
Letter to the Editor
Potential Therapeutic
Impact of miR-145
Deregulation in
Colorectal Cancer

We have read with interest the recently pub-
lished work by Zhu et al.,1 which suggested
that the SNAI-1/miR-145 pathway could
represent a novel therapeutic target to
reverse radiotherapy (RT) resistance in colo-
rectal cancer (CRC). Zinc finger protein
SNAI1 (sometimes referred to as Snail) is a
family of transcription factors that promote
the repression of the adhesion molecule
E-cadherin to regulate epithelial to mesen-
chymal transition (EMT) during embryonic
development. Interestingly, the authors
showed that ectopic expression of SNAI-1
led to increased Nanog levels together with
a decrease in both miR-145 expression and
RT sensitivity. Inversely, enforced miR-145
expression resulted in reduced expression
of cancer stem cell (CSC)-related tran-
scription factors and spheroid formation
but increased RT sensitivity. The authors
demonstrated that SNAI-1 negatively regu-
lates miR-145 by binding its promoter.
Finally, differential expression of SNAI-1,
miR-145, and CSC-related transcription
factors were confirmed by comparing CSCs
and non-CSCs from rectal patient-derived
xenografts.

Based on their observations, the authors pro-
posed the SNAI-1/miR-145 axis as a new
therapeutic target to overcome RT resistance
in CRC. This issue is of particular impor-
tance in the subgroup of locally advanced
rectal cancer (LARC) patients because they
are homogeneously treated with 5-fluoro-
uracil (5-FU)-based chemoradiotherapy
(CRT). In fact, miR-145 has been described
to predict response to CRT in LARC, further
supporting its relevance as a therapeutic
target.2 However, it remains to be deter-
mined if there exists a potential miR-145-in-
dependent role for SNAI-1 inmodulating RT
sensitivity of CRC cells, a function previously
described in other tumor types.3 This could
be addressed by modulating its expression
in CRC cells following stable silencing of
miR-145. Another important consideration
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is that miR-145 has also been reported to
be regulated by mechanisms distinct from
SNAI-1, and their potential contribution to
the miR-145-dependent RT sensitization
should be investigated. The oncoprotein
KRAS leads to miR-145 downregula-
tion through the transcriptional repressor
RREB1, which is upregulated in CRC tu-
mors and inversely correlates with miR-145
expression.4 Considering that KRAS-acti-
vating mutations have been reported in
around 50% of CRC cases, this mechanism
to regulate miR-145 could be of high impor-
tance. In addition, several long non-coding
RNAs (lncRNAs), such as ROR, SNHG1,
SOX21-AS1, and CCAT2, have been found
to be overexpressed in CRC tumors and act
as a sponge of miR-145, negatively regulating
its function.5–8 It would also be interesting to
determine the specific molecular mechanism
by which miR-145 modulates sensitivity of
CRC cells to RT. OCT4 would be one of
multiple potential candidates because it
is a direct miR-145 target that mediates
miR-145 radiosensitization of cervical cancer
cells.9 The fact that the transcription factor
OCT4 is a pluripotency marker would also
reinforce the role of miR-145 in regulating
stemness in CRC cells.10

To clarify the significance of miR-145 in
LARC, another relevant issue is to evaluate
whether miR-145 affects CRC chemosensi-
tivity. Interestingly, miR-145 has been re-
ported to strongly enhance sensitivity of
CRC cells to the chemotherapeutic agents
5-FU, oxaliplatin, and irinotecan.11 More-
over, miR-145 reverses 5-FU resistance of
CRC cells by directly targeting the DNA
damage-related gene RAD18.12 In addition
to SNAI-1, it has been reported that
SNAI-2 also negatively regulates miR-145,
thereby enhancing the sensitivity of CRC
cells to 5-FU.13 Altogether, these data further
support miR-145 as a novel target for LARC
and also suggest its potential impact in met-
astatic CRC patients that receive FOLFOX or
FOLFIRI as chemotherapy blackbones.

Finally, it has been reported that miR-145
induces changes in EMT markers, including
negative regulation of SNAI-1 at the tran-
scriptional level.14 Therefore, it would be
very interesting to clarify the potential exis-
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tence of a reciprocal regulatory loop between
SNAI-1 and miR-145 to fully understand
the molecular mechanism underlying the
SNAI-1/miR-145 interplay and its usefulness
as a therapeutic target in CRC.
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