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Abstract

fMRI data decomposition techniques have advanced significantly from shallow models such as 

Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to 

deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder 

(DCAE). However, interpretations of those decomposed networks are still open questions due to 

the lack of functional brain atlases, no correspondence across decomposed or reconstructed 

networks across different subjects, and significant individual variabilities. Recent studies showed 

that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability 

of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived 

network classifications achieved high accuracy with a remarkable tolerance for mistakenly labeled 

training brain networks. However, the training data preparation is one of the biggest obstacles in 

these supervised deep learning models for functional brain network map recognitions, since 

manual labelling requires tedious and time-consuming labors which will sometimes even introduce 

label mistakes. Especially for mapping functional networks in large scale datasets such as 

hundreds of thousands of brain networks used in this paper, the manual labelling method will 

become almost infeasible. In response, in this work, we tackled both the network recognition and 

training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-

CNN) framework with an automatic weak label initialization, which enables the functional brain 

networks recognition task to a fully automatic large-scale classification procedure. Our extensive 

experiments based on ABIDE-II 1,099 brains’ fMRI data showed the great promise of our IO-

CNN framework.
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1. INTRODUCTION

Reconstructing concurrent functional brain networks from fMRI blood oxygen level 

dependent (BOLD) data has been investigated for decades. The reconstructed concurrent 

functional brain networks help us better understand functional human brain activities and 
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their underlying neural substrates. Traditionally, independent component analysis (ICA) 

(Cole et al., 2010; McKeown et al., 2003) and general linear model (GLM) (s et al., 1994a; 

Logothetis, 2008) have been widely utilized for resting state functional networks and task-

evoked functional networks, respectively. Typically, the number of network components that 

can be reconstructed from ICA or GLM method is up to several dozens, which are defined 

by the number of brain sources (Cole et al., 2010) for ICA and the number of linear 

compounds of parameter estimates (COPE) (Friston et al., 1994) for GLM. In recent several 

years, a new computational framework of sparse representation (Lv et al., 2015a, 2015b; 

Mairal et al., 2010) of whole-brain fMRI signals was proposed and used for both resting 

state and task-evoked fMRI signal decompositions. Typically, hundreds of concurrent 

functional networks can be reconstructed effectively and robustly by sparse representation 

methods, thus forming holistic atlases of functional networks and interactions (HAFNI) (Lv 

et al., 2015b). Concurrent functional networks decomposed by this method have been shown 

to be superior in revealing the reconstructed task-evoked and/or resting state networks’ 

spatial overlaps and their corresponding functions (Lv et al., 2015b).

Recently, deep learning has attracted much attention in the field of machine learning and 

data mining (Bengio et al., 2013), and deep learning approach is proven to be superb at 

learning high-level and mid-level features from low-level raw data (Schmidhuber, 2014). A 

deep learning architecture usually consists of several numbers of layers by stacking multiple 

similar building blocks. The top layer receives an input and then passes the extracted 

features of the input to the next layer, all the way down from the top layer to the bottom 

layer. As a result, the architecture of a deep learning model acts as a hierarchical feature 

extractor at different levels. Instead of using abovementioned shallow models to reconstruct 

functional brain networks, some novel deep models have been explored recently. For 

instance, Restricted Boltzmann Machine (RBM) and deep convolutional autoencoder 

(DCAE) have both been leveraged for applications in fMRI signal analysis and modeling 

(Han et al., 2015; Huang et al., 2017; Zhao et al., 2017a). New methodologies are still 

emerging for reconstructing brain networks to offer the fundamental understanding of 

functional brain mechanisms.

With the availability of such well reconstructed functional brain networks across different 

individual brains using the abovementioned methods, the next step would be to model, 

interpret and use them in a neuroscientific meaningful context. However, due to the random 

initialization nature of the decomposition algorithms in ICA, sparse representation or other 

methods, together with the variability and heterogeneous characteristics of human brains, the 

correspondences of the decomposed networks across different brains are not established nor 

guaranteed, which results in the problems for group level modeling and statistically 

meaningful analysis for the obtained networks (Lv et al., 2013; Smith et al., 2009; Y. Zhao et 

al., 2016). Previously, group-wise functional network decomposition techniques were 

utilized for extracting networks that are consistent across subjects in a group level (Lv et al., 

2015c, 2013; S. Zhao et al., 2016). For instance, in the HAFNI system, 23 task-evoked and 

10 resting state group-wise consistent networks were identified and confirmed as functional 

atlases. This approach works decently on small scale of fMRI data, but it is not able to scale 

up to large scale datasets and cannot deal with the inevitable individual heterogeneity. 

