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Abstract

Functional connectivity networks (FCNs) using resting-state functional magnetic resonance 

imaging (rs-fMRI) have been applied to the analysis and diagnosis of brain disease, such as 

Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Different from 

conventional studies focusing on static descriptions on functional connectivity (FC) between brain 

regions in rs-fMRI, recent studies have resorted to dynamic connectivity networks (DCNs) to 

characterize the dynamic changes of FC, since dynamic changes of FC may indicate changes in 

macroscopic neural activity patterns in cognitive and behavioral aspects. However, most of the 

existing studies only investigate the temporal properties of DCNs (e.g., temporal variability of FC 

between specific brain regions), ignoring the important spatial properties of the network (e.g., 
spatial variability of FC associated with a specific brain region). Also, emerging evidence on 

FCNs has suggested that, besides temporal variability, there is significant spatial variability of 

activity foci over time. Hence, integrating both temporal and spatial properties of DCNs can 

intuitively promote the performance of connectivity-network-based learning methods. In this 

paper, we first define a new measure to characterize the spatial variability of DCNs, and then 

propose a novel learning framework to integrate both temporal and spatial variabilities of DCNs 

for automatic brain disease diagnosis. Specifically, we first construct DCNs from the rs-fMRI time 

series at successive non-overlapping time windows. Then, we characterize the spatial variability of 

a specific brain region by computing the correlation of functional sequences (i.e., the changing 

profile of FC between a pair of brain regions within all time windows) associated with this region. 

Furthermore, we extract both temporal variabilities and spatial variabilities from DCNs as features, 

and integrate them for classification by using manifold regularized multi-task feature learning and 

multi-kernel learning techniques. Results on 149 subjects with baseline rs-fMRI data from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that our method can not only 
improve the classification performance in comparison with state-of-the-art methods, but also 
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provide insights into the spatio-temporal interaction patterns of brain activity and their changes in 

brain disorders.
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1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually starts slowly 

and gets worse over time. It is the most common cause of dementia among older adults. It is 

reported that AD accounts for 60 to 80 percent of dementia cases (Burns and Iliffe, 2009). In 

2015, there were approximately 29.8 million people worldwide with AD, and causes about 

1.9 million death (Vos et al., 2016). Dementia is the loss of cognitive functioning (e.g., 
thinking, remembering and reasoning) and behavioral abilities, which often causes a severe 

burden on the patient and caregiver, including social, psychological, physical and economic 

elements. In developed countries, AD is one of the most financially costly diseases (Bonin-

Guillaume et al., 2005). In recent years, many studies have tried to find early biomarkers to 

evaluate AD risk pre-symptomatically in a rapid and rigorous way. Mild cognitive 

impairment (MCI), as a prodromal stage of AD, has gained increasing attention, due to its 

high probability of progression to AD (Reiman et al., 2010). Moreover, an early treatment of 

MCI may prevent or at least delay the progression of the disease and preserve some 

cognitive functions of the brain. Therefore, accurate diagnosis of MCI is of great 

importance.

Functional magnetic resonance imaging (fMRI), as an advanced medical imaging technique, 

provides a way to quantify the functional interaction of the human cerebrum (Bai et al., 

2009). Those interaction patterns can be characterized as functional connectivity network 

(FCN) with functional connectivity (FC) measuring the temporal correlation between 

intrinsic BOLD signals in distributed brain regions. Studies on FCNs using resting-state 

fMRI (rs-fMRI) have shown great potential in understanding the brain’s function in health 

and disease, and also in diagnosis of brain disease. A number of studies have applied FCNs 

to the analysis of brain diseases (e.g., AD/MCI (Wang et al., 2013; Bai et al., 2011), 

schizophrenia (Micheloyannis et al., 2006) and attention deficit hyperactivity disorder (Tian 

et al., 2006)) using group analysis, and found a series of abnormal connectivities or network 

properties. For example, reduced functional connectivity between the hippocampus and 

other regions (Wang et al., 2007; Supekar et al., 2008), and disrupted “small-world 
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characteristics” (Stam et al., 2007; Sanz-Arigita et al., 2010) have been reported in AD/MCI 

patients. One of the limitations in these studies is that they can not be automatically used to 

identify patients with brain disease from normal controls (NCs) at the individual level. On 

the other hand, studies have applied FCNs to the classification of brain diseases (e.g., 
AD/MCI (Chen et al., 2011; Jie et al., 2014) and schizophrenia (Shen et al., 2010)) by using 

machine learning. For example, Wee et al. (2012) integrated functional and structural 

connectivity networks for identification of MCI. Zanin et al. (2012) explored multiple 

topological features from FCNs for MCI classification. Wen et al. (2017) combined 

topological properties of FCNs for diagnosis of early tourette syndrome children.

Studies on the FCNs are based on the temporal correlation between distributed brain regions, 

with an implicit assumption that the FC is constant (i.e. temporal stationary) throughout 

recording period in rs-fMRI (Sporns, 2011). As a result, the dynamics of brain network are 

neglected in these studies. In fact, a number of studies demonstrate that the FC exhibits 

dynamic changes over time (Zhang and Small, 2006; Kiviniemi et al., 2011) that, to some 

degree, may be of neuronal origin and related to changes in cognitive and vigilance state 

(Thompson et al., 2013; Chang et al., 2013). Also, increasing evidence has shown that 

assessing dynamic changes in FCN is critical for a better understanding the fundamental 

properties of brain networks (Damaraju et al., 2014; Kudela et al., 2017) and the 

underpinnings of pathology of brain diseases (Hutchison et al., 2013; Zhang et al., 2016). 

Accordingly, studies have resorted to dynamic connectivity network (DCN) (Hutchison et 

al., 2013) to characterize the dynamic changes of FC, and investigated the association of 

dynamic changes of DCNs with brain diseases (Jones et al., 2012; Damaraju et al., 2014; 

Sakouglu et al., 2010; Starck et al., 2013). Jones et al. (2012) reported differences in the 

“dwell time” in sub-network configurations of the default mode network between AD 

patients and NCs, demonstrating rs-fMRI changes in AD patients beyond traditional 

stationary-based FCNs. Besides, studies have applied DCNs to the classification of MCI 

(Wee et al., 2016) and schizophrenia (Sakoglu et al., 2009), and achieved better 

classification performance compared with the conventional (i.e., stationary-based) FCNs.

