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Audible Feedback Improves 
Internal Model Strength and 
Performance of Myoelectric 
Prosthesis Control
Ahmed W. Shehata   1,2, Erik J. Scheme   1,2 & Jonathon W. Sensinger1,2

Myoelectric prosthetic devices are commonly used to help upper limb amputees perform activities of 
daily living, however amputees still lack the sensory feedback required to facilitate reliable and precise 
control. Augmented feedback may play an important role in affecting both short-term performance, 
through real-time regulation, and long-term performance, through the development of stronger 
internal models. In this work, we investigate the potential tradeoff between controllers that enable 
better short-term performance and those that provide sufficient feedback to develop a strong internal 
model. We hypothesize that augmented feedback may be used to mitigate this tradeoff, ultimately 
improving both short and long-term control. We used psychometric measures to assess the internal 
model developed while using a filtered myoelectric controller with augmented audio feedback, 
imitating classification-based control but with augmented regression-based feedback. In addition, 
we evaluated the short-term performance using a multi degree-of-freedom constrained-time target 
acquisition task. Results obtained from 24 able-bodied subjects show that an augmented feedback 
control strategy using audio cues enables the development of a stronger internal model than the 
filtered control with filtered feedback, and significantly better path efficiency than both raw and filtered 
control strategies. These results suggest that the use of augmented feedback control strategies may 
improve both short-term and long-term performance.

Recent advances in material design, micromachining, and the understanding of human neuromuscular systems 
have enabled the development of lightweight prosthetic devices that can be used to help amputees perform activ-
ities of daily living. One approach to controlling these devices is to use myoelectric signals sensed from con-
tractions of the amputee’s remnant or congenitally different muscles1. Researchers have developed many signal 
processing techniques2, feature extraction methods3–5, and control strategies6 to enhance the performance of this 
approach. Despite these advancements in the field of myoelectric prostheses, many amputees still abandon their 
devices out of frustration7, due in part to insufficient precision in the control of prosthesis movements and a lack 
of adequate sensory feedback8,9.

Although invasive feedback, such as stimulation of sensory peripheral nerves10, has the potential to elicit 
close-to-natural tactile sensations, many prosthesis users prefer non-invasive feedback methods that do not 
require surgical intervention11. With this preference in mind, researchers have proposed using non-invasive sen-
sory substitution methods to provide sensory information to prostheses users either through different sensory 
channels or using different modalities12. Vibro-tactile13, mechano-tactile14, electrotactile15–17, skin stretch18, and 
auditory19 are just some of the techniques that have been developed and used to provide prosthesis users with 
feedback. Although some studies (e.g.14,20,21) have shown that sensory feedback improves performance, others 
(c.f.14) have concluded that sensory feedback had no effect on performance. This lack of consensus arises, at least 
in part, because of an unclear understanding of how the incorporation of feedback relates to performance.

The role of feedback for real-time regulation and in improving human understanding of the control system 
and the task being performed is still unclear. Researchers have hypothesized that the human central nervous sys-
tem implements control by estimating the current state of the musculoskeletal system and updating this estimate 
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using sensory feedback22,23. This state estimation and prediction process is governed by a model formed in the 
central nervous system, which is known as internal model. This internal model holds properties of the arm, which 
are used to imitate its behavior24, predicts consequences of an action, and computes an action based on desired 
consequences25. Hence, this internal model is used in the feedforward control26 of the arm or residual limb, and 
affects the overall performance of a prosthesis27.

Humans use visual feedback along with other sensory and proprioceptive information to develop their inter-
nal model, however constant visual attention and the high level of concentration it requires may lead powered 
prosthesis users to reject their devices28. Conveniently, augmented feedback can be used to convey artificial pro-
prioceptive and exteroceptive information21,29, which may help to develop strong internal models. Researchers 
have used audio augmented feedback in both robotic teleoperation30,31 and Brain Computer Interfaces (BCI)32 
and have concluded that audio augmented feedback improves performance. Unlike visual feedback, audio 
requires less focus of attention and reduces distraction33,34. We hypothesize that audio augmented feedback may 
similarly improve the performance of myoelectric prosthesis control by enabling the development of stronger 
internal models.