Another study by our research group attempted to accurately and effectively integrate group-
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wisely consistent spatial networks decomposed at individual level by using spatial overlap 

rate similarity assisted by a spatial map descriptor called connectivity map (Y. Zhao et al., 

2016), in which 144 functional atlases were generated across populations. Though the 

connectivity map model has achieved promising results (Y. Zhao et al., 2016), it is still 

noticeable that dealing with the tremendous variability of various types of functional brain 

networks and the presence of various sources of noises is still very challenging, due to the 

limited ability of the model itself to describe various spatial pattern distributions.

So far, the lack of effective spatial volume map descriptors has been realized as a major 

challenge for all functional networks analysis related research studies, such as integrating 

networks atlases and functional network recognition tasks. In the natural image classification 

and recognition field, e.g., ImageNet challenge (Jia Deng et al., 2009), a specific type of 

deep learning networks, convolutional neural networks (CNNs), has shown the extraordinary 

ability in accommodating spatial object pattern representations (He et al., 2015; Karpathy et 

al., 2014; Krizhevsky et al., 2012; Lawrence et al., 1997; Lecun et al., 1998; Nian Liu et al., 

2015; Simonyan and Zisserman, 2014). In the context of this paper, the lack of functional 

brain atlases and no correspondence across decomposed or reconstructed networks across 

different subjects are considered as a big challenge for brain network classification and 

recognition. Furthermore, the significant individual variabilities in functional brain networks 

made it even more challenging. Faced with these challenges and inspired by all those great 

accomplishments achieved by using deep learning (especially CNN for spatial pattern 

description), in our previous work (Zhao et al., 2017b), an effective 3D CNN framework was 

designed and applied to achieve effective and robust functional network identification by 

both accommodating manual label mistakes and outperforming traditional spatial overlap 

rate based methods.

However, even though our 3D CNN model with two convolutional layers, one pooling layer 

and two fully connected layers for functional network map recognition has successfully 

achieved high accuracy in functional networks recognition, the classification category 

number is only limited to 10 most common networks. More importantly, around 5,000 

training networks preparation went through a very tedious inter-expert manual label work 

procedure over 210,000 functional networks. As indicated in (Zhao et al., 2017b), due to the 

highly interdigitated and spatially overlapped nature of the functional brain organization (Xu 

et al., 2016), the manual labelling process will inevitably introduce some mistakes into the 

training set labels. As model goes deeper and deeper, sufficient amount of data is needed for 

training the model (LeCun et al., 2015). As a result, the accurate labelling and the fast 

labelling process become the major need for training a deep learning model of functional 

brain networks.

In response to address the abovementioned large-scale training data preparation problem and 

extend the previous 10-class CNN-based recognition to large-scale functional network 

recognition, a novel iteratively optimized CNN (IO-CNN) framework is proposed here, 

while the initialization network labels were roughly assigned using automatic overlap rate 

based label. The training dataset is based on 219,800 functional networks decomposed from 

1099 subjects’ fMRI data provided by publicly available database ABIDE II (http://

fcon_1000.projects.nitrc.org/indi/abide/abide_II.html). After training, an accurate functional 
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network recognition and identification based on the IO-CNN for 135 functional network 

atlases will be achieved. Extensive experiments on the ABIDE-II 1,099 brains’ fMRI data 

has demonstrated that the proposed IO-CNN framework has superior spatial pattern 

modelling capability in dealing with various types of network maps, and the iterative 

optimization algorithm can gradually accommodate the mistaken labels introduced by the 

fully automatic but rough label initialization, eventually converging to a fine-grained 

classification accuracy. In general, the automatic rough label initialization together with the 

iterative optimization framework provides novel and deep insight in training and applying 

large scale deep learning networks with weak label supervision, contributing to the general 

field of deep learning for medical imaging.

2. METHODS AND MATERIALS

2.1 Dataset and preprocessing

Our experimental data were downloaded from the publicly available Autism Brain Imaging 

Data Exchange II (ABIDE II: http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html). 