Currently, most of the existing studies on DCNs focus on two aspects: 1) temporal properties 

of single FC between specific brain regions (Zalesky et al., 2014; Kucyi and Davis, 2014), 

and 2) the changing patterns of whole brain network (Allen et al., 2014). The former usually 

increases the burden of identifying the most informative FCs, while the latter may be less 

sensitive in identifying local changes in the brain. A recent work (Zhang et al., 2016) 

investigated the temporal properties of DCNs by defining the temporal variability of FCs 

associated with a specific brain region, which provides a convenient way to identify brain 

regions exhibiting significant changes in patients and thus helps to understand the dynamics 

of DCNs for various brain disease. However, the spatial properties of brain networks (e.g., 
the spatial variability of FCs associated with a specific brain region) have never been 

investigated in rs-fMRI studies. Actually, studies have shown that the human brain is 

intrinsically organized into dynamic and spatio-temporal interaction network (Fox et al., 

2005; Sadaghiani and Kleinschmidt, 2013), demonstrating remarkable spatio-temporal 

variability in its function and structure (Sadaghiani and Kleinschmidt, 2013; Sadaghiani et 

al., 2010; Neumann et al., 2003). Also, recent evidence on FCNs suggests that, besides 

temporal variability, there may be significant spatial variability of activity foci over time 
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(Kiviniemi et al., 2011; Birn et al., 2001; Zhang and Small, 2006; Kudela et al., 2017), 

which is often related to low-frequency physiologic effects (Kiviniemi et al., 2011; Birn et 

al., 2001). Hence, spatial properties of brain network may convey the important wealth of 

information and thus help deeper understanding of brain networks and diseases. Intuitively, 

jointly using temporal and spatial properties of brain networks can further improve the 

performance of brain disease diagnosis.

In this paper, we first define a new measure to characterize the spatial variability of DCN at 

a specific brain region. Then, we propose a novel framework to integrate both temporal and 

spatial properties of DCNs for brain disease classification. Specifically, we first construct 

dynamic connectivity networks from the rs-fMRI time series at successive, non-overlapping 

time windows. Then, we characterize the spatial variability of a given brain region by 

computing the correlation of functional sequences associated with this region. Here the 

functional sequence is defined as the changing profile of FC between a pair of brain regions 

within all time windows. Furthermore, we extract both temporal variabilities and the spatial 

variabilities from constructed dynamic connectivity networks as features, and then exploit a 

manifold regularized multi-task feature selection (M2FL) method to jointly select the most 

important region-related features. Finally, we adopt multi-kernel support vector machine 

(SVM) technique for brain disease classification. The experimental results on 149 subjects 

with baseline rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(http://adni.loni.usc.edu/) demonstrate that our method can not only improve the 

classification performance in comparison with state-of-the-art methods, but also provide 

insights into the spatio-temporal interaction patterns of the brain activity and their changes 

in brain disorders.

The main contributions of this paper are three-fold. First, we define a new measure to 

characterize the spatial variability of DCN at a specific brain region. To the best of our 

knowledge, this is among the first attempts to characterize the spatial changing properties of 

DCN at the region level. Second, we develop a novel learning framework to integrate both 

temporal and spatial variabilities of DCNs for automated brain disease diagnosis based on 

rs-fMRI data. Finally, we investigate the changing patterns of the temporal variability and 

spatial variability in MCI patients.

The rest of the paper is organized as follows. In Section 2, we briefly describe the data used 

in this study, and present the proposed method and learning framework. In Section 3, we 

introduce experimental settings and results. In Section 4, we present discussions for 

experimental results, the influence of parameters, and limitation of our method. Finally, we 

conclude this paper in Section 5.

2. Materials and Method

Figure 1 illustrates the proposed framework for brain disease diagnosis, by using both 

temporal and spatial properties of DCNs. As can be seen from Fig. 1, there have three main 

steps, including (1) image preprocessing and network construction, (2) feature extraction 

and selection, and (3) multikernel SVM based classification. In this section, we first 
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introduce the data used in this study, and then present the details of each step in our 

proposed framework.

2.1. Subjects

In this study, we use a total of 149 subjects, including 50 NCs, 56 early MCI (eMCI) and 43 

late MCI (lMCI) subjects, with baseline rs-fMRI data from ADNI database. All rs-fMRI 

data were acquired on 3.0 Tesla Philips scanners (with varied models/systems) at multiple 

sites. There is a range (from 2.29mm to 3.31mm) for imaging resolution in X and Y 
dimensions, with the slice thickness of 3.31mm. TE (echo time) for all subjects is 30 ms and 

TR (repetition time) is from 2.2 s to 3.1 s. For each subject, there are 140 volumes (time 

points). The demographic and clinical information of the studied subjects is presented in 

Table 1.

2.2. Image Preprocessing and Network Construction

Image pre-processing is performed for all rs-fMRI data by using a standard pipeline, 

including brain skull removal, slice time correction, motion correction, spatial smoothing, 

and temporal pre-whitening using FSL FEAT software package (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FEAT). Specifically, the acquired rs-fMRI images are corrected for the acquisition 

time difference among all slices. All images are then aligned to the first volume for motion 

correction and a brain mask is also created from the first volume. As the head motion has 

substantial effects on FCN measures (Van Dijk et al., 2012), we have excluded subjects with 

excessive head motion in our study. That is, any subject with head motion more than 2.0mm 
in any of the x, y or z direction or more than 2.0° in any of the rotation axis will be removed. 

We then computed mean motion (Van Dijk et al., 2012), i.e., the mean absolute displacement 

of each brain volume as compared to the previous volume, estimated from the translation 

parameters in the x (left/right), y (anterior/posterior), and z (superior/inferior) directions. 

The average values of mean motion for lMCI, eMCI and NC groups are 0.28, 0.31 and 0.30, 

respectively. The head-motion profiles were matched for lMCI vs. eMCI groups (with the p-

value on mean motion as 0.24) and eMCI vs. NC groups (with the corresponding p-value as 

0.51).

As a last step, the global drift removal and band pass filtering between 0.01Hz–0.1Hz are 

performed using the tool in (Zhu et al., 2012). The preprocessing steps of the T1-weighted 

MRI data include brain skull removal and also the segmentation of brain tissues into gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) by using FSL FAST 

software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST). The pre-processed T1 image is 

then co-registered to the first volume of the pre-processed rs-fMRI data of the same subject, 

and the BOLD signals in GM are merely extracted and adopted to avoid the relatively high 

proportion of noise caused by the cardiac and respiratory cycles in WM and ventricle (Van 

Dijk et al., 2010). Finally, the whole brain of each subject in the rs-fMRI space is parcellated 

into 116 regions of interest (ROIs), by warping the automated anatomical labeling (AAL) 

template (Tzourio-Mazoyer et al., 2002) to the rs-fMRI image space of each subject using 

the FSL FLIRT software package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). For each of 

the 116 ROIs, the mean rs-fMRI time series was calculated by averaging the GM-masked 

BOLD signals among all voxels within the specific ROI.
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Finally, we construct the DCNs at successive, non-overlapping time windows, as shown in 

Fig. 1. Specifically, for each subject, we first equally segment all BOLD time series into v 
non-overlapping time windows. Then, we build a functional connectivity network (i.e., 
matrix) Fi by computing Pearson correlation coefficient between BOLD signals from a pair 

of ROIs within the ith time window, i.e.,

Fi(r, q) =
cov(Sr

i , Sq
i )

σ
Sr

iσSq
i

(1)

where cov denotes the covariance between two vectors, σ
Sr

i  denotes the standard deviation of 

vector Sr
i , and Sr

i  and Sq
i  represent the BOLD signals of a pair of ROIs r and q within the ith 

time window, respectively. Here, Fi(·, ·) represents the element of matrix Fi.