In a recent study35, we assessed the performance and the strength of internal models developed by users when 
using two myoelectric control strategies that differed in control signals as well as level of feedback. The main aim 
of that study was to investigate whether the ability of users to adapt is influenced by the degree of sensory feed-
back inherent in different myoelectric controllers. Results from that study suggest that control strategies with raw 
control signals and high feedback level (Raw Control with Raw Feedback (RAW), such as with regression-based 
control) enable the development of a strong internal model, but at the expense of short-term performance. In 
addition, we found that control strategies with filtered control signals and reduced feedback (Filtered Control 
with Filtered Feedback (FLT), such as classification-based control) may enable better short-term performance, 
but hinder the development of internal models.

To mitigate this tradeoff, we have extended this work by decoupling the concepts of control and feedback 
through the use of augmented feedback. We combined the filtered control strategy that resulted in better 
short-term performance with audio augmented feedback from the raw control strategy that enables the develop-
ment of stronger internal models. In this work, we assessed internal model strength and short-term performance 
for this audio augmented feedback control strategy known as Filtered Control with audio Augmented Feedback 
(AUG) and compared its results to the two commonly used myoelectric control strategies, RAW and FLT, that 
we assessed previously35. Our results show that the audio augmented feedback control strategy produces better 
short-term performance (as assessed using path efficiency and accuracy) than the feedback-rich control strategy, 
while enabling the development of a stronger internal model than the reduced feedback control strategy.

Results
To inform the development of myoelectric control strategies with better short- and long-term performance, 
we investigated whether augmented feedback could improve user’s internal model strength without reducing 
short-term performance of the control. Short-term performance and internal model strength (as a predictor for 
long-term performance36) were evaluated while using a filtered control strategy that was augmented by audio 
feedback in a virtual target acquisition constrained-time task.

Outcome Measures.  To assess the internal model developed by the human central nervous system and 
evaluate performance of the audio-augmented controller, we employed the same five parameters that were used 
in our previous work35:

•	 Adaptation rate was extracted by computing the rate of feedforward modification of the control signal from 
one trial to the next37,38. The first 100–230 msec window of activations that started on the mark of the visual 
rendering on the screen for each trial was used to ensure that only the subject’s feedforward intent was cap-
tured and to avoid the effect of feedback synchronization. The target control signal was the activation of 
the cursor movement to the right direction only i.e., wrist extension. Other activations were considered as 
self-generated errors, which subjects were instructed to minimize.

•	 The just-noticeable-difference (JND) parameter was computed from a perception threshold test as the thresh-
old value reached after 23 reversals calculated by an adaptive staircase39. This parameter is influenced by both 
controller and sensory noise.

•	 Internal model uncertainty Pparam was calculated using sensory uncertainty, controller uncertainty, JND, and 
adaptation rate35.

•	 Performance of the audio-augmented control strategy was evaluated using path efficiency, computed by com-
paring the path taken to reach a target to the shortest Manhattan path to that target. Targets were defined by 
their location with respect to the X and Y axes on the computer screen. Targets that were located on either the 
X-axis or the Y-axis were known as on-axis targets, which only required the activation of a single DOF to be 
acquired. By the same token, targets that were not located on either the X-axis or the Y-axis were known as 
off-axis targets and therefore requiring the activation of 2 DOFs to be acquired (Appendix Figure A1).

•	 Accuracy of target acquisition was computed as the Manhattan distance between the center point of a target 
and the actual final point reached. The ratio between this value and the optimal Manhattan path was then 
used to compute normalized accuracy as a percentage.