The ABIDE was established for discovery science on the brain connectome in autism 

spectrum disorder (ASD). ABIDE I already demonstrated the feasibility and utility of 

aggregating fMRI data across different sites, while ABIDE II was promoted further for that 

purpose with larger scale of datasets. To date, ABIDE II involves data from 19 sites with 521 

ASD patients and 593 controls (5–64 years old). After manually checking data quality 

according to preprocessing (e.g. skull removal, registration to standard space) results, only 

511 ASD patients and 588 control subjects are selected, which were then used in our 

following experiments. The acquisition parameters vary across different sites: 190 – 256 mm 

FOV, 31 – 50 slices, 0.475 – 5.4 s TR, 24 – 86 ms TE, 60 – 90 ° flip angle, (2.5 – 3.8) × (2.5 

– 3.8) × (2.5 – 4) mm voxel size. For detailed parameters for each site, please refer to the 

ABIDE II website.

Preprocessing for the resting state fMRI (rsfMRI) data were performed using the FSL 

software tools (Jenkinson et al., 2012), including skull removal, motion correction, spatial 

smoothing, temporal pre-whitening, slice time correction, global drift removal, and linear 

registration to the Montreal Neurological Institute (MNI) standard brain template space, 

which were all implemented by the FSL FLIRT and FEAT commands.

After preprocessing, we exploited dictionary learning and sparse coding techniques (Lv et 

al., 2015a, 2015b) for functional brain networks reconstruction for each subject. The input 

for dictionary learning is a matrix X ∈ ℜt×n with t (length of time points) rows by n columns 

containing normalized (normalizing signals to 0 mean and standard deviation of 1) fMRI 

signals from n brain voxels of an individual subject. The output contains one learned 

dictionary D and a sparse coefficient matrix α ∈ ℜm×n, w.r.t, X = D × α + ε, where ε is the 

error term and m is the predefined dictionary size. Each row of the output coefficient matrix 

α was then mapped back to the brain volume space as a 3D spatial map of functional brain 

network. According to (Lv et al., 2015a; Y. Zhao et al., 2016), dictionary size m was 

empirically set to 200 for a comprehensive functional brain networks reconstruction, which 

means each individual fMRI data will have 200 decomposed functional networks.
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2.2 3D CNN Model

As demonstrated in (Zhao et al., 2017b), 3D convolutional neural network (CNN) has 

promising performance in modeling 3D spatial distribution patterns and correcting outliers 

by modeling each class’s spatial distribution, especially for functional brain maps. Thus, in 

this work, we adopted and modified the previous CNN structure (Zhao et al., 2017b) to a 

new 3D CNN net (shown in Fig. 1) with 3 convolutional blocks for feature extraction, and 

two fully connected layers for classification. Specifically, each convolutional block contains 

3 layers: 1) convolutional layer with rectified nonlinearity unit (ReLU) as activation function 

(Maas et al., 2013), which is not shown in Fig. 1 for brevity. The initialization scheme of the 

convolutional layers was adopted from the methods in (He et al., 2015); 2) A pooling layer 

is connected to the convolutional layers. This layer reduces redundant input information and 

introduces translation-invariance characteristics (Scherer et al., 2010), which is aimed to 

alleviate the possible global shift resulted by image registration and the intrinsic variability 

of different individual brains. In this paper, a max pooling scheme with a pooling size of 2 

was adopted and it turned out to work quite well (Zhao et al., 2017b); 3) Batch 

normalization layer is introduced later to enable faster learning and remove internal 

covariate shift of each mini-batch (Ioffe and Szegedy, 2015).

The feature extraction part will be accomplished by the 3 convolutional blocks and herein 

comes with the following fully connected layers for classification purpose. As illustrated in 

Fig. 1, only one hidden layer with 128 nodes were inserted between the output nodes and the 

extracted feature maps from the convolutional blocks. A softmax function is then applied to 

obtain the probability of the final predictions.

The loss function used for this canonical multi-class classification problem is the categorical 

cross entropy (1).

L(θ) = − 1
n ∑i = 1

n ∑ j = 1
k 1 yi = j log θTxi

j (1)

where n is the number of samples in one batch (empirically set to 20), k is the number of the 

output classes (144 output classes), and log(θT xi)j is the log-likelihood activation value of 

the jth output node. The optimizer used for the backpropagation is the advanced 

ADADELTA (Zeiler, 2012). θ is the network structure weights matrix. yi is the training 

label.

As the input volumes have dimensions of 48 × 64 × 48 and the full volume with a batch size 

of 20 was used, 4.2GB memory will be consumed on the GPU card for training the proposed 

3D CNN model.