According to Eq.1, Fi(r, q) defines the function connectivity of a pair of ROIs r and q within 

the ith time window. Thus, we obtain a set of FCNs with v time windows, i.e.,  = {F1, F2, 

…, Fv}.

2.3. Temporal and Spatial Variabilities of DCN

In this section, we first introduce the temporal variability of DCN defined in recent studies 

(Zhang et al., 2016), and then present our proposed spatial variability of DCN.

Given the set of FCNs,  = {F1, F2, …, Fv}, to characterize the time-varying properties of 

DCN at a specific brain region, Zhang et al. (2016) define the temporal variability of an ROI 

r as:

tr = 1 − 1
v(v − 1) ∑

i, j = 1, i ≠ j

v
corr(Fi(r, : ), F j(r, : )) (2)

where Fi(r, :) = [Fi(r, 1), Fi(r, 2), …, Fi(r, r − 1), Fi(r, r + 1), …, Fi(r, n)]T denotes the 

functional architecture of brain region r at the ith time window, corresponding to the 

elements of the rth row of the matrix Fi except element Fi(r, r), n is the number of ROIs of 

each subject, and corr(Fi(r, :), Fj(r, :)) denotes the correlation coefficient between two 

functional architectures. The latter part of Eq. (2) computes the average correlation 

coefficient among all functional architectures of brain region r across different time 

windows, and thus measures their temporal similarity. Hence, Eq. (2) reflects the temporal 

variability of functional architectures associated with a given brain region. In this way, it 

provides a potential approach to analyze the temporal properties of DCN at the region level. 

However, the spatial variability of DCN at a specific brain region has never been explored in 

rs-fMRI studies.
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In this work, we define a measure to characterize the spatial variability of a given brain 

region. Specifically, to reflect the changes of FC over time, we first define the changing 

profile of FC between a pair of specific brain regions within all time windows as the 

functional sequence. For instance, F(:)(r, q) = [F1(r, q), F2(r, q), …, Fv(r, q)]T represents the 

functional sequence between brain regions r and q. The spatial variability of an ROI r is 

defined as:

sr = 1 − 1
(n − 1)(n − 2) ∑

p, q = 1, p ≠ q ≠ r

n
corr(F(: )(r, q), F(: )(r, p)) (3)

where corr(F(:)(r, q), F(:)(r, p)) computes the correlation coefficient between two function 

sequences F(:)(r, q) and F(:)(r, p), measuring their similarity. The latter part of Eq. (3) 

computes the average correlation coefficient among all functional sequences associated with 

the brain region r across different brain regions, measuring the spatial similarity of all 

functional sequences associated with the brain region r. Thus, Eq. (3) computes the spatial 

variability of functional sequences of a given brain region.

Figure 2 illustrates the process of defining the temporal variability and spatial variability of a 

given brain region r. It is worth noting that, if we combine functional architectures from all 

time windows into a matrix Fr = [F1(r, :), F2(r, :), …, Fv(r, :)]T, then it is easy to show that 

Fr = [F(:)(r, 1), F(:)(r, 2), …, F(:)(r, r − 1), F(:)(r, r + 1), …, F(:)(r, n)], i.e., each functional 

sequence of brain region r corresponds to one column of matrix Fr, as shown in Fig. 2. 

Therefore, two kinds of variabilities defined on the specific brain region reflect local 

changing properties of DCN from two different views. That is, the variability defined in Eq. 

2 reflects the time-varying properties of the functional architecture of a particular brain 

region, while the spatial variability defined in Eq. 3 reflects the space-varying properties of 

the functional sequence associated with a brain region.

2.4. Feature Extraction and Selection

For each of those two kinds of variability defined in Eqs. 2 and 3, we extract a set of 

variabilities from constructed DCNs as features, thus producing two sets of features for each 

subject. These two kinds of features extracted from DCNs potentially include redundant 

features for subsequent brain disease classification. Also, two types of features reflect the 

local properties of DCNs from two different views, which may convey complementary 

information. To remove some redundant features and preserve the common subset of 

features (i.e., from the same regions) that are most likely relevant to disease pathology, we 

further perform feature selection using the manifold regularized multi-task feature learning 

method proposed in our previous work (Jie et al., 2015), where each task focuses on one 

type of features. Here, multi-task feature learning is used, since multi-task learning can take 

advantage of related information among tasks and hence generates good performance 

(Obozinski et al., 2010; Argyriou et al., 2008).

We denote Xm = [xm
1 , xm

2 , …, xm
i , …, xm

N]T (m = 1, 2) as the matrix for totally N training subjects 

with two kinds of features (i.e., temporal variability features and spatial variability features). 
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Here, x1
i = [t1, t2, …, tn]T represents the vector of temporal variability features extracted from 

the ith training subject defined in Eq. 2. x2
i = [s1, s2, …, sn]T represents the vector of spatial 

variability features defined in Eq. 3. We represent Y = [y1, y2, …, yi, …, yN] as the response 

vector of N training subjects, with yi ∈ {+1, −1} corresponding the class label (i.e., patient 

or normal control) of the ith training subject. Then, the objective function of M2FL (Jie et al., 

2015) can be defined as follows:

minW ∑
m = 1

M
‖Y − Xmwm‖2

2 + λ ∑
m = 1

M
(Xmwm)TLm(Xmwm) + γ‖W‖2, 1 (4)

where W = [w1, …, wM] is the weight matrix, Lm = Dm − Sm denotes the Laplacian matrix 

on the mth learning task. Sm is a similarity matrix that defines the similarity on task m across 

different training subjects, which can be defined as: Sm(i, j) = 1 if the ith subject and the jth 

subject have the same class label, and 0 otherwise. Dm is a diagonal matrix defined as 

Dm(i, i) = ∑ j = 1
N Sm(i, j). M is the number of tasks (M = 2 in this work). In Eq. (4), the first 

item is a quadratic loss function that measures the fitting degree of data. The second item is 

a manifold regularized item that preserves the distribution information of the whole data 

from each task, and thus help induce more discriminative features for classification. The last 

item is a group-sparsity regularizer Obozinski et al. (2010) defined as 

‖W‖2, 1 = ∑i = 1
n ‖W(i, : )‖2, where W(i, :) denotes the ith row vector of matrix W, which 

encourages features to be jointly selected across different tasks. The coefficients λ and γ are 

the corresponding regularization parameters, balancing the contributions of three items. 

Their values can be determined via inner cross-validation on the training subjects.

It is worth noting that features with non-zero elements in W will be selected for subsequent 

classification. For simplicity, in the following, we still use xm
i  to represent a vector of the 

selected features on the ith subject from the mth learning task. Besides, it is easy to show that 

the problem in Eq. 4 is reduced to the group-sparsity regularized optimization problem in the 

least absolution shrinkage and selection operator (gLASSO) (Meier et al., 2008), when λ 
equals to zero.

