
E3 Ubiquitin Ligases: Key Regulators of
Hormone Signaling in Plants*
Dior R. Kelley‡

Ubiquitin-mediated control of protein stability is central to
most aspects of plant hormone signaling. Attachment of
ubiquitin to target proteins occurs via an enzymatic cas-
cade with the final step being catalyzed by a family of
enzymes known as E3 ubiquitin ligases, which have been
classified based on their protein domains and structures.
Although E3 ubiquitin ligases are conserved among eu-
karyotes, in plants they are well-known to fulfill unique
roles as central regulators of phytohormone signaling,
including hormone perception and regulation of hormone
biosynthesis. This review will highlight up-to-date findings
that have refined well-known E3 ligase-substrate interac-
tions and defined novel E3 ligase substrates that mediate
numerous hormone signaling pathways. Additionally,
examples of how particular E3 ligases may mediate hor-
mone crosstalk will be discussed as an emerging theme.
Looking forward, promising experimental approaches
and methods that will provide deeper mechanistic in-
sight into the roles of E3 ubiquitin ligases in plants will
be considered. Molecular & Cellular Proteomics 17:
10.1074/mcp.MR117.000476, 1047–1054, 2018.

ROLES OF E3 LIGASES IN PHYTOHORMONE SIGNALING

Ubiquitin E3 ligases are conserved among eukaryotes and
fulfill a myriad of regulatory functions by facilitating the cova-
lent attachment of ubiquitin to target proteins. Attachment
typically occurs on lysine residues and can occur singly
(monoubiquitination) or in chains (polyubiquitination). The
types of attachments and degree of ubiquitination varies con-
siderably among substrates and may be context dependent.
This enzymatic reaction is carried out by a family of proteins
called E3 ubiquitin ligases, which act at the end of a three-
enzyme cascade to transfer ubiquitin from an E2 ubiquitin
conjugating enzyme to a specific substrate(s). Ubiquitination
of substrates is a tightly regulated process and can result in
several functional outcomes, including protein degradation,
changes in subcellular localization, and protein activation. In
plants, numerous ubiquitin E3 ligases act as central regulators
in phytohormone signaling pathways including auxin, brassi-
nosteroid (BR), cytokinin (CK), ethylene, gibberellic acid (GA),
jasmonate (JA), salicylic acid (SA), and strigolactone (SL) (for
recent detailed reviews see (1–5)). This review will highlight
up-to-date findings that have defined new E3 ligase-substrate

interactions that mediate phytohormone signaling pathways,
discuss examples of how some E3 ligases mediate hormone
crosstalk, and touch on emerging approaches that will help us
gain deeper mechanistic insight into these proteins.

There are over 1500 E3 ubiquitin ligase proteins encoded by
the Arabidopsis genome which can be subdivided into differ-
ent families (6). This includes the HECT (homologous to the
E6AP carboxyl terminus) type, RING (really interesting new
gene)1 family, Kelch-type and U-box containing ubiquitin
protein ligases. The Cullin-RING ligase (CRL) family can be
further subdivided into five subfamilies based on subunit
organization and conserved domains: (1) SKP1-Cullin-F-box
(SCF) type, (2) broad complex/tramtrack/bric-a-brac (BTB)
type, (3) DDB1-binding/WD-40 domain containing proteins
(DWD) type, (4) VON-HIPPEL LINDAU (VHL) type, and (5)
SUPRESSOR OF CYTOKINE SIGNALING (SOCS) type (6).
While CRLs have been called “molecular hubs” in plant hor-
mone signaling pathways because of their central roles in
hormone perception mechanisms and far-reaching cellular
signaling effects, there are several examples of other types of
E3 ubiquitin ligases playing roles in phytohormone signaling.
Regardless of E3 ligase type, one common theme among
these plant E3 proteins is that they interact with their sub-
strates in a hormone-dependent manner (3). This is espe-
cially interesting given that both E3 ubiquitin ligases and
plant hormones are diverse chemical structures with com-
plex evolutionary histories.