2.3 Iteratively Optimized CNN (IO-CNN) with weakly label initialization

Unlike the previous project, we do not simply train the inherited and improved CNN 

mentioned in section B using the same training dataset. Instead, we proposed a new 

Iteratively Optimized CNN (IO-CNN) to iteratively train on dynamically updated training 
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sets. Specifically, the initial training dataset is generated using a fast and automatic, but 

weak, labelling process by utilizing the maximal spatial overlap rate scheme, as mentioned 

in (Zhao et al., 2017b). Notably, this automatic labelling scheme can still achieve around 

85% accuracy on prediction, providing a rough but fairly good enough training initialization.

The classification labels are the 144 functional network atlases generated in (Y. Zhao et al., 

2016), by using the ASD and Typical Control (TC) populations (from ABIDE I dataset). 

After performing sparse coding on each subject’s fMRI data, we obtained 200 functional 
network components for each subject. Then the labelling scheme for each component is to 
assign the label of the template with maximum overlap rate among the 144, as long as the 
maximum overlap rate is larger than 0.2. Otherwise, that component will be assigned with 
label 0 (Table I). Briefly, the 144 functional network atlases are generated from the ABIDE I 

dataset by utilizing a clustering scheme based on spatial overlap rate metrics, which are 

assisted and accelerated by the proposed connectivity map in (Y. Zhao et al., 2016). Based 

on the 144 functional network atlases as classification labels, the larger scale dataset of 

ABIDE II was then used for the recognition and identification tasks. Fig. 2 described the 

logic relationship and connection between our previous work of generating 144 functional 

atlases from ABIDE I data in (Y. Zhao et al., 2016) and current work of weakly labeling the 

reconstructed functional networks from ABIDE II data.

Based on the 144 functional atlases from ABIDE I dataset and the individual functional 

networks derived from ABIDE II dataset, the initial network labels were automatically and 

roughly assigned to each of the 219,800 networks by calculating the spatial overlap rate 

similarity matrix as shown in (a). The spatial overlap rate is calculated in (2):

overlap rate = ∑k = 1
∣ V ∣ min (Vk, Wk)

(Vk + Wk)/2 (2)

where Vk and Wk are the activation scores of voxel k in network volume maps V and W, 

respectively. To ensure the accuracy of the initial label assigned by this method, the 

empirical thresholding (threshold 0.2) process was applied on the similarity matrix, as 

demonstrated in (Y. Zhao et al., 2016). For each individual network map, the label is 

assigned as atlas number whose spatial overlap rate is the maximum among all 144 atlases. 

In the case of no similarity value is above 0.2, the corresponding network map will be 

assigned the label 0, which will not be used in training the 3D CNN. The IO-CNN training 

process will begin after label initialization (a).

The detailed algorithm part of IO-CNN() is elaborated in Table I. Briefly, the IO-CNN 

training process will iterate over the 219,800 input 3D network maps for a maximum N 

(e.g., N=20) iterations, starting with the initial weak labels based on spatial overlap rate. As 

mentioned in (Zhao et al., 2017b), spatial overlap based classification can achieve around 

85% accuracy on prediction, while the CNN scheme has the superior ability for label 

correction on that prediction, thus improving the recognition accuracy. This intriguing label 

correction capability is adopted in the IO-CNN framework to improve the previously 

assigned training labels during each iteration, thus introducing changes between the labels 
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predictions after training and the labels before training. This improvement is a core 

methodological contribution of this paper, in addition to the dramatically increased number 

of used subjects (1,099 subjects in total) and the much larger number of network labels (144 

as an initialization). After iterative optimization, a balance will be achieved by the IO-CNN 

framework when no significant changes (e.g., less than 0.5%) occurs, thus yielding the 

optimized and well-trained CNN model for functional brain network recognition.

Specifically, the maxIter is set to 20 in case of stopping loop for oscillation, and the number 

of training epoch for each CNN training is empirically set to 5. The actual stop condition is 

reached at iteration 13, during which the label change procedure is illustrated in Fig. 4 as an 

example.

3. RESULTS

3.1 IO-CNN Training Details

As we have introduced before, the training dataset is based on the decomposed functional 

networks using dictionary learning and sparse coding methods from ABIDE II dataset. After 

the rough label initialization process proposed in Table I as the first step, the label 

distribution for 144 functional network atlases consisting of 80,293 training samples are 

shown in Fig. 5. As we can see, most of training samples have relatively balanced labels 

except for a few (9 labels) labels whose training sets only have less than 0.15% samples. 