2.5. Multi-kernel SVM Classification

We use the multi-kernel SVM for classification, since multi-kernel SVM can effectively 

integrate multiple features (Zhang et al., 2011). Specifically, we first calculate a linear kernel 

on each set of features selected by M2FL method across different subjects. Therefore, we 

can get two kernels for two kinds of features. Then, we adopt the following multi-kernel 

learning technique to combine these two kernels:

k(xi, x j) = ∑
m = 1

M
βmkm(xm

i , xm
j ), (5)
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where km(xm
i , xm

j ) is the kernel over the mth kind of features (i.e., the temporal variability 

features or the spatial variability features) across two subjects xi and xj (the linear kernel is 

adopted in our experiment), βm denotes the integrating weight on the mth feature, with the 

constraint of ∑m = 1
M βm = 1. Following (Zhang et al., 2011), we use a coarse-grid search 

strategy via cross-validation on the training subjects to find the optimal βm. Once obtaining 

the optimal βm, multiple kernels can be combined into a mixed kernel, and thus the standard 

SVM can be performed for classification.

3. Experiments and Results

In this section, we present our experimental settings, results of brain disease classification 

and comparison between our proposed method and several state-of-the-art methods.

3.1. Methods for Comparison

We first compare our proposed method with the baseline method (denoted as Baseline) 

using conventional (i.e., stationary-based) connectivity network. In the baseline method, the 

functional connectivity network of each subject is first constructed based on Pearson 

correlation between the whole time series of ROIs, then the local weighted clustering 

coefficients (Rubinov and Sporns, 2010) are extracted as features for classification. 

Moreover, we compare our proposed method with two methods using only a single property 

of DCNs, including 1) the method using only the temporal variability features (denoted as 

TVF), and 2) the method using only the spatial variability features (denoted as SVF). In 

those two comparison methods, the temporal variability features defined in Eq. 2 and the 

spatial variability features defined in Eq. 3 are, respectively, extracted from the constructed 

DCNs and used independently for classification. It is worth noting that, in all these three 

comparison methods (i.e., Baseline, TVF and SVF), the widely used LASSO method 

(Tibshirani, 1996) is applied to feature selection, and a linear SVM classifier with a default 

parameter (i.e., C = 1) is used for classification.

The proposed method is further compared with two methods that are widely used for 

combining multiple features in the classification based on brain networks, including the 

method that simply concatenates two variability features (denoted as CV2F), and the 

gLASSO-based multi-task method (denoted as gLASSO). In this two methods, two sets of 

features (i.e., the set of temporal variability features defined in Eq. 2 and the set of spatial 

variability features defined Eq. 3) are first extracted from our constructed DCNs. In the 

CV2F method, two sets of features are simply concatenated into a longer feature vector, and 

then LASSO-based method is used to perform feature selection, following by a linear SVM 

classifier with a default parameter for classification. In the gLASSO method, we use the 

group LASSO method (Meier et al., 2008), instead of M2FL method, to perform feature 

selection, and then use a multi-kernel SVM for classification.

3.2. Experimental Setting

In the experiments, we conduct two classification tasks, i.e., lMCI vs. eMCI classification, 

and eMCI vs. NC classification, using a leave-one-out (LOO) cross-validation strategy. We 
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evaluate the classification performance by computing the accuracy (i.e., the proportion of 

subjects that are correctly classified), sensitivity (the proportion of patients that are correctly 

classified), specificity (the proportion of NCs that are correctly classified), and the area 

under the receiver operating characteristic (ROC) curve (AUC).

In the process of network construction, to avoid the arbitrary determination of window 

length (i.e., the number of time points), we construct the DCNs with different v (i.e., v = {5, 

6, …, 12}), the corresponding window length is located in the interval (10,30). It is 

suggested that window sizes around 30–60s (equal to 10–30 time points, in our experiments) 

produce robust results in image acquisitions, cognitive states and topological properties of 

brain networks (Jones et al., 2012; Shirer et al., 2012). We compute the average value with 

all values v as the final temporal/spatial variability feature of the ROI. For each feature 

extracted from the constructed DCN, we perform normalization by using its mean and 

standard deviation calculated from all training subjects, and apply these values of the mean 

and standard to normalize the corresponding feature of each testing subjects.

In the step of feature selection, the values for parameters (e.g., λ and γ) are determined by 

using another round of LOO cross-validation on the training subjects. Specifically, we vary 

the values of λ within the range of {2,4,6,8,10,12,14} and the values of γ within the range 

of {2,4,6,8,10,12,14,16, 18,20,22,24,26,28,30}. The parameter values corresponding to the 

best performance will be used to predict the testing subjects. The linear SVM classifier is 

implemented by using LIBSVM toolbox (Chang and Lin, 2011) with a default parameter 

value (i.e., C = 1). The optimal parameters βm(m = 1, 2) in multi-kernel SVM method are 

learned based on another LOO cross-validation on the training subjects via a grid search in 

the range [0, 1] with a step size of 0.1. It is worth noting that the cross-validation on the 

training subjects is only used to determine the optimal parameter values, while the outer 

cross-validation loop is used for evaluating the generalizability of learning models for 

unknown subjects.

3.3. Classification Performance

The classification performance achieved by six methods are summarized in Table 2. Also, 

the average number of features involved in the course of classification is given in Table 2. 

Figure. 3 provides the ROC curves of the methods. As can be seen from Table 2 and Fig. 3, 

our proposed method consistently outperforms the comparing methods in both classification 

tasks. For instance, our proposed method yields the accuracy of 78.8% and 78.3% for lMCI 

vs. eMCI classification and eMCI vs. NC classification, respectively, while the best 

accuracies of the competing methods are 74.7% and 73.6%, respectively. Also, our proposed 

method yields the AUC of 78.3% and 77.1% in both classification tasks, respectively, while 

the best AUCs of the competing methods are 72.9% and 71.2% in both classification tasks, 

respectively, indicating the effectiveness of our proposed method in brain disease diagnosis.

Furthermore, we could observe that, from Table 2 and Fig. 3, the methods combining 

multiple network properties (i.e., CV2F, gLASSO, and the proposed method) perform better 

than the methods using any single type of network properties alone (i.e., TVF, and SVF), 

implying that two these types of variability convey the different-yet-complementary 

information, and thus should be integrated together for further improving the classification 
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performance. Also, Table 2 and Figure 3 show that the method based on the spatial 

variability features (i.e., SVF) consistently outperforms the performance of the method using 

temporal variability features (i.e., TVF). Figure 7 illustrates the weight distribution of these 

two kinds of network properties at each cross-validation. The results show that the weight 

value of βSVF is larger than the weight value of βTVF in most cases. These results suggest 

our defined spatial variability can effectively assess dynamic changes in FCN, thus helping 

better identify patients from normal controls. Besides, Table 2 and Figure. 3 also show that 

the DCN-based methods (i.e., TVF, SVF, CV2F, gLASSO, and the proposed method) 

outperform the conventional (stationary-based) connectivity network method (i.e., Baseline), 

indicating the advantages of the DCN over the conventional FCN.