Psychophysical tests.  The adaptation rate serves as an indicator of how much humans modify their internal 
models when performing a task. A value of 1 indicates perfect adaptation; higher and lower values correspond to 
over- and under-compensation, respectively. Results for the adaptation rate test show that there was a statistically 
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significant difference in adaptation rates to self-generated errors between subjects when using the RAW, FLT, 
and AUG controllers, as determined by a one-way ANOVA (F (2, 21) = 9.17, p = 0.02). A Tukey HSD post 
hoc test reveals that the adaptation rate for subjects using FLT (0.46 ± 0.19) was significantly lower than RAW 
(0.98 ± 0.3, p = 0.02) and AUG (0.86 ± 0.27, p = 0.021). In addition, no significant difference was found between 
adaptation rate data for subjects using the RAW and AUG control schemes (p = 0.65). These results suggest that 
audio-augmented feedback may enable similar adaptation behavior to feedback-rich control strategies (Fig. 1a).

The JND parameter is a measure of the smallest measure of stimulus that a subject is able to identify when 
using a certain controller. The lower this parameter, the better the ability of a subject to detect changes in the 
controller used. Like the adaptation rate results, analysis of JND test data using one-way ANOVA revealed a 
significant difference between subjects using RAW, FLT, and AUG (F (2, 21) = 5.17, p = 0.008). Upon running 
a Tukey HSD post hoc test on the data, we found that subjects who tested FLT had significantly higher JND 
values (59 ± 16 degrees) than other subjects who tested RAW (45 ± 20 degrees) and AUG (47 ± 13 degrees), but 
no significant difference in JND data between subjects who tested RAW or AUG (p = 0.92), which suggests that 
feedback in both RAW and AUG was sufficient to allow subjects to perceive a lower sensory threshold than the 
reduced feedback FLT (Fig. 1b).

Both adaptation rate and JND results were used to compute the internal model uncertainty for each of the 
tested control strategies. The lower the internal model uncertainty, the more confident a subject is in the control 
system used. Results showed significant difference in internal model uncertainty between the control strategies 
(robust Welch ANOVA (F (2, 13) = 9.3, p = 0.003)). Games-Howell post hoc analysis revealed a significant dif-
ference between internal model uncertainty for subjects who tested FLT (0.14 ± 0.1) and the subjects that tested 
RAW or AUG (0.055 ± 0.09, p = 0.035 and 0.041 ± 0.034, p = 0.004, respectively). On the other hand, there was 
no significant difference in the internal model uncertainty between subjects that used RAW or AUG (p = 0.56) 
(see Fig. 1c). These findings suggest that a strong internal model may be developed when using either the RAW or 
AUG control strategy, which confirms the first part of our hypothesis that audio-augmented feedback may enable 
the development of a stronger internal model than FLT alone.

Figure 1.  Overall psychophysical test results. (a) Results for adaptation rate across control strategies showing 
low adaptation rate to self-generated errors when using FLT. (b) JND results across control strategies showing 
low perceivable sensory threshold when using either RAW or AUG. (c) Internal model uncertainty reflected 
by both adaptation rate and JND results showing significantly less uncertain (more confident) internal models 
developed when using RAW and AUG than the one developed when using FLT.
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Performance tests.  For on-axis path efficiency, there was a significant difference between control strategies as 
determined by a one-way ANOVA (F (2, 21) = 5.8, p = 0.01). Bonferroni post hoc analysis showed that subjects who 
tested the AUG control strategy had significantly higher path efficiency than subjects who tested either the FLT or 
RAW strategies (p = 0.019, p = 0.02) (Fig. 2a). Analysis of the accuracy data collected from subjects using the three 
control strategies showed a significant difference between control strategies (one-way ANOVA (F (2, 21) = 4.5,  
p = 0.024)). Even though subjects that used FLT achieved high accuracy for on-axis targets (73 ± 7%), it was not 
significantly different (Bonferroni post hoc test) from subjects using who used RAW (65 ± 11%, p = 0.36) or AUG 
(80 ± 11%, p = 0.51). Conversely, subjects who tested AUG achieved significantly higher accuracies than those 
who tested RAW (p = 0.02) (Fig. 2b). These results further support our hypothesis that augmented feedback may 
also enable better short-term performance. For off-axis target performance tests, the null-hypothesis was not 
rejected when comparing path efficiency or accuracy data between the three control strategies (one-way ANOVA 
(F (2, 21) = 0.16, p = 0.86)) (Fig. 2c,d).