This is probably due to the imperfectness of the functional network atlases generated in our 

previous work (Y. Zhao et al., 2016), in that atlases with only minor individual networks 

among the population will not be regarded as intrinsic functional networks (Fox et al., 

2005). As the IO-CNN training iteration goes on, the minor atlas training samples will be 

eliminated or moved to other atlas labels, which reaches a final label number of 135 after the 

IO-CNN training converges.

The training gradually converges to an optimization point as the iteration number increases, 

as shown in Fig. 6. Clearly, we can see that there is a significant accuracy drop during 

iteration 2, which is probably caused by the significant increase in training sample size from 

the initial training sample size of 80,293 to the size of 219,787 (Fig. 7). Then, the training 

sample size remains relatively stable, thus following a stable increasing training accuracy 

and decreasing loss. The convergence is reached at iteration 13, where the training sample 

label change over the previous iteration is less than 0.4%, which indicates the optimization 

of the IO-CNN, thus terminating the training iterations.

For our IO-CNN training, Keras (https://keras.io/) framework with tensorflow (https://

tensorflow.org) backend on an 8 GB memory GPU (Nvidia Quadro M4000) was utilized. 

The training time for each iteration is also dependent on the training sample size (average 

training samples size is 206,524 per iteration). A total time of 3.8 days (91 hours) was spent 

for all the 13 iterations of IO-CNN training (7 hours per iteration).

3.2 Recognition Results

The optimized IO-CNN model shows 87.5% prediction consistency with the initial overlap 

based training label, which is consistent with the overlap based recognition accuracy of 
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85.93% reported in our previous work (Zhao et al., 2017b), further demonstrating the 

deficiency in functional network recognition task using spatial overlap based methods. It is 

worth noting that functional network spatial overlap is a natural property of functional 

organization of the human brain (Xu et al., 2016), in that cortical microcircuits overlap and 

interdigitate with each other (Harris and Mrsic-Flogel, 2013), rather than being independent 

and segregated in space. Thus, it is critically important to develop novel and effective 

methods to recognize spatially overlapping functional networks. In this paper, the network 

recognition and classification are based on the previously generated 144 atlases, which can 

be found and visualized at http://hafni.cs.uga.edu/autism/templates/all.html. As we can see, 

some of the 144 network atlases are highly spatially overlapped but they remain functionally 

distinct, e.g., Fig. 4 shows that the final label atlas and initial label atlas are quite similar due 

to the high spatial overlap.

Here, in this paper, the core idea of weak initialization for the IO-CNN is to use spatial 

overlap rate to roughly model the training data label distribution, and then optimize the 

distribution through IO-CNN training. The initial and final 144 label distributions are shown 

in Fig. 8. The Pearson correlation between the 144 initial label distribution and the final 

label distribution is 0.23, which shows some level of correlation between the initial and final 

label distributions. Also, the p-value of the Pearson correlation is 0.0058, which is much 

smaller than the significance level 1%, indicating that the positive correlation between the 

initial and final label distributions is confident and significant. The significant correlation 

between the rough label distribution and the optimized label distribution cross-validated the 

plausibility of using overlap rate label initialization (~85% accuracy) and the optimization of 

IO-CNN based on that label initialization.

Due to the limited space, we only showcased 9 networks recognition results here using 3 

labels with the most data distributions, 3 labels with medium data distributions, and 3 labels 

with the smallest data distributions in Fig. 9. As showcased in Fig. 9, the IO-CNN can really 

achieve accurate predictions for each network atlas label, which are demonstrated by both 

visual check and the high overlap rates of the individual networks with the corresponding 

atlases. The entire predictions for 219,800 networks for all of the 144 network atlas labels 

are visualized at our website: http://hafni.cs.uga.edu/144templates_CNN/Init-to-itr12/web/

predictions. As shown in Fig. 8, the final label 111 exhibits a pulse distribution after 

convergence. We examined this phenomenon and found that most network belonging to this 

label are noisy components. Examples are shown in Supplemental Fig. 1. Furthermore, in 

order to test the robustness of the trained framework to avoid the overfitting on the training 

dataset, 200 subjects’ functional networks from ABIDE I dataset used in (Y. Zhao et al., 

2016) is also tested, and the predictions are consistent with the results on the ABIDE II 

dataset. Comprehensive predictions are referred to http://hafni.cs.uga.edu/

144templates_CNN/ABIDE-I_validation/pics/webs/. Randomly selected exemplar 
predictions on ABIDE I dataset are shown in Supplemental Fig. 2 (a–c) in correspondence to 

Fig. 9(a–c).
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3.3 Label Change Analysis and Evaluations