To evaluate the possible overfitting with LOO cross-validation strategy, we perform two 

groups of additional experiments. In the first group of experiments, we test the performance 

of our proposed method by using a 5-fold cross validation strategy. Specifically, the set of all 

subjects is (roughly) equivalently partitioned into five subsets. One subset is selected as the 

testing data. The remaining four subsets are combined as the training data. This process is 

repeated five times, and at each time a different subset is treated as the testing data. The 

results show that our proposed method achieves accuracies of 77.1% and 77.8% in the tasks 

of lMCI vs. eMCI classification and eMCI vs. NC classification, respectively. In the second 

group of experiments, we randomly reassign labels to all subjects (i.e., performing a random 

shuffling for the labels of all subjects), and perform the LOO cross-validation on the new 

labeled data (also after random shuffling). In the tasks of lMCI vs. eMCI classification and 

eMCI vs. NC classification, we achieve accuracies of 55.6% and 57.5%, respectively. All 

these results suggest the efficacy and generalization ability of our proposed method.

3.4. Important Brain Regions

In this subsection, we investigate the important features (corresponding to ROIs) selected by 

our proposed method in eMCI vs. lMCI classification and eMCI vs. NC classification, 

respectively. For each classification task, since the selected features are different in each 

LOO cross-validation fold, we choose features that always occur in all folds of cross-

validation as the most important features. Moreover, for each selected feature, the standard t-
test is also performed between two subject groups (i.e., patient group and NC group) for 

evaluating its discriminative power. Table 3 and Table 4 show those important ROIs and their 

corresponding p-values in two classification tasks, respectively. Figure 5 and Figure 6 plot 

those important ROIs in the template space.

The results show that the important brain regions selected by our proposed method in two 

classification tasks are consistent with previous studies. For instance, the brain regions 

detected in the eMCI vs. NC classification, including posterior cingulate gyrus, 

hippocampus, amygdala, precuneus and temporal pole, have been reported to be useful in 

discriminating MCI patients from NCs.

On the other hand, from Tables 3 and 4, we can see that p-values of many important features 

are less than 0.05, indicating good discriminative power of those features. Table 4 also 

indicates that for eMCI patients, most of the selected brain regions (including Posterior 

cingulate gyrus, Hippocampus and Amygdala) show significant higher spatial variability 
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when compared with NCs. It is worth noting that most of the selected spatial variability 

features are more discriminative than the selected temporal variability features, indicating 

that, compared with temporal variability, there exists more significant spatial variability 

between patients and NCs. This could partly explain why the method using the spatial 

variability features (i.e., SVF) can achieve better performance than the method using the 

temporal variability features (i.e., TVF), as shown in Table 2. Such results further indicate 

the efficacy of our defined spatial variability in characterizing the dynamics of FCN.

Another interesting observation from Tables 2, 3 and 4 is that more brain regions are 

involved in the task of eMCI vs. NC classification, compared with those in lMCI vs. eMCI 

classification This may indicate that, with the disease progression, more functional 

variability changes are produced in late MCI, thus a small number of brain regions with 

relatively large changes is sufficient for successful lMCI vs. eMCI classification.

3.5. Analysis of Variability of Whole Brain

In this subsection, we investigate the variability of the whole brain in patients with eMCI 

and identify the disease-related changes. Specifically, for each kind of variability features, 

we perform the standard t-test between two groups of subjects, i.e., eMCI subject group and 

NC subject group, and select brain regions with the significant difference in variability (i.e., 
the corresponding p-values< 0.05). Table 5 and Table 6 show the obtained results for the two 

kinds of variability, respectively. For comparison, Tables 5 and 6 also report the average 

value of the corresponding features for eMCI subject group and NC subject group, 

respectively.

As we can see from Table 5 and Table 6, most of the brain regions, such as posterior 

cingulate, rectus gyrus, hippocampus, parahippocampal gyrus, amygdala and temporal pole, 

have been reported in previous AD/MCI studies (Buckner et al., 2008; Yao et al., 2013; Liu 

et al., 2012; Fleisher et al., 2009; Smith et al., 2011). Also, Table 5 and Table 6 show that 

almost all identified brain regions of patients with eMCI exhibit a significant increase in 

temporal and spatial variability (i.e., only one brain region exhibits decrease in temporal 

variability), indicating the spatio-temporal changes of FCN in eMCI, which is consistent 

with previous studies. For instance, studies have reported the abnormal functional 

connectivity in the brains of AD and MCI patients, including disrupted connectivity in the 

posterior cingulate and hippocampus (Greicius et al., 2004; Bai et al., 2011), increased 

connectivity between the frontal lobe and other brain regions (Wang et al., 2007), and altered 

connectivity of amygdala (Yao et al., 2013). Also, the altered topological patterns of FCNs 

have been reported, such as the increase of characteristic path length and the impaired 

functional connectivity between different functional modules in MCI patients (Wang et al., 

2013; Liu et al., 2012), and loss in small-world characteristics (i.e., shorter path length and 

higher degree of clustering) in subjects with MCI and AD (Supekar et al., 2008; Sanz-

Arigita et al., 2010). In line with these finding, patients with AD/MCI exhibit increased 

variability (spatial variability in particular) in these brain regions associated with abnormal 

activity and connectivity. This is consistent with a recent study (Jones et al., 2012) that 

demonstrates rs-fMRI changes in AD patients beyond stationary-based connectivity 

networks.
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It is worth noting that 1) many brain regions identified based on the variability are identical 

to those selected in the course of eMCI vs. NC classification, showing again the efficacy of 

our proposed method. 2) Compared with temporal variability, more disease-related brain 

regions are identified in spatial variability, further indicating that patients with eMCI exhibit 

more significant spatial variability when compared with temporal variability.

Furthermore, we assess the total variability of the whole brain in eMCI patients. Specifically, 

for each type of variability, we first compute the average value of features for all brain 

regions in each subject, and then perform the standard t-test between eMCI subject group 

and NC subject group. Also, we compute the cumulative-probability distribution of each 

type of variability features in each subject group as illustrated in Fig 7. Here, we calculate 

the proportion of feature occurred in each subject group as the probability of the 

corresponding feature. The results show that, compared with NCs, the eMCI patients do not 

exhibit significant temporal variability (with the corresponding p-value of 0.158), but, have 

significantly increased spatial variability (with the corresponding p-value of 0.011), 

suggesting the importance of our defined spatial variability. In addition, Figure 7 shows that, 

for all subjects, the values of temporal variability features are significantly larger than the 

values of spatial variability features (the p-value< 7.8e–20), showing that brain network 

exhibits greater temporal variability when compared with spatial variability.