Learning effect.  We ran 28 dependent paired t-tests to investigate possible learning effects when testing with 
one control strategy and retesting using another one (summarized in Appendix). Unlike adaptation rate, a signif-
icant learning effect was observed for JND values of subjects who used FLT after being exposed to AUG, where 
the JND dropped from 74 ± 8.0 degrees to 43 ± 4.2 degrees (p = 0.029). This suggests that there may be possible 
enhancement in sensory perception threshold when using the FLT control strategy after first being exposed to 
the feedback-richer AUG control strategy. On the other hand, learning effect for JND values for subjects who 
tested FLT after AUG were not significantly reflected in the internal model uncertainty (t (3) = 1.41, p = 0.25), 
because internal model uncertainty is affected by several other parameters e.g., adaptation rate and controller 
noise. These results suggest that internal model uncertainty for FLT may be improved after being first exposed 
to AUG by improving sensory perception, and less so by adaptation. Interestingly, on-axis target path efficiency 
significantly increased when testing the AUG control strategy after testing the feedback-rich RAW control strat-
egy (t (3) = −14, p = 0.005). Also, accuracy for on-axis targets when using FLT after first being exposed to AUG 
increased significantly from 84 ± 3.7% to 94 ± 3.1% (t (3) = 23, p = 0.028).

Figure 2.  Overall performance results. (a) and (b) Show results for path efficiency and accuracy, respectively, 
of on-axis targets across control strategies. (c) and (d) Show no significant difference between control strategies 
tested for off-axis targets.
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Discussion
Significant progress made in the fields of signal processing, sensory substitution and pattern recognition for 
myoelectric prostheses has allowed for improvements in the performance of myoelectric control. It stands to 
reason that such improvement is partially driven by feedback40, however contradictory results about the effect of 
feedback (in presence of vision) on performance oppose this belief41.

Several studies have investigated the effect of various feedback modalities on performance12. In particular, 
results from studies providing electromyography (EMG) biofeedback either through visual42 or electrotactile20 
feedback have showed promising improvement in performance, but have not investigated the effect of this 
feedback on the internal model. Other researchers36 have investigated the effect of internal models on perfor-
mance and found evidence of improvement in performance through improvement in the internal model. In 
a recent study43, researchers have found that feedback improves short and long-term performance and cred-
ited this improvement to internal models. However, they were not able to quantify the improvement in internal 
models that influenced the improvement in performance. To address this deficiency, in a previous study35 we 
used a psychophysical framework to quantify the strength of internal models developed for two commonly used 
myoelectric prosthesis controllers44, namely regression-based and classification-based controllers. In this study, 
we extended these previous studies by exploring the effect of relaying EMG biofeedback through the less-focus 
demanding audio feedback to augment myoelectric controllers that enable better short term performance. We 
hypothesized that augmented feedback may enable stronger internal model generation and better short-term 
performance. Our results showed that an audio-augmented feedback control strategy enables the development 
of a significantly stronger internal model than a classification-like filtered control with filtered feedback control 
strategy. This audio-augmented feedback controller also resulted in significantly better path efficiency for a one 
DOF task than both the raw feedback and the filtered feedback controllers.

Unlike classification-based control methods, the use of a regression-based control strategy enables the extrac-
tion of more information that may be used for augmented feedback. In this work, the concept of a hybrid control 
strategy that combines the robustness of classification-based control and the rich feedback of regression-based 
control was introduced. The concepts of feedback and control were effectively decoupled by employing 
classifier-like control, while providing the user with audio-augmented feedback derived from the feedback-rich 
regression control scheme.