As mentioned in the previous section, an 87.5% consistency was achieved between the 

initial overlap labels and the final IO-CNN predicted labels. In general, the inconsistent 

predictions with the initial labels have 4 conditions: 1) Previously unlabeled data is assigned 

with this label; 2) New instance assigned with this label; 3) Label shifted from this label; 4) 

Label removed. We will use the two functional network atlases: atlas 7 (default mode 

network) and atlas 14 (lateral visual area network) for the 4-condition label change analysis 

in the following sections in details. The comprehensive 144-atlas label changes are 

visualized at http://hafni.cs.uga.edu/144templates_CNN/Init-to-itr12/web/, where condition 

1 is linked to “new label added from no label”, condition 2 is linked to “new labels added for 

each template from other labels”, condition 3 is linked to “new labels removed from each 

template”, and condition 4 is linked to “label removed from each template”. We will explain 

these 4 conditions one by one in details as follows.

Condition 1)—Previously unlabeled data assigned with this label. Intuitively, most label 

changes come from this condition since the initial labeled size is only 80,293, compared to 

the final label size of 219,433. Since we set an overlap rate threshold of 0.2 empirically 

according to (Y. Zhao et al., 2016) to assign initial label, some functionally meaningful 

networks with lower spatial overlap rate than 0.2 were then discarded. Fortunately, those 

networks were then assigned back with a reasonable label using our trained IO-CNN model. 

A few randomly selected showcases using atlas 7 and 14 are illustrated in Fig. 10. The 

comprehensive 144-atlas label changes for this condition are visualized at http://

hafni.cs.uga.edu/144templates_CNN/Init-to-itr12/web/added_from_no_label/index.html.

Condition 2)—New instance assigned with this label. This condition indicated that the 

current label is more suitable for the previous label assigned by using the overlap rate 

scheme.

A few randomly selected showcases still using atlas 7 and 14 are illustrated in Fig. 11, and 

the corresponding 3D visualizations are shown in Fig. 12. From the visualization, we can 

confidently see the improved final label predictions, even though the spatial overlap rate is 

higher in initial labels than final label, which demonstrated that the spatial overlap rate is 

incapable of differentiating networks with high overlap rates. The 3D visualizations offer a 

better visualization of the spatial distribution of the input maps of activation areas, thus 

confirming that input maps match better with the final labels instead of initial labels. This 

improvement is the optimization result of our proposed IO-CNN framework and can be 

extensively illustrated by the comprehensive 144-atlas label change visualization for this 

condition at http://hafni.cs.uga.edu/144templates_CNN/Init-to-itr12/web/added_in_new/

index.html.

Condition 3)—Label shifted from this label. This condition also indicated that the current 

label is more suitable for the previous label assigned using overlap rate scheme. Several 

randomly selected showcases still using atlas 7 and 14 are illustrated in Fig. 13, and the 

corresponding 3D visualizations are shown in Fig. 14. Similar to condition 2), we can 

clearly see the plausibility of the final predicted labels when the initial label atlas and final 
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label atlas have a high overlap rate. For instance, for input map 2 in Fig. 13 and Fig. 14(b), 

we somehow have difficulties in telling the difference between the highly overlapped atlases 

14 and 57. However, if we observe closely, we will find that the spatial distributions of the 

two high overlapped atlases are different: atlas 57 has a unbalanced lateral activated regions, 

while atlas 14 has a balanced lateral activated regions. And our final label for input map 2 is 

atlas 57 because the input map also has a clearly unbalanced lateral activation pattern, which 

should be assigned with a label 57. The extensive illustrations of comprehensive 144-atlas 

label changes for this condition are visualized at http://hafni.cs.uga.edu/144templates_CNN/

Init-to-itr12/web/removed_from_old/index.html

Condition 4)—Label removed. This condition indicated that the label was removed 

(recognized as noisy network) for a network which was initially assigned with a label. 

Usually this condition should not happen, since if a network was assigned with an initial 

label, meaning the overlap rate of this network is at least 0.2 with some atlases, which 

indicates non-noisy network. As a result, only one initial network in atlas 7 class is removed, 

and there is no such condition for atlas 14. As expected, this condition does not exist in most 

of the atlases http://hafni.cs.uga.edu/144templates_CNN/Init-to-itr12/web/

removed_in_this_label/index.html.