4. Discussion

Numerous studies suggested that the physiological and psychiatric diseases, such as AD and 

MCI, exhibit significant changes in dynamic properties (Greicius, 2008; Aerts et al., 2016; 

Zhang et al., 2016; Córdova-Palomera et al., 2017). Quantification of changed dynamics in 

brain connectivity network may lead to better understanding of brain disease, and eventually 

better prognostic indicator or diagnosis. Currently, most studies investigate temporal 

variability of brain networks. However, few works investigate the spatial variability of brain 

networks. In this paper, we first define a measure to characterize the spatial variability of 

DCN, and further develop a novel framework that integrates both temporal and spatial 

variabilities of DCNs for improving disease diagnosis performance. The dynamic 

connectivity networks are constructed from the rs-fMRI time series, and then both temporal 

and the spatial variabilities are extracted from constructed DCNs as features, and further 

integrated for classification of brain diseases, by using M2FL for feature selection and multi-

kernel SVM for classification. The experimental results on 149 subjects from ADNI dataset 

suggest that our proposed method outperforms several state-of-the-art methods, 

demonstrating that characterizing and integrating both temporal and spatial properties of 

brain interaction patterns is effective in boosting the diagnosis performance of brain 

diseases. It is worth noting that our defined spatial variability can be potentially used for 

analyzing the fundamental properties of brain network or brain activity, e.g., the underlying 

relationship between spatial variability of functional sequence of a specific brain region and 

its structural connectivity and neural activity.

On the other hand, we found that the brain regions detected in the eMCI vs. NC 

classification by our proposed method are relevant to MCI pathology. For example, brain 

regions, including posterior cingulate gyrus, hippocampus, precuneus, and middle frontal 
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gyrus, are mostly the components of the default mode network (DMN). Previous studies 

have suggested that the activity patterns with DMN may be directly related to the pathology 

of AD (Buckner et al., 2008). Other brain regions include amygdala (Yao et al., 2013; Liu et 

al., 2012) rectus gyrus (Fleisher et al., 2009), temporal gyrus (Fleisher et al., 2009; Smith et 

al., 2011), and temporal pole (Wang et al., 2007; Ni et al., 2017). Besides, some regions 

from the cerebellum were also selected. Previous studies suggested that although the 

cerebellum might be directly associated with the origin of AD, it contributes to human 

recognition (Baldaccara et al., 2011) and may provide useful information for AD prognosis 

(Weis et al., 2004; Wee et al., 2016).

Brain network analysis has revealed changes in functional connectivity or topological 

organization of the brain in many brain disorders, including AD and MCI (Greicius et al., 

2004; Bai et al., 2011; Yao et al., 2013; Liu et al., 2012; Jones et al., 2012). However, the 

spatio-temporal changing properties of the brain network in MCI have never been 

investigated. In fact, a number of studies have suggested that resting-state fluctuations reflect 

a deeper biological principle of organization and are a consequence of the spatio-temporal 

structure of primate anatomical connectivity (Ghosh et al., 2008). As a result, brain diseases 

including AD and MCI are expected to be characterized by various disrupted functional 

configurations (Córdova-Palomera et al., 2017). Of note, the underlying neurobiological 

mechanisms can be characterized by measuring variation in synchrony among regions over 

time (Hutchison et al., 2013; Hindriks et al., 2016; Córdova-Palomera et al., 2017). In our 

work, we define and investigate the spatio-temporal variability of the brain, and identify 

disease-related changes in eMCI patients which might be related to disrupted functional 

configurations. For instance, neuropathological studies have found that aging and AD are 

related to myelin aberrations (Bartzokis, 2004). Also, existing studies have suggested that 

the changes in the functional configurations are constrained in the case of degradation of 

myelination (Ghosh et al., 2008; Córdova-Palomera et al., 2017). Therefore, our study may 

provide important clues to understand the underlying neuropathology of brain diseases and 

thereby contribute to the development of diagnostic imaging.

4.1. Functional Connectivity Network and Diagnosis of Brain Disease

Conventional stationary-based functional connectivity networks have been applied to the 

analysis of brain diseases (e.g., AD and MCI). Most studies investigated connectivity or 

topological properties of brain network by using group analysis approach, and reported a 

series of disrupted connectivity (Greicius et al., 2004; Bai et al., 2011; Yao et al., 2013) and 

changing patterns associated with a specific brain disorder (Wang et al., 2013; Liu et al., 

2012; Supekar et al., 2008; Sanz-Arigita et al., 2010). These studies provide an important 

alternative to make use of the network properties to classify the patients with brain disease 

from NCs. Besides, some works classified AD/MCI by extracting features from FCNs (Chen 

et al., 2011; Jie et al., 2014; Zanin et al., 2012; Wee et al., 2012) and achieved reasonable 

results.

Recently, dynamic properties of brain networks have attached increasing attention. A 

number of studies have investigated the association between dynamic changes in DCN and 

various brain diseases (Zhang et al., 2016; Filippini et al., 2009). More recently, (Wee et al., 
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2016) utilized the temporal dynamics of rs-fMRI for early MCI classification. In this work, 

the dynamic connectivity networks were first estimated from rs-fMRI using the overlapping 

time window approach, then, the two network measures (i.e., clustering coefficients and 

characteristic path lengths (Rubinov and Sporns, 2010)) were calculated from each network 

to extract temporally dynamic patterns for classification. The experiment results on 59 

subjects (including 29 eMCI patients and 30 NCs) from the ADNI dataset show that their 

method yielded an accuracy of 79.7% and an AUC of 79.2%. This is one of the first reports 

demonstrating the classification performance of DCNs in disease beyond the conventional 

stationary-based connectivity networks. In contrast to these existing works, our work 

presents a novel learning framework to integrate both temporal and spatial variabilities from 

DCNs for brain disease classification, and achieves comparable results.

4.2. Comparison of Different Combining Schemes

To investigate the effect of both combining weights (i.e., the weight of temporal variability 

features, βTVF and the weight of spatial variability features, βSVF) on the classification 

performance of our proposed method, we test all of their possible values in the range [0, 1] 

at a step size of 0.1, with the constraint of βTVF + βSVF = 1. Figure 8 shows the 

classification performance, including classification accuracy and AUC value, with respect to 

different combining weights of these two kinds of variability features. It is worth noting that, 

for each plot, the vertices of curve, i.e., the leftmost and the rightmost, denote the results of 

the method using only temporal variability features (i.e., βTVF = 1) and method using only 

spatial variability features (i.e., βSVF = 1), respectively.

As can be seen from Fig. 8, most of the inner intervals of the curve have larger values (i.e., 
better classification) than the two vertices, demonstrating the effectiveness of combining 

these two kinds of network properties for classification. Moreover, the intervals with higher 

performance mainly lie in the interval of [0.5, 0.9], implying that two kinds of network 

properties are indispensable to each other for achieving good classification. Also, Figure 8 

shows that this method is inferior to our multi-kernel SVM based method as shown in Table 

2, indicating that these two kinds of network properties contribute differently and hence 

should be integrated adaptively for achieving better performance.

4.3. Effect of Feature Learning

Feature learning, which can be considered as the biomarker identification for AD and MCI, 

is the most commonly used approach for simplifying the data model and thus improving the 

efficiency of data analysis. In this subsection, we will evaluate the effect of feature learning 

from three aspects: 1) feature selection with different combinations of parameter values, 2) 

comparison with different feature selection methods, and 3) without feature selection.