Adaptation rate results showed that the controller with audio-augmented feedback enabled better adapta-
tion behavior than FLT while maintaining similar adaptation behavior to the feedback-rich RAW. Hence, we 
may conclude that audio-augmented feedback may contain sufficient and comparable information as the RAW, 
therefore enabling better understanding of the myoelectric system than FLT. Equally as important, JND results 
for sensory perception showed that subjects who used either RAW or AUG achieved lower sensory thresholds 
than those who used FLT, which again supports the conclusion that feedback inherent in AUG was as effective 
as the feedback in the feedback rich RAW control strategy, enabling the perception of lower sensory thresholds. 
These results combined with results from the assessment of internal model uncertainty confirm our hypothesis 
that audio-augmented feedback enables the development of a strong internal model, possibly leading to better 
long-term myoelectric control performance.

On-axis performance results showed that audio-augmented feedback helped subjects perform better with 
respect to path efficiency and accuracy when compared to FLT. This finding suggests that subjects are able to 
integrate the audio feedback and use it for real time regulation as well as for internal model development. We 
also found that when subjects were first trained with AUG and then used FLT, they retained the internal model 
developed for AUG and were able to achieve better on-axis accuracy. This observation raises a new question to be 
investigated in future work: how long can this stronger internal model be retained before reverting completely to 
a model developed by the FLT control strategy?

Despite significant improvement in performance for on-axis targets when using the audio augmented control-
ler, no significant improvement for off-axis targets accuracy or path efficiency was found. However, statistically 
significant results for accuracy and path efficiency for off-axis targets may be found with larger cohorts targeted 
towards these metrics. Future work informed by this study could include investigating the effect of augmented 
feedback on the internal model strength and short-term performance when using other controllers, assessing the 
impact of other modalities of augmented feedback (such as vibrotactile), exploring combinations of augmented 
feedback (such as audio + vibrotactile, which might enable an even stronger internal model), investigating how 
long the human central nervous system is able to retain the improved internal model strength (following a pro-
tocol similar to other studies43), and finally, assessing the benefits of using augmented feedback for limb-different 
individuals by performing psychophysical tests using prosthetic devices. Future studies can extend this work to 
accommodate the integration of feedback in real-time regulation using a framework such as the Smith predic-
tor45,46 or the adaptive Smith predictor26,47.

Some limitations to this study were: the learning effect due to prolonged exposure to the feedback-rich control 
strategy was not investigated, no amputees were included in this study, and only a one DOF task was used for the 
assessment of the internal models.

The benefits of using audio-augmented feedback for myoelectric prosthesis control, highlighted in this study, 
call for inclusion of audio feedback in myoelectric control training procedures. For example, myoelectric pros-
thesis users may be provided with audio feedback when training with a myoelectric controller to improve their 
internal model strength and then prompted to use this control strategy without this audio feedback during reg-
ular use. One might argue that providing audio feedback using an earpiece or headphones to prostheses users 
might be impractical or uncomfortable, but emerging technologies, such as those that transmit sound using bone 
conduction, may soon enable users to benefit from other types of similarly augmented feedback. Furthermore, 
it is not yet known how frequently this augmented feedback is need. It is possible that users could occasionally 
enable the audio-augmented feedback to re-enforce their understanding.
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Methods
Control Strategies.  In order to conduct a fair comparison between the control strategy developed here and 
the ones assessed in35, Support Vector Regression (SVR) was selected as the machine learning algorithm for the 
AUG strategy48. Figure 3 shows a sample of raw signals sensed from muscles. These signals were processed using 
standard EMG processing techniques used in the field of prostheses49,50. Specifically, these signals were low-pass 
filtered at 450 Hz with a fifth-order Butterworth filter and high-pass filtered using a third-order filter at 20 Hz51. 
In addition, a notch filter was implemented using a 2nd-order Butterworth band-stop filter from 57 Hz to 63 Hz52. 
Data were sampled at a frequency of 1 KHz and time-domain features53,54 were extracted from these processed 
signals every 64 msec using 160 msec windows to train the SVR model.