3.4 Revealing Fine Granularity Networks From 10 RSNs and Ambiguity Removal using HCP 
Dataset

The Human Connectome Project (HCP) fMRI dataset is considered as a systematic and 

comprehensive mapping of connectome-scale functional networks and core nodes over a 

large population in the literature (Barch et al., 2013), based on which we have a 

classification framework for previously reported 10 resting state networks (RSN) (Smith et 

al., 2009) (Zhao et al., 2017b). In this section, we re-classified the 1,521 testing dataset 

networks from the previous HCP dataset [36]. After the predictions using the proposed 135 

(from initial 144) atlas prediction framework compared with the previous 10 RSNs, we 

found that our 135 atlases are actually variants of the 10 RSNs with fine-granularities. Also, 

we further confirmed the previous framework using CNN has discovered manual labeling 

mistakes. As we can see from Fig. 15, the most percentage (except noises) of the atlas from 

135 atlases resemble the corresponding atlases in 10 RSNs, which demonstrated the 

robustness of the proposed framework and its applicability on different fMRI data sets. 

Correspondingly, the spatial overlap rate of each RSN template with its granularities is 
shown in Table 1. The high overlap rate metrics demonstrated the strong spatial relationships 
between the granularities and the corresponding RSNs, which validated the granular 
characteristics.Fig. 16 shows an example of the fine granularities among 135 atlases of 

RSNs and the previous ambiguous labels using RSN 1 as an example. As shown in Fig. 16, 

atlases 4, 24 are not necessarily to be variants of fine granularities of RSN 1, but the 

reclassification atlases seem to be more reasonable and accurate than the previous RSN 1 

using 10 RSN labels. And other atlases are variants of fine granularities of the RSN1. For a 

comprehensive and detailed reclassification of the HCP dataset, please refer to http://

hafni.cs.uga.edu/144templates_CNN/forHCP/web/index.html.
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This result cross-validated the effectiveness and the scalability of our IO-CNN framework to 

other datasets. And this finding of IO-CNN derived fine granularity of functional brain 

networks is also consistent with prior results in (Zhao et al., 2017a), providing 

neuroscientific basis for hierarchical and overlapping architecture of the human brain 

functions.

4. DISCUSSION AND CONCLUSIONS

Connectome-scale reconstruction of reproducible and meaningful functional brain networks 

on large-scale populations based on fMRI data are enabled by using functional brain 

network decomposition techniques, especially the HAFNI project [8]. However, an unsolved 

problem in the HAFNI framework is the automatic recognition of hundreds of HAFNI maps 

such as RSNs in each individual brain, which is challenging due to the lack of functional 

brain atlases, no correspondence across decomposed or reconstructed networks across 

different subjects, and the significant individual variabilities. To deal with the tremendous 

variability of various types of functional brain networks and the presence of various sources 

of noises, we have proposed a 3D CNN deep learning framework to solve those problems 

[35]. However, major challenges like labelling large scale networks and recognition of them 

with larger scale labels still remain prominent. The previous 3D CNN framework is 

extended in this work for much larger networks recognitions (from ~5,000 to ~220,000) with 

much larger numbers of network atlases (from 10 to 135) with a weak but automatic 

labeling. The recognition results and the label changes from initial labels by our IO-CNN 

framework demonstrated the optimization during iterative training. The application of IO-

CNN on the separate HCP dataset with previous 10 RSN labels obtained promising results, 

in which functional network fine-granularities and label ambiguity removal have been 

achieved, further demonstrating the robustness and efficiency of our proposed IO-CNN 

framework. In the future, we will further refine the collection of comprehensive and holistic 

functional brain network atlases together with an effective recognition system, and then 

apply them on clinical fMRI datasets for brain disease modelling, such as for Alzheimer’s 

disease and Autism Spectrum Disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
3D CNN structure used for training and classification. Bold numbers indicated the feature 

map sizes (e.g. 48, 64, 48); Red numbers indicated convolutional kernel size (e.g. 3 × 3 × 3) 

and nodes number of fully connected layers (e.g. 128, 144); Green numbers indicated the 

channel size of each feature map.
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Fig. 2. 
Logic connection between the atlases generation based on ABIDE I data in (Y. Zhao et al., 

2016) and the functional network recognition work based on these atlases using the ABIDE 

II data in this paper. Both ADIBE I and II fMRI datasets were decomposed to functional 

networks using sparse coding, where networks from ABIDE I were utilized for generating 

atlases, while the functional networks from ABIDE II were decomposed for atlases-based 

recognition via a weak labeling process based on spatial overlap rate.
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Fig. 3. 
IO-CNN framework. (a). weak label initialization process based on spatial overlap rate; (b). 