In our proposed classification framework, the M2FL method is adopted to perform the 

feature selection, where includes two regularization items, i.e., the manifold regularizer and 

the group-sparsity regularizer. The former is used to induce more discriminative features, 

while the latter is used to determine the number of selected features. The parameters λ and 

γ balance the relative contribution of two terms. Therefore, we evaluate the effect of feature 

learning via investigating the effects of the regularization parameters λ and γ on 
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classification performance of our proposed method. Specifically, we test different values of 

λ, ranging from 0 to 30 with a step size of 2, and also test the values of γ, ranging from 0 to 

14 with a step size of 2. It is worth noting that larger γ value means few features selected for 

classification, and, when γ = 0, no feature selection step is performed, i.e., all features 

extracted from DCNs are used for classification. Also, when λ = 0, no manifold 

regularization item is included, and thus M2FL method will be degraded to a gLASSO-based 

method Meier et al. (2008).

Figure 9 shows the classification results with respect to different combinations of λ and γ 
values. As can be seen from Fig. 9, the classification performance of our proposed method 

with respect to different combinations of λ and γ values (i.e., λ > 0 and γ > 0) is 

consistently better than that of gLASSO-based method (i.e., λ = 0 and γ > 0), indicating the 

efficacy of our proposed method. Also, Figure 9 shows that the classification performance 

with feature selection (i.e., γ > 0) is better than the method without feature selection (i.e., γ 
= 0), suggesting the importance of feature selection for classification. Besides, from Fig. 9, 

we can also observe that the performance on two classification tasks is largely affected by 

different γ values, indicating that the importance of determining the optimal γ value. This is 

reasonable since γ determines the sparsity of M2FL model and thus controls the number of 

selected features.

To further compare with different feature selection methods, besides the LASSO-based 

method, we test the performance of t-test method for feature selection in four competing 

methods (i.e., Baseline, TVF, SVF and CV2F). Specifically, we use a statistical t-test method 

with the same threshold (i.e., p-value< 0.05) for feature selection in four competing 

methods, followed by a linear SVM with default parameter for classification. Table 7 gives 

the obtained results. As we can see from Table 7, these results on both classification tasks 

are inferior to those of our proposed method (see Table 2), suggesting again the efficacy of 

our proposed method.

In addition, to evaluate the effect of feature selection, we test the classification performance 

of four competing methods (i.e., baseline, TVF, SVF and CV2F) and the proposed method 

without feature selection. Since no feature selection step is performed, we directly use all 

extracted features for classification in these methods. Table 8 gives the obtained results on 

both classification tasks. As can be seen from Table 8, our proposed method still achieves 

good performance in comparison with other methods, showing again the efficacy of our 

proposed method. Besides, we can see from Tables 8 and 2 that the classification results in 

all methods with feature selection are better than those by methods without feature selection, 

showing the importance of feature learning for improving classification performance.

4.4. Limitations

There are several limitations to be considered in this study. First, the proposed method is 

based on the spatio-temporal dynamics during the rs-fMRI scan. However, the 

neurobiological basis and mechanisms for these dynamics are still unclear (Kudela et al., 

2017; Zhang et al., 2016), and it is difficult to determine whether those dynamic changes are 

actually due to neuronal activity or simply a byproduct driven by the noise. Second, in the 

current study, we construct DCNs by using non-overlapping time window method. It is 
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interesting to utilize different network construction approaches (e.g., the over-lapping sliding 

window approach (Hindriks et al., 2016), independent component analysis (Chang and 

Glover, 2010) and time series models (Lindquist et al., 2014)) to further evaluate the 

proposed method, which will be our future work. In addition, brain parcellation (i.e., the 

definition of brain regions) is the very basic step for network-based analysis. Different brain 

parcellations can lead to the brain networks with different connectivity (Zalesky et al., 

2010), hence making the brain network exhibit different variability. As the future work, we 

will evaluate the effects of different brain parcellations for our method.

5. Conclusion

In this paper, we have defined a new measure to characterize the spatial variability of 

dynamic connectivity networks, and further integrated both temporal and spatial properties 

of DCNs for brain disease classification. Specifically, we first construct the dynamic 

connectivity network of each subject from rs-fMRI time series by using non-overlapping 

time window approach. Then, we characterize the spatial variability of DCN by computing 

the correlation of functional sequences of a given brain region. Furthermore, we extract both 

temporal and spatial variabilities from the constructed DCNs as features, and explore a 

manifold regularized multi-task feature selection method to jointly select the most important 

features. Finally, a multi-kernel SVM technique is implemented for classification. The 

results on MCI dataset suggest that our proposed method can not only improve the 

classification performance of brain diseases, but also provide insights into the spatio-

temporal interaction patterns of the brain activity and their changes in brain disorders.
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Highlights

• A new measure to characterize the spatial variability of DCN is proposed.

• A novel learning framework to integrate both temporal and spatial 

variabilities of DCNs is developed.

• Achieving an accuracy of 78.8% and 78.3% for lMCI (late MCI) vs. eMCI 

(early MCI) classification and eMCI vs. NC (normal control) classification, 

respectively.

• eMCI patients exhibit significant increased spatial variability.
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Figure 1. 
Illustration of the proposed learning framework integrating both temporal and spatial 

properties of DCNs, including (1) image preprocessing and network construction, (2) feature 

extraction and selection, and (3) multi-kernel support vector machine (SVM) based 

classification. Dynamic connectivity networks are first constructed from the rs-fMRI time 

series by using non-overlapping time window approach. Two sets of features (i.e., the 

temporal variability features and the spatial variability features) are then extracted from 

constructed DCNs. Furthermore, a manifold regularized multi-task feature selection (M2FL) 

method is used to jointly select the most important region-related features. Finally, multi-

kernel SVM is used for classification.
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Figure 2. 
Illustration of temporal variability and spatial variability of brain region r. For the ith FCN 

(i.e., matrix), a functional architecture of brain region r consists of the rth row elements 

except for Fi(r, r), i.e., Fi(r, :) = [Fi(r, 1), Fi(r, 2), …, Fi(r, r − 1), Fi(r, r + 1), …, Fi(r, n)]T. 

We combine all functional architectures associated with brain region r into a matrix Fr = 

[F1(r, :), F2(r, :), …, Fv(r, :)]T. Each column of Fr is a functional sequence associated with 

brain region r, e.g., F(:)(r, q) = [F1(r, q), F2(r, q), …, Fv(r, q)]T, and Fr = [F(:)(r, 1), F(:)(r, 2), 

…, F(:)(r, r − 1), F(:)(r, r + 1), …, F(:)(r, n)]. Finally, the temporal variability of brain region r 
is defined based on the correlation of functional architectures (i.e., rows of matrix Fr) 

associated with brain region r across different time windows, while, the spatial variability of 

brain region r is defined based on the correlation of functional sequences (i.e., columns of 

the matrix Fr) associated with the brain region r.
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Figure 3. 
ROC curves of six methods on (a) the lMCI vs. eMCI classification, and (b) the of eMCI vs 

NC classification.
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Figure 4. 
Weight combination of two kinds of variabilities in each cross-validation for our proposed 

method on (a) the lMCI vs. eMCI classification (b) the eMCI vs. NC classification. The 

median values of βSVF are all 0.8 for the two classification tasks, and the corresponding 

median values of βTVF are all 0.2.
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Figure 5. 
Import brain regions identified by the proposed method in lMCI vs. eMCI classification.
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Figure 6. 
Import brain regions identified by the proposed method in eMCI vs. NC classification.
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Figure 7. 
Cumulative-probability distribution of the temporal variability feature (left) and the spatial 

variability feature (right) in each subject group.
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Figure 8. 
Results achieved by our proposed method with respect to different combining weights of 

temporal and spatial variability features from DCNs in the classification tasks of (a) lMCI 

vs. eMCI, and (b) eMCI vs. NC. Note that βTVF = 1 − βSVF.
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Figure 9. 
Results achieved by our method with respect to the selections of regularization parameters λ 
and γ values on (a) the lMCI vs. eMCI classification, and (b) the eMCI vs. NC 

classification.
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Table 1

Characteristics of the studied subjects (MMSE ± Standard Deviation). MMSE: Mini-Mental State 

Examination.