For real-time control, the SVR model produced output every 16 msec using 160 msec windows51. The 
output from this model was directly mapped to the velocity of the cursor for simultaneous activation of 2 
degrees-of-freedom (wrist extension/flexion and adduction/abduction), but only the highest activated DOF was 
used in FLT; therefore, only allowing sequential control. Similar to FLT, the AUG control strategy only allowed 
sequential control, but used audio feedback to convey simultaneous control information, making this controller 
a hybrid between classification-based control and regression feedback (Fig. 4).

Audio Augmented Feedback.  For the AUG control strategy, audio feedback maps the simultaneous acti-
vation of the 2 DOF motion using 4 audibly distinct frequencies i.e., one frequency per direction, (see Fig. 5a). 
The amplitude of the tone is directly proportional to the SVR output, requiring no knowledge of the intended 
task. For instance, a subject using AUG to reach a point to the right of the cursor while activating both the 
right and up directions, but with a higher activation in the right direction will see the cursor moving to the 
right accompanying to that cursor movement, the subject will hear two tones simultaneously with frequencies of 
500 Hz and 800 Hz with the 500 Hz tone being louder than the 800 Hz tone.

Figure 3.  A sample of EMG signal recorded from 8 electrodes placed on subject’s forearm. Subjects were asked 
to follow a cursor on a screen moving to the left and right with isometric wrist extension/flexion. The velocity 
profile for the moving cursor is shown in the middle of this figure as a sinusoidal wave with a 1 second delay 
after which the cursor started moving to the right first.

Figure 4.  Control strategy development. Audio feedback mapped from raw control input and augmenting the 
filtered control input.
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General Experimental Procedures and Protocol.  Each subject sat comfortably in a chair approximately 
80 cm away from a computer screen with their right arm relaxed in a restraint and used their left hand to press 
keys on a keyboard placed on a desk in front of them. Subjects were asked to wear a 15 mW Cobra headset with 
the volume set to a no more than 52.5 ± 3 dB for the whole period of the experiment, but were allowed to remove 
it during scheduled breaks between the testing block. During the testing blocks, subjects controlled a cursor on 
a computer screen using isometric muscle contractions sensed by an electrode array placed on their forearm to 
acquire targets (Fig. 5b). Targets were crosshairs surrounded by an imploding red circle. Using the same exper-
imental protocol implemented in35, which was approved by the University of New Brunswick’s Research and 
Ethics Board (file number 2014–019), subjects used each control strategy to complete a series of test blocks in a 
specific order after accomplishing a training block.

To determine the gain for mapping the control signals to the cursor velocity on the computer screen, each 
subject was asked to control a brush to paint a screen35. Their ability to maximize the area covered by paint deter-
mined the appropriate gains for each DOF, i.e., 20 pixels/s for wrist adduction/abduction DOF. The training block 
consisted of three sets of targets that appeared at predetermined, but randomly ordered, positions. Each set con-
sisted of 16 targets, which subjects were asked to acquire in less than 12 seconds, after which it would disappear 
and another target would appear. The first test block was used to test the adaptation to self-generated errors. In 
this block, subjects were asked to repeatedly acquire a single target on the horizontal axis over a set of 80 trials.