iteratively optimized CNN (IO-CNN) training process. The training process will iterate over 

the 219,800 input 3D maps starting with the initial weak labels. Only the 3D maps with 

nonzero labels will be taken as input for the current training iteration. After each training 

iteration, the trained model will predict on all the 219,800 training samples for new labels, 

which will be used to replace and update the previous training labels for the next training 

iteration. Meanwhile, the label differences between the previous training labels and the new 

predicted labels will be recorded for iteration termination condition check.
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Fig. 4. 
Label change procedure during each iteration. During each iteration, initially assigned labels 

of some networks will be optimized to other labels during the CNN training iteration.
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Fig. 5. 
Initial training set’s 144 functional network label distributions.
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Fig. 6. 
IO-CNN training accuracy and loss curves from iteration 0 to 13. Iteration 0 is the weak 

label initialization process, where IO-CNN is not trained yet.
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Fig. 7. 
Sample size’s dynamic changes and label change percentages during IO-CNN training. 

Iteration 0 is the weak label initialization process, where IO-CNN is not trained yet. Initial 

labels (80,293 initial training samples) were first used in iteration 1 for IO-CNN training.
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Fig. 8. 
Initial label distribution and final label distribution after iterative IO-CNN optimization.
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Fig. 9. 
Fig. 9. (a). 3 label predictions with the most data distributions using 5 instances each. Each 

row contains the atlas picture at the first column, with the rest 5 columns as prediction 

instances from different individual subjects’ networks.

Fig. 9. (b). 3 label predictions with the medium data distributions using 5 instances each. 

Each row contains the atlas picture at the first column, with the rest 5 columns as prediction 

instances from different individual subjects’ networks.

Fig. 9. (c). 3 label predictions with the least data distribution using 5 instances each. Each 

row contains the atlas picture at the first column, with the rest 5 columns as prediction 

instances from different individual subjects’ networks.
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Fig. 10. 
Previously unlabeled network assigned with label 7 and 14. The overlap rate with those 

networks are all below 0.2 yielding no label initially.
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Fig. 11. 
(a). New instances with initial labels 3, 47 assigned with final label 7; (b). New instances 

with initial labels 4, 24 assigned with final label 14. First column of each subplot indicates 

input networks; second column indicates final predicted atlases; third column indicates 

initial overlap rate assigned labels.
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Fig. 12. 
(a). 3 axis 3D visualization for new instances with initial labels 3, 47 assigned with final 

label 7; (b). 3 axis 3D visualization for new instances with initial labels 4, 24 assigned with 

final label 14.
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Fig. 13. 
(a). Label shifted from label 7 to label 5, 8; (b). Label shifted from label 14 to label 4, 57. 

First row of pictures indicates input networks; second row indicates final predicted atlases; 

third row indicates initial overlap rate assigned.
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Fig. 14. 
(a). 3 axis 3D visualization for instances with label shifted from label 7 to label 5, 8; (b). 3 

axis 3D visualization for instances with label shifted from label 14 to label 4, 57.
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Fig. 15. 
Proposed 135-class predictions on previous 10-class labelled HCP testing set networks 

reveals fine-granularities of the variants of 10 RSNs. The radar charts show the 135 

templates granular percentages out of the 10 RSN atlases.
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Fig. 16. 
Fine-granularities among 135 atlases and previous ambiguous labels using RSN 1 as an 

example.
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Table I

Algorithm for IO-CNN

Algorithm: deep iterative CNN with week label initialization

Input: 1). 219,800 individual functional networks (1099 subjects, with 200 functional network each);
2). 144 functional atlases

Initialization: 1). Calculate pairwise overlap rate between individual functional networks and functional atlases → 219,800 × 144 similarity 
matrix S0

2). Threshold overlap rate value in S below 0.2 to be 0;

3). For each individual network row Si
0 in S0do

  If Si
0 = 0 then

   labeli = 0

  Else

    labeli = argmax(Si
0)

     {argmax(Si
0) ∈ N ∣ 1 ≤ argmax(Si

0) ≤ 144}

  End

 End

 Return label0

Deep iterative training: using none zero labeled individual functional networks and label0a as initial training pairs.

 For i in {0, 1, 2, …, maxIter} do

  Train CNN on

   [none zero labeled individual functional networks, labeli]

  labeli+1 = CNNmodel predict on

   all functional networks,

  label_diff = diff (labeli, labeli+1)

  If | label_diff|/219, 800 < 0.4%

   Break

  End

 End

 Return CNNmodel
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