Group lMCI eMCI NC

Male/Female 26/17 21/35 21/29

Age (Mean ± SD) 72.1 ± 8.2 71.1 ± 6.8 75.0 ± 6.9

MMSE (Mean ± SD) 27.2 ± 2.0 28.1 ± 1.5 28.9 ± 1.6
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Table 3

Important brain regions involved in lMCI vs. eMCI classification. TVF=Temporal Variability Feature, 

SVF=Spatial Variability Feature. L.=Left, R.=Right.

ROI p-value (TVF) p-value (SVF)

L. Superior frontal gyrus (dorsal) 0.508 0.017

L. Orbitofrontal cortex (inferior) 0.030 0.110

R. Orbitofrontal cortex (medial) 0.239 0.009

L. Middle cingulate gyrus 0.037 0.205

R. ParaHippocampal gyrus 0.503 0.044

R. Postcentral gyrus 0.383 0.042

R. Angular gyrus 0.233 0.030

L. Temporal pole (superior) 0.071 0.041

L. Inferior temporal 0.231 0.223

L. lobule X of cerebellar hemisphere (flocculus) 0.462 < 0.001

Lobule I, II of vermis 0.385 0.033

Lobule III of vermis 0.372 0.033
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Table 4

Important brain regions involved in eMCI vs. NC classification. TVF=Temporal Variability Feature, 

SVF=Spatial Variability Feature, L.=Left, R.=Right.

ROI p-value (TVF) p-value (SVF)

L. Middle frontal gyrus 0.087 0.181

R. Orbitofrontal cortex (middle) 0.065 0.001

R. Rolandic operculum 0.438 0.002

L. Superior frontal gyrus (media) 0.054 0.150

R. Orbitofrontal cortex (medial) 0.081 0.025

R. Rectus gyrus 0.192 0.009

L. Posterior cingulate gyrus 0.085 < 0.001

R. Posterior cingulate gyrus 0.001 0.401

L. Hippocampus 0.087 0.023

L. Amygdala 0.031 0.043

L. Inferior occipital gyrus < 0.001 0.016

R. Precuneus 0.094 0.002

R. Pallidum 0.117 0.006

R. Middle temporal gyrus 0.185 0.093

R. Temporal pole (middle) 0.063 0.010

L. crus II of cerebellar hemisphere 0.245 0.052

R. crus II of cerebellar hemisphere 0.166 0.020

L. Lobule VI of cerebellar hemisphere 0.068 0.030

R. lobule VIIB of cerebellar hemisphere 0.096 0.006

L. lobule IX of cerebellar hemisphere 0.052 0.020
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Table 5

Brain regions with significant temporal variability and the corresponding average value of features for eMCI 

subject group and NC subject group. L.=Left, R.=Right.

ROI eMCI NC p-value

L. Superior frontal gyrus (dorsal) 0.522 0.514 0.036

R. Superior frontal gyrus (dorsal) 0.527 0.511 0.017

R. Orbitofrontal cortex (superior) 0.642 0.588 0.021

L. Rectus gyrus 0.624 0.596 0.044

R. Anterior cingulate gyrus 0.588 0.565 0.037

R. Posterior cingulate gyrus 0.576 0.556 0.001

L. Amygdala 0.609 0.595 0.031

L. Inferior occipital gyrus 0.485 0.490 < 0.001

R. Fusiform gyrus 0.557 0.543 0.027

L. Postcentral gyrus 0.532 0.522 0.021

R. Putamen 0.585 0.560 0.011

L. Lobule III of cerebellar hemisphere 0.593 0.574 0.008
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Table 6

Brain regions with significant spatial variability and the corresponding average value of features for eMCI 

subject group and NC subject group. L.=Left, R.=Right.

ROI: seMCI > sNC eMCI NC p-value

L. Precentral gyrus 0.381 0.346 0.007

R. Precentral gyrus 0.379 0.352 0.002

L. Orbitofrontal cortex (middle) 0.367 0.338 0.011

R. Orbitofrontal cortex (middle) 0.367 0.357 0.001

L. Inferior frontal gyrus (triangular) 0.371 0.341 0.001

R. Rolandic operculum 0.374 0.362 0.002

L. Olfactory 0.358 0.321 0.008

R. Superior frontal gyrus (media) 0.384 0.349 0.010

R. Orbitofrontal cortex (medial) 0.361 0.333 0.025

L. Rectus gyrus 0.383 0.334 0.002

R. Rectus gyrus 0.396 0.342 0.009

R. Anterior cingulate gyrus 0.373 0.343 0.041

L. Posterior cingulate gyrus 0.383 0.352 < 0.001

L. Hippocampus 0.375 0.340 0.023

R. ParaHippocampal gyrus 0.371 0.343 0.039

L. Amygdala 0.356 0.334 0.043

L. Cuneus 0.385 0.359 0.006

L. Middle occipital gyrus 0.372 0.344 0.015

R. Middle occipital gyrus 0.384 0.348 0.046

L. Inferior occipital gyrus 0.393 0.357 0.016

R. Precuneus 0.412 0.380 0.002

R. Paracentral lobule 0.410 0.386 0.023

R. Pallidum 0.374 0.354 0.006

L. Heshl gyrus 0.361 0.334 0.003

R. Heschl gyrus 0.358 0.329 0.047

L. Superior temporal gyrus 0.391 0.363 0.030

L. Temporal pole (superior) 0.371 0.347 0.002

R. Temporal pole (middle) 0.366 0.325 0.010

L. Inferior temporal 0.391 0.348 0.029

R. Inferior temporal 0.400 0.364 0.045

R. crus II of cerebellar hemisphere 0.388 0.323 0.020

L. Lobule VI of cerebellar hemisphere 0.399 0.359 0.030

L. lobule VIIB of cerebellar hemisphere 0.367 0.323 0.003

R. lobule VIIB of cerebellar hemisphere 0.379 0.322 0.006

L. lobule IX of cerebellar hemisphere 0.343 0.292 0.020

Lobule VI of vermis 0.387 0.362 0.007

Lobule VIII of vermis 0.374 0.332 0.007
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