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FUN-LDA: A Latent Dirichlet Allocation Model
for Predicting Tissue-Specific Functional Effects
of Noncoding Variation: Methods and Applications

Daniel Backenroth,1 Zihuai He,1 Krzysztof Kiryluk,2 Valentina Boeva,3,4 Lynn Pethukova,5,6

Ekta Khurana,7 Angela Christiano,6,8 Joseph D. Buxbaum,9,10 and Iuliana Ionita-Laza1,*

We describe a method based on a latent Dirichlet allocation model for predicting functional effects of noncoding genetic variants in a

cell-type- and/or tissue-specific way (FUN-LDA). Using this unsupervised approach, we predict tissue-specific functional effects for every

position in the human genome in 127 different tissues and cell types. We demonstrate the usefulness of our predictions by using several

validation experiments. Using eQTL data from several sources, including the GTEx project, Geuvadis project, and TwinsUK cohort, we

show that eQTLs in specific tissues tend to bemost enriched among the predicted functional variants in relevant tissues in Roadmap.We

further show how these integrated functional scores can be used for (1) deriving the most likely cell or tissue type causally implicated for

a complex trait by using summary statistics from genome-wide association studies and (2) estimating a tissue-based correlationmatrix of

various complex traits. We found large enrichment of heritability in functional components of relevant tissues for various complex

traits, and FUN-LDA yielded higher enrichment estimates than existingmethods. Finally, using experimentally validated functional var-

iants from the literature and variants possibly implicated in disease by previous studies, we rigorously compare FUN-LDA with state-of-

the-art functional annotation methods and show that FUN-LDA has better prediction accuracy and higher resolution than these

methods. In particular, our results suggest that tissue- and cell-type-specific functional prediction methods tend to have substantially

better prediction accuracy than organism-level prediction methods. Scores for each position in the human genome and for each

ENCODE and Roadmap tissue are available online (see Web Resources).
Introduction

Understanding the functional consequences of noncoding

genetic variation is one of the most important problems in

human genetics. Comparative genomics studies suggest

that most of the mammalian conserved and recently

adapted regions consist of noncoding elements.1–3

Furthermore, most of the loci identified in genome-wide

association studies (GWASs) fall in noncoding regions

and are likely to be involved in gene regulation in a cell-

type- and tissue-specific manner.4 Noncoding variants are

also known to play an important role in cancer. Somatic

variants in noncoding regions can act as drivers of tumor

progression, and germline noncoding variants can act as

risk alleles.5 Thus, improved understanding of tissue-spe-

cific functional effects of noncoding variants will have im-

plications for multiple diseases and traits.

Prediction of the functional effects of genetic variation is

difficult for several reasons. To begin with, there is no sin-

gle definition of function. As previously discussed,6 there

are several possible definitions depending on whether

one considers genetic, evolutionary conservation, or

biochemical perspectives. These different approaches

each have limitations and vary substantially with respect
1Department of Biostatistics, Columbia University, New York, NY 10032, USA;
3INSERM, U900, 75005 Paris, France; 4Institut Curie, Mines ParisTech, PSL

Columbia University, New York, NY 10032, USA; 6Department of Dermatolog

ology and Biophysics, Weill Medical College, Cornell University, New York, N

versity, New York, NY 10032, USA; 9Departments of Psychiatry, Neuroscience

SInai, New York, NY 10029, USA; 10Friedman Brain Institute and Mindich Ch

Sinai, New York, NY 10029, USA

*Correspondence: ii2135@columbia.edu

https://doi.org/10.1016/j.ajhg.2018.03.026.

920 The American Journal of Human Genetics 102, 920–942, May 3,

� 2018 American Society of Human Genetics.
to the specific genomic regions that they predict to be

functional. In particular, the genetic approach, which is

based on experimental evaluation of the phenotypic

consequence of a sequence alteration (e.g., through mea-

surement of the impact of individual alleles on gene

expression in a particular context, massively parallel re-

porter assays [MPRAs],7 and CRISPR/Cas-9 mediated

in situ saturating mutagenesis8), is currently laborious,

has modest throughput, and can miss elements that lead

to phenotypic effects only in rare cells or specific contexts.