Before the start of each test block, subjects were given a 2 minutes break, in which they were allowed to stand, 
remove the headset, and stretch if needed. The JND perception threshold test, the second test block, is a psycho-
metric measure of sensory threshold for perception of a sensory stimulus. In this test, subjects were presented 
with two trials where one of these trials was perturbed with a stimulus. Subjects were then asked to select the trial 
which they thought had the added stimulus by pressing 1 for trial 1 and 2 for trial 2 on a keyboard39. The added 
stimulus was calculated using an adaptive staircase with accuracy set to 0.8455. Finally, the last test block was a 
performance test where subjects were asked to acquire targets, arranged in 2 sets of 16 targets each. For the first 
set of targets, subjects were tasked with acquiring each target in less than 1.7 s, whereas they were only allowed 
1.4 s for each target in the second target set.

Participants.  A total of twenty-four healthy right hand dominant subjects (15 male, and 9 female; mean 
and SD of age: 25 ± 6 years) participated in the study. All participants had either normal or corrected-to-normal 
vision. Informed consent was obtained from subjects before conducting the experiment according to the 
University of New Brunswick’s Research and Ethics Board (REB 2014-019). Subjects were randomly assigned 
to one of 3 main groups (eight subjects each). Group 1 subjects tested RAW and 4 subjects from this group were 
randomly selected to retest using AUG, referred to as subgroup 2. Group 2 subjects tested FLT and 4 subjects from 
that group were randomly selected to retest using AUG (subgroup 4). Finally, group 3 subjects tested AUG and 4 
subjects were selected at random to redo the experiment using RAW (subgroup 5), while the remaining 4 subjects 
were asked to redo the experiment using FLT, and were referred to as subgroup 6.

Data from Groups 1, 2, and 3 were used to assess differences in outcome measures between the control strat-
egies tested. Additionally, data from subgroups 2, 4, 5, and 6 were used to investigate possible learning effects 
between the commonly used control strategies and the audio-augmented feedback control strategy (Fig. 6). 
Learning effects between the raw and filtered controllers, subgroups 1 and 3, were investigated in a previous 
work35, which suggested significant improvements in internal model strength and adaptation rate when using the 
filtered controller after being exposed to the raw controller, but no significant improvements were observed when 
using the raw controller after being exposed to the filtered controller.

Figure 5.  Experimental Set-up, with a subject controlling a cursor on the screen to acquire a set of targets 
during the training phase. The target shown on the f Subjects were allowed to make their choice during the just-
noticeable-difference test by pressing keys on a keyboard. (a) Audio map showing the frequencies assigned for 
each direction, i.e., 500/400 Hz corresponded to wrist extension/flexion and 900/800 Hz corresponded to wrist 
adduction/abduction. The volume is directly proportional to the magnitude of the activation in each direction 
(b) A shrinking off-axis target.
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Statistical Analysis.  The Statistical Package for the Social Science software SPSS (IBM Corp, Released 2016, 
IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp) was used to run Levene’s test on JND, 
adaptation rate, internal model uncertainty, and performance measure results to investigate homogeneity in vari-
ances of the data. If data variances were found to be homogenous, one-way ANOVAs were used to assess differences 
between outcome measures for the control strategies tested. If statistical significance was found, post-hoc analysis 

Figure 6.  Subject assignment to testing groups. (a) 3 groups of 8 subjects each were used to assess differences 
in outcome measures between the three control strategies tested. (b) Subgroups of 4 subjects each (in gray) were 
used to investigate possible learning effects on AUG after using RAW and FLT, and on both RAW and FLT after 
using AUG.

Figure 7.  Statistical analysis decision tree followed throughout the analysis of the results in this study.
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was performed using either the Bonferroni or Tukey HSD test and reported using the one with the highest confi-
dence in the p-value56. Conversely, if data variances were found to be heterogeneous, robust Welch ANOVA was 
used instead, and followed by post-hoc analysis using Games-Howell test (Fig. 7). Paired two sample t-tests were 
used with data collected from subjects in the subgroups (equal sample size). All analyses used a significance criterion 
of α = 0.05 and error bars shown in data plots were based on the standard error of the mean (SEM)57.

Data availability.  Data is available upon request - email corresponding author.
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