtained following centrifugation. HSCs were enriched at
the top of the Percoll gradient, and KCs were located near
the bottom of the centrifugation tube. Cell fractions were
then harvested and washed twice. KCs were stained with
Alexa Fluor 488 anti-mouse F4/80 antibody (Thermo Fisher
Scientific, MF48020) and sorted by FACSAria II (BD Biosci-
ences) at the Kansas University Medical Center Flow Cytom-
etry Core Facility.

Adenovirus infection of mouse primary hepatocyte

Hepatocytes were seeded in collagen type 1– coated dishes.
After a 2-h incubation, the medium was replaced by fresh
William’s E medium (Sigma, W4128) with 10% FBS. On the
second day, hepatocytes were infected for 2 h with viral super-
natant at a multiplicity of infection of 20. After 24 h the hepa-
tocytes were collected for RNA isolation, Western blotting, and
immunofluorescence staining.

RAW cell migration assay

RAW cells were serum-starved for 24 h, and 200,000 cells
were seeded on Transwell inserts (8-�m-pore size, Corning
24-well format, Thermo Fisher Scientific, 07-20-150) in FBS-
free medium. The lower chamber of the Transwell contained
conditioned medium from hepatocyte culture supplemented
with or without recombinant mouse CCL2 (40 ng/ml) or
anti-mouse CCL2 antibody (500 ng/ml). The cells were cul-
tured at 37 °C for 12 or 24 h. The migrated cells were fixed in
10% neutral formalin (Thermo Fisher Scientific, SF100) for
10 min before staining with 0.1% crystal violet (Thermo
Fisher Scientific, AC21212-0250) for 10 min followed by
washing with PBS. A cotton swab removed the cells on the
top side of the filter. The pictures of migrated cells were
taken using a Microfire/Qcam CCD Olympus BX60 micro-
scope. Five fields/sample were captured at �10 magnifica-
tions. The quantitation of cell migration was determined by
measuring the pixel density of crystal violet–stained cells
using ImageJ software.

Statistical analysis

Data are expressed as mean � S.D. Statistical analyses were
carried out using one-way analysis of variance followed by
Student’s t test, and p � 0.05 was considered statistically
significant.
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