The evolutionary approach relies on accurate multispecies

alignment, which makes it challenging to identify certain

functional elements, such as distal regulatory elements,

known to evolve rapidly, although recently several ap-

proaches have been developed for primate- or even hu-

man-specific elements.9 An additional limitation of the

evolutionary approach is that it is not sensitive to tissue

or cell type. Finally, the biochemical approach adopted

by projects such as ENCODE3 and Roadmap Epigenom-

ics,10 although helpful in identifying potentially regula-

tory elements in specific contexts, does not provide

definitive proof of function given that the observed

biochemical signatures can occur stochastically and in

general are not completely correlated with function.
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Besides the difficulty in precisely defining function, a chal-

lenge is that the use of functional genomics features from

ENCODE and Roadmap Epigenomics (e.g., chromatin

immunoprecipitation sequencing [ChIP-seq] and DNase I

hypersensitive site [DHS] signals) are mostly useful for pre-

dicting the effects of variants in cis-regulatory elements,

such as promoters, enhancers, silencers, and insulators.

Other classes of functional variants, for example, those

with effects on post-transcriptional regulation by alter-

ation of RNA secondary structure or RNA-protein interac-

tions, would be missed by these features.

Recently, several computational approaches have been

proposed for the prediction of functional effects of genetic

variation in noncoding regions of the genome on the

basis of epigenetic and evolutionary conservation fea-

tures.2,11–16 These predictions are at the organism level

and are not specific to particular cell types or tissues.

Here, we are interested in predicting functional effects of

genetic variants in specific cell types and tissues. The

ENCODE and Roadmap Epigenomics projects have

profiled various epigenetic features, including histone

modifications and chromatin accessibility, genome-wide

in more than a hundred different cell types and tissues.

Histone modifications are chemical modifications of the

DNA-binding histone proteins and influence transcription

as well as other DNA processes. Particular histone modifi-

cations have characteristic genomic distributions.17

For example, trimethylation of histone H3 lysine 4

(H3K4me3) is associated with promoter regions, monome-

thylation of histone H3 lysine 4 (H3K4me1) is associated

with enhancer regions, and acetylation of histone H3

lysine 27 (H3K27ac) and of histone H3 lysine 9 (H3K9ac)

are associated with increased activation of enhancer and

promoter regions.10 Repressive marks include trimethyla-

tion of histone H3 lysine 27 (H3K27me3) and trime-

thylation of histone H3 lysine 9 (H3K9me3), both associ-

ated with inactive promoters of protein-coding genes;

H3K27me3 is found in facultatively repressed genes by

Polycomb-group factors, whereas H3K9me3 is found in

heterochromatin regions corresponding to constitutively

repressed genes.18 Dozens of chromatin marks have been

assayed in large numbers of different cell types and tissues,

and studying them individually is inefficient.

Several unsupervised approaches exist for the integra-

tion of these epigenetic features in specific cell types and

tissues. Such integrative approaches reflect the belief that

epigenetic features interact with one another to control

gene expression. One class of methods attempts to

segment the genome into non-overlapping segments, rep-

resenting major patterns of chromatin marks, and labels

these segments by using a small set of labels, such as active

transcription start site, enhancer, strong transcription,

weak transcription, quiescent, etc. This class includes

methods such as ChromHMM10,19,20 and Segway,21 which

are based on hiddenMarkov models (HMMs) and dynamic

Bayesian networks (DBNs), respectively. ChromHMM is

based on the complete pooling of data from multiple tis-
The Ame
sues and fitting a single model to this superdataset,