The exact roles of E3 ligases in hormone perception and/or
signaling have been well established for most known cases
(Fig. 1). The first hormone discovered to utilize ubiquitin E3
ligases as receptor molecules was auxin, which is perceived
by SCFTIR1 and related Auxin F-box (AFB) family members (7,
8). Perception of auxin by SCFTIR1/AFB triggers rapid degra-
dation of the Aux/IAA family of transcriptional repressors (9–
13). Among all the various types of E3 ligases, the SCF type
play prominent roles in perception of most phytohormones
including jasmonic acid (14), gibberellin (15–17), ethylene (18),
salicylic acid (SA) (19, 20), and strigolactones (21–25); also
reviewed in (1). Other types of E3 ligases have also been
linked to hormone signaling, including BTB type regulating
ethylene biosynthesis (26–28) and CRL3-based E3 ligases
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FIG. 1. Several different types of E3 ubiquitin ligases have known roles in various aspects of phytohormone pathways. Illustrated here
are representative E3-subtrate interactions from each class of E3 ligase with corresponding hormone(s) shown below. A, SCF type E3 ligases
have been linked to several hormone pathways, including auxin, JA, GA, ethylene, strigolactones, cytokinins and ABA. B, BTB-type E3 ligases
play roles in ethylene, SA and ABA pathways. C, RING-type E3 ligases are important regulators of ABA and ethylene signaling. D, One U-box
type E3 ligase contributes to ABA biosynthesis. E, A novel mechanism for selective autophagy via the SINAT E3 ligases and ubiquitin receptor
DSK2 has recently been linked to BR signaling.
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modulating ABA signaling (Fig. 1B). RING type E3 ligases play
key roles in ethylene biosynthesis (29) and several aspects of
ABA pathways including biosynthesis, transcriptional regula-
tion, and signaling (30–34) (Fig. 1C). U-box type E3s have
been linked to ABA biosynthesis and downstream responses
such as stomatal closure (35–37) (Fig. 1D). Finally, an E3
ligase and autophagy receptor protein have recently de-
scribed to regulate BR signaling during stress (38, 39) (Fig.
1E). Overall, the number of E3 ligases linked to ABA signaling
thus far is greater than for any other phytohormone, demon-
strating the diversity and extent to which substrate ubiquiti-
nation can regulate ABA biosynthesis, signaling and down-
stream responses (1).

Detailed biochemical studies have provided new insights
into E3-substrate complex assembly and composition. For
instance, protein structure studies on TIR1-auxin-AUX/IAA
and JA-COI1-JAZ (JASMONATE ZIM-DOMAIN) complexes
have revealed that small molecule co-factors are directly in-
volved in SCFTIR1 and SCFCOI1 complexes (inositol hexakis-
phosphate (InsP6) and inositol pentakisphosphate (InsP5) re-
spectively) (14, 40). Additionally, several of the key E3 ligases
involved in auxin, JA and SL perception have been proposed
to function as “co-receptor” complexes, whereby high-affinity
hormone binding is facilitated by both the E3 ubiquitin ligase
and substrate. This has been observed for the TIR1-auxin-
AUX/IAA complex, the COI1-JA-Ile-JAZ complex, the ABI1
PUB12/13/U-box E3 ligase complex and the MAX2/D3-SL-
D14 complex (11, 14, 41–45). These molecular interactions
along with distinct naturally occurring forms of these hor-
mones and co-receptor pairs could provide for increased
complexity and specificity via varied combinatorial configura-
tions, which may underlie downstream responses mediated
by auxin, JA, ABI, and SL.

Substrate recognition has been mapped to minimal amino
acid sequence motifs for several E3 targets related to auxin
and JA signaling through careful biochemical studies; such
sequences are not identifiable based solely on primary amino
acid sequence and thus are not amenable to bioinformatics-
based approaches. For instance, all Aux/IAAs contain a short
consensus recognition motif, or “degron,” which directly en-
gages with auxin-loaded TIR1 (13, 40, 46). However, regions
outside the degron appear to contribute to differential hor-
mone binding affinity among Aux/IAAs and F-box proteins
(11, 46). JAZ proteins also contain a condensed degron se-
quence, which is a variable region in direct contact with the
COI1-anchored JA-Ile molecule (14). Notably, this mechanism
of interaction has been co-opted into a yeast assay for mon-
itoring ubiquitin-mediated protein degradation in yeast called
the auxin-inducible degradation (AID) system (46–49). This
assay enables versatile conditional protein depletion and can

be applied to various eukaryotic proteins that function as part
of SCF complexes and/or substrates.

Novel E3 Ligase-substrate Interactions Involved in Hormone
Signaling—Several new interactions have recently been de-
scribed for several E3 ubiquitin ligases, which play various
roles in hormone signaling. Several novel E3-substrate inter-
actions have been described in BR pathways. One of the most
surprising recent findings describes how BES1 (BRI1 EMS
SUPPRESSOR 1) can be ubiquitinated by SINAT (SINA of
Arabidopsis thaliana) E3 ligases, which promotes BES1-DSK2
(DOMINANT SUPPRESSOR OF KAR 2) interactions and sub-
sequent degradation via selective autophagy (38, 39). Thus,
both the proteasome and selective autophagy are involved in
degrading BES1 while SINAT E3s ubiquitinate BES1 during
starvation and light response. Although it is not clear why a
single transcription factor would need to be degraded through
several independent pathways, although it has been pro-
posed that such multiple regulatory checkpoints could regu-
late BES1 levels to allow for integration of morphogenesis
with distinct environmental cues such as light or stress. This
work also points to an interesting possibility that other E3
ubiquitin ligase substrates could be degraded via selective
autophagy mechanisms, but the signals that direct ubiquiti-
nated proteins to autophagy versus proteasome mediated
degradation need to be studied further. A novel F-box protein,
KINK SUPPRESSED IN BZR1–1D (KIB1) was recently shown
to mediate BR-induced ubiquitination and degradation of the
glycogen synthase kinase-3 (GSK3)-like kinase BRASSINOS-
TEROID INSENSITIVE 2 (BIN2) (50). Also, plasma membrane
localization of the BRI1 receptor is regulated by ubiquitination
but the E3 ligase(s) responsible are still unknown (51). Addi-
tionally, two different U-box type E3 ubiquitin ligases have
been implicated as positive regulators of BR signaling in rice,
ERECT LEAF 1 (ELF1) (52) and Taihu Dwarf (TUD1) (53) but
further studies are required to identify the substrates of these
ligases and their role(s) in BR-mediated plant growth.

Recent studies have continued to build on our understand-
ing of how ABA pathways are regulated post-translationally.
For example, the RING E3 SDIR targets SDIR1-INTERACTING
PROTEIN1 for degradation to modulate ABA signaling (54).
Additionally, degradation of the ABA receptor ABI1 occurs by
the PUB12/13 U-box E3 ligases (41). Perception of ABA by
the pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory
components of ABA receptor (RCAR) proteins with the co-
receptor protein phosphatase type 2Cs facilitates activation
of Snf1-related protein kinase 2 (SnRK2) kinases, which are in
turn ubiquitinated and degraded by SNFAtPP2-B11 (55). AtPP2-
B11 is an newly described F-box protein that functions as part
of a canonical SCF E3 ligase complex to negatively regulate
plant responses to ABA (55). Adding to the complexity of this
pathway is ECERIFERUM9 (CER9), which encodes a putative
RING domain-containing E3 ubiquitin ligase that is a novel
negative regulator of ABA biosynthesis and ABA signaling
during seed germination. CER9 is like Doa10 in S. cerevisiae,

1 The abbreviations used are: RING, really interesting new gene;
CRL, Cullin-RING ligase; AFB, auxin F-box; AID, auxin-inducible deg-
radation; NPR, nonexpression of pathogenesis-related genes.
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which targets substrates for degradation via the UPS. Further
work on CER9 will be required to identify target protein(s) and
their role in ABA signaling (56).

Other examples of recent ligase-substrate interactions in-
clude description of two novel E3 ligases involved in JA sig-
naling, RING DOMAIN LIGASE 3 (RGLG3) and RGLG4 (57),
and DEFECTIVE IN ANTHER DEHISCENCE1-Activating Fac-
tor (DAF) (58); the direct substrates of these ligases are not
currently known and await further studies. Additionally, the
plant U-box protein (PUB10) was recently found to regulate
MYC2 degradation while de-ubiquitination enzymes UBP12
and UBP13 positively influence MYC2 stability (59, 60). Iden-
tification of UPB12 and UBP13 highlights our limited under-
standing of the roles of de-ubiquitination enzymes in plant
hormone pathways and suggests that this aspect of ubiquiti-
nation could be better explored in plants. Finally, SA was one
of the last major phytohormones without a known receptor. A
recent study provides further evidence that the E3 ligase
Nonexpressor of Pathogenesis-Related genes 1 (NPR1) gets
degraded via interaction with the closely related NPR3/NPR4
substrate adaptor proteins (19, 61), thus NPR1 or NPR1-
related proteins (NPR3 and NPR4) are the long-sought-after
SA receptors (62).

New Insights into Ubiquitin Attachment to Substrates—
Typically, ubiquitin is covalently attached to substrate pro-
teins on lysine residues but there are several examples of
non-canonical attachment mechanisms in other eukaryotes
(63). With respect to E3 substrate proteins involved in phyto-
hormone signaling the AuxIAA family is the best studied to
date (13, 46, 47, 64, 65). A major outstanding question in the
field was which residue(s) served as ubiquitin attachment
sites and thus participate in auxin perception. Recent bio-
chemical studies have provided surprising findings and un-
derscore the need for further work related to ubiquitin attach-
ment sites in plants. Specifically, biochemical and peptide
mass spectrometry studies have recently demonstrated that
conserved and variable lysine residues on AuxIAA proteins
are ubiquitinated (65) but in the absence of lysine residues
attachment can occur on serine and/or threonine positions
(64). Taken together these studies demonstrate that ubiquiti-
nation of AuxIAA proteins can occur in several exposed flex-
ible regions (i.e. “ubiquitination zones”) in a dose dependent
manner. Additionally, several alternative linkage topologies
may occur on AuxIAA proteins, including poly-mono-ubiquiti-
nation and/or multi-, poly-ubiquitination (65). By applying sim-
ilar approaches to other well characterized substrates (Fig. 1)
it will be possible to determine if such complex and/or flexible
attachment properties are common or restricted to Aux/IAAs.

In other eukaryotes, post-translational modification (for e.g.
phosphorylation) of substrate proteins is a common mecha-
nism that regulates E3-substrate interactions, but the extent
to which this occurs in plants is not clear. One unique exam-
ple to date is the demonstration that s-nitrosylation of ABA
INSENSITIVE 5 (ABI5) facilitates the subsequent degradation

by the E3 ligase KEEP ON GOING (KEG) (66). Further studies
focused on how E3 substrate proteins are modified (or not)
will help address this discrepancy.

Making Connections: E3 Ligases and Targets Coordinate
Phytohormone Crosstalk—Recently, several studies on E3
ligases in plants have demonstrated potential crosstalk mech-
anisms between various phytohormones. This finally moves
hormone crosstalk out of the realm of transcriptional regula-
tion and into the proteome, which potentially can impact
hormone signaling in a more rapid and integrated fashion. For
example, Dwarf and short grain 1 (DSG1) encodes U-box E3
that is collectively regulated by BR, ET, auxin and SA and
functions to positively regulate cell division and elongation
(67).

Another putative E3 ligase that integrates dueling hormone
pathways to control photomorphogenesis is HIGH EXPRES-
SION OF OSMOSTICALLY RESPONSIVE GENES 1 (HOS1)
(68, 69). HOS1 regulates hypocotyl expansion via auxin sig-
naling and leaf expansion via ethylene, suggesting that this
RING E3 ligase can regulate multiple hormone pathways in a
tissue specific manner. Studies from the rice ortholog show
that OsHOS1 directly regulates the stability of two ETHYLENE
RESPONSE FACTOR transcription factors, rice ETHYLENE-
RESPONSIVE ELEMENT BINDING PROTEIN 1 (OsEREPB1),
and OsEREBP2, which thereby regulates the JA mediated
root curling response (70).

Hormone antagonism between ABA and SA also appears to
involve E3 ligase activity, specifically via the regulation of
NONEXPRESSOR OF PATHOGENESIS RELATED GENES 1
(NPR1). ABA and SA act antagonistically to influence NPR1
levels: whereas ABA promotes NPR1 degradation via the
CUL3(NPR3/NPR4) complex, SA stabilizes NPR1 from ABA-
promoted degradation through phosphorylation (71). The ABA
pathway also integrates with JA signaling via the RING E3
ligase KEG modulating JASMONATE ZIM-DOMAIN (JAZ) pro-
tein stability (72).

A final example of potential hormone crosstalk involves
targets of the SCFMAX2 E3 ubiquitin ligase, which is central to
strigolactone (SL) signaling. Multiple proteins have been sug-
gested as targets for SCFMAX2 including SUPPRRESSOR OF
MORE AXILLARY GROWTH-LIKE (SMXL) family members,
BRI1-EMS-SUPPRESSOR (BES1) and DELLAs (43, 73, 74).
Thus, perception of SL could lead to alterations in BR and GA
signaling that converge to regulate shoot development. Addi-
tionally, MAX2 can oppositely regulate GA and ABA biosyn-
thesis to promote photomorphogenesis (75). Further work is
required to determine the extent to which SL signaling directly
regulates protein degradation in each of these individual hor-
mone pathways, but SCFMAX2 holds a unique regulatory po-
sition among hormone crosstalk mechanisms.

Regulation of Hormone Related E3 Stability—Substrate sta-
bility has been an intense area of study, but E3 ligases have
also been shown to have variable stability. A wealth of evi-
dence demonstrates that various factors can contribute to E3
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ligase stability, such as self-ubiquitination and protein-protein
interactions. Considering the central roles F-box proteins play
in phytohormone perception, it is of interest to know how
these proteins themselves are regulated such that it impacts
hormone perception and/or other downstream signaling
events. Biochemical and genetic studies have recently ex-
plored stability of different types of E3 ligases involved in
auxin, ABA and ethylene signaling. For example, the auxin
receptor TIR1 has been recently found to undergo autocata-
lytic degradation based on key residues that affect binding to
CUL1 that were identified from yeast two-hybrid assays (76).
Furthermore, direct associations between SCFTIR1 and HEAT
SHOCK PROTEIN 90 (HSP90) have been recently shown to
regulate the stability of TIR1 in response to temperature,
which contributes to auxin responsiveness (77). Additionally,
oligomerization of TIR1 appears to contribute to SCFTIR1 func-
tion and auxin signaling (78), suggesting that the relative
levels of TIR1 may influence auxin perception mechanisms as
well. Another example comes from studies on ABA-regulated
degradation of KEG; biochemical experiments have recently
identified phosphorylation of KEG driven by Calcineurin B-like
Interacting Protein Kinase 26 (CIPK26) as being important for
KEG activity (79). Finally, the Ethylene Overproducer1 (ETO1)/
ETO1-like family of E3 ligase proteins are negatively regulated
by light such that ethylene biosynthesis is promoted during
photomorphogenesis (80). Continued efforts in these areas to
define protein-protein interactions, post-translational modifi-
cations and/or other contributing factors regulating stability of
particular E3 ligases involved in phytohormone signaling
should provide fresh insight into how particular complexes
may be modified.

Looking Forward: Methods and Approaches to Gain Deeper
Mechanistic Insights—To date, �100 proteins have been
shown to be involved in hormone-mediated E3 ligase activity
in model plant systems through detailed genetic and bio-
chemical studies. There are still many outstanding questions
in the field that could be addressed using peptide mass
spectrometry-based approaches, including improved identifi-
cation of plant ubiquitinated proteins. Various affinity purifica-
tion techniques together with mass spectrometry have been
fruitful in identifying ubiquitinated proteins in response to light
and during seedling development (81, 82) but similar studies
have yet to be performed following hormone treatments.
Thus, we have only captured a portion of the plant ubiquitin-
ome to date and new approaches and methods will need to
be applied to go deeper. In other eukaryotic systems, the use
of antibodies that recognize the Lys-E-Gly-Gly (diGLY) rem-
nant that is generated following trypsin digestion of ubiquiti-
nated proteins have been successful at quantitatively describ-
ing ubiquitination sites under various cellular conditions
(83–85). This approach has been used in rice and wheat to
describe �400 ubiquitinated in rice and �300 ubiquitinated
proteins in wheat (86, 87), demonstrating that it could be
effectively applied to other model plant species to perform

comprehensive profiling of hormone-dependent ubiquitinated
proteins.

Another successful approach to identify ubiquitinated pro-
teins is the so-called StUbEx method which relies on replac-
ing endogenous ubiquitin in human U2OS cell lines with a
modified version that amenable to purification and identifica-
tion via peptide mass spectrometry (88). Arabidopsis and
other key plant species (Physcomitrella patens, Zea mays,
Marchantia polymorpha) have �10 copies of ubiquitin genes
which is a hurdle to reduction and replacement of this regu-
latory protein. However, Chlamydomonas reinhardtii is an al-
gal model species that only contains four copies of ubiquitin
and is amenable to targeted DNA replacement (89). Thus,
application of the StUbEx approach to Chlamydomonas rein-
hardtii would be possible and perhaps allow deeper identifi-
cation of ubiquitinated proteins related to plant hormone
signaling. Altogether such high-throughput proteomics ap-
proaches could greatly expand our depth of understanding
with respect to phytohormone signaling and aid in identifica-
tion in exact sites of modification on substrates.

The recent identification of ubiquitination sites on Aux/IAA
proteins (65) is a reminder that we do not know the exact sites
of ubiquitination for most of the other known substrates in
phytohormone signaling pathways. A sensor-based pro-
teomic approach modeled after the Vx3K0 K63 polyubiquitin-
specific sensor identified 107 proteins in juvenile Arabidopsis
plants with K63 polyubiquitination events (90). This approach
is based on three repetitions of ubiquitin interaction motifs
from Saccharomyces cerevisiae VPS27 subunit of the Endo-
somal Sorting Complex Required for Transport (termed
Vx3K0) combined with a helical linker that spaces the UIMs for
selective binding to K63-linked polyubiquitin chains (90). Sim-
ilar polyubiquitin-sensor methods have revealed localization a
linkage type dependence of ubiquitin signaling events in mam-
malian cell lines (91, 92). With this method (90) now developed
for Arabidopsis, further studies could be performed on various
mutants and/or following hormone treatments to provide better
resolution of known hormone regulated E3 substrates. Other
types of linkages may require different approaches for identifi-
cation in plants, but such data will greatly increase our under-
standing of ubiquitinated proteins.

An additional challenge in the field has been defining E3-
target interactions. There are still hundreds of E3 ligases in
Arabidopsis without known substrates and several known
substrates without known ligases. Given the large number of
E3 ligases with known roles in hormone pathways it would be
reasonable to assume there are more UPL proteins involved in
hormone signaling that have not been captured via traditional
genetic or biochemical approaches. Because these enzymes
are part of large gene families in plants with high degrees of
functional overlap it can be challenging to perform functional
studies; for instance, there are �700 F-box proteins encoded
by the Arabidopsis genome. Additionally, interactions be-
tween E3 ligases and their substrates are often transient and
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rapid, which can make detection difficult. One approach to
mitigate these issues involves expression of affinity-tagged
dominant negative F-box proteins which allow in vivo sub-
strate identification (93). A recent application of this method to
generate a F-box “decoy” to trap and identify in planta sub-
strates has been applied to circadian regulated F-box targets
(94). In this method the authors removed the F-box domain
from a small family of partially redundant paralogous F-box
proteins to allow these proteins to interact with their cognate
substrates without triggering ubiquitination. These mutant
proteins were fused with a dual affinity tag (3xFLAG-6xHis) to
allow for affinity-purification followed by mass spectrometry
(AP-MS) to detect ligase-substrate interactions. This ap-
proach yielded several novel interacting proteins that were
validated using heterologous systems including yeast two-
hybrid and expression and co-immunoprecipitation in mam-
malian cell cultures. If this approach were applied to addi-
tional F-box proteins involved in phytohormones signaling
further progress could be made toward substrate identifica-
tion and mapping of ubiquitination sites. Additionally, the
application of other successful AP-MS approaches (95, 96) to
these studies may help to uncover substrate proteins for E3
ligases that have remained elusive.

Another strategy for mapping ligase-substrate interactions
could involve high-throughput protein-protein interaction as-
says such as yeast two-hybrid screens. The excellent genome
annotation in Arabidopsis and available rapid cloning tech-
niques make such screens readily feasible. Given the large
number of transcriptional regulators known to be E3 targets
(1) it would be logical to screen existing transcription factor
libraries (97) against a custom library of E3 ligases to identify
potential ligase-substrate interactions; while some interac-
tions may require additional molecules such as hormones,
other protein-protein interactions will be detectable by such
high-throughput screens. Additionally, researches can validate
these omic results and overcome genetic redundancy amount
E3 ligases by using multiplexed CRISPR/Cas9 techniques de-
veloped for Arabidopsis (98). Altogether the application of high-
throughput omics approaches will deepen our understanding of
E3 ligases involved in hormone signaling and provide novel
insights to answer several outstanding questions.
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