whereas Segway is based on fitting separate models to

data from each tissue (no pooling). Various extensions

of these early segmentation approaches have been pro-

posed. Several approaches have focused on better

modeling the read count data by using Poisson-lognormal

and negative multinomial distributions,22,23 whereas

others have focused on better modeling of the correlations

among related cell types and tissues.24–26 Yet another

approach attempts to improve the HMM parameter esti-

mation procedure in ChromHMM by replacing the expec-

tation-maximization algorithm with a spectral learning

procedure.27 Another class of methods focuses exclusively

on predicting functional effects of variants rather than seg-

menting the genome as discussed above. A recent method

in this class, GenoSkyline,28 is based on fitting a two-

component mixture model of multivariate Bernoulli distri-

butions to epigenetic data for each tissue separately and

then computing a posterior probability that each variant

is in the functional class. Recently, several supervised ap-

proaches have been proposed as well, and these include

deltaSVM29 and cepip.30 Although supervised approaches

can be more efficient than the unsupervised ones when

high-quality, unbiased labeled data are available for

training, unsupervised approaches as proposed here can

provide more robust, less biased functional predictions

across a large number of tissues and cell types when such

unbiased labeled data are scarce, as it is the case now.

We introduce here an integrated functional score that

combines different epigenetic features in specific cell

types and tissues. Our model is based on the latent

Dirichlet allocation (LDA) model,31 a generative probabi-

listic model that is often used in the topic modeling litera-

ture and allows joint modeling of data from multiple cell

types and tissues. In our context, the latent functional clas-

ses correspond to latent topics in the topic modeling

setting, the various tissues correspond to different docu-

ments, and the tissue-specific variant scores correspond to

words in a document. The proposed LDAmodel has several

advantages. First, our method makes no distributional as-

sumptions on the data, allowing us to avoid various data

transformations employed by other approaches (such as bi-

nary peak calling or dichotomization) and facilitating the

integration of annotation data on the original scale (e.g.,

quantitative, binary, etc.). Second, because the model is fit

jointly to data frommultiple cell types and tissues, cross-tis-

sue comparisons are meaningful. Third, relative to existing

methods, ourmethod can improve the precisionof locating

functional variants. Fourth, even though we provide only

functional scores in the tissues and cell types available in

Roadmap, it is easy to perform functional prediction in

additional cell types and tissues once the model has been

fit to the original Roadmap data. Furthermore, although

we regard FUN-LDA as primarily an approach for perform-

ing cell-type- and tissue-specific functional prediction, we

additionally assign functional variants to ‘‘activepromoter’’

or ‘‘active enhancer’’ elements.
rican Journal of Human Genetics 102, 920–942, May 3, 2018 921



In the Results section, we demonstrate the usefulness of

our predictions through several validation experiments. In

summary, we present the following results: (1) we provide

cell-type- and tissue-specific functional predictions for

every possible position in the hg19 human genome build

(UCSC Genome Browser) for 127 cell types and tissues in

Roadmap, (2) we provide a global view of the sharing of

predicted functional variants across a large number of

cell types and tissues and show that predicted functional

variants that fall in enhancers are more likely to be tissue

specific than those that fall in promoters, (3) we show

that expression quantitative trait loci (eQTLs) identified

in specific tissues from several sources (Genotype-Tissue

Expression [GTEx] project, Geuvadis, and TwinsUK) tend

to be most enriched among the predicted functional vari-

ants in a relevant Roadmap tissue, (4) we use these cell-

type- and tissue-specific scores in conjunction with sum-

mary statistics from 21 GWASs to identify the most likely

causal cell type or tissue implicated for a particular trait

and estimate a tissue-based correlationmatrix among these

complex traits, and (5) we use experimentally validated

functional variants in the literature and variants possibly

implicated in disease by previous studies to rigorously

compare FUN-LDA with state-of-the-art tissue- and

cell-type-specific functional annotation methods, such

as GenoSkyline,28 ChromHMM,19 Segway,21 IDEAS,26

deltaSVM29 (when available), and cepip,30 as well as

organism-level functional prediction methods, such as

CADD,11 Eigen,13 DANN,14 DeepSea,15 and LINSIGHT.16
Material and Methods

LDA Model for Functional Annotation
We propose an application of the LDAmodel,31 a generative prob-

abilistic model, in the setting of functional genomics annotations

with the goal of computing posterior probabilities that variants

belong to different functional classes.

Let us assume that we have a set of m genetic variants in the

training set together with a set of k functional annotations. For

each variant i, we have k tissue-specific functional scores: Xi ¼
(Xi1, ., Xik). Let X ¼ (X1, ., Xm) be the set of (continuous) func-

tional scores for all the variants. These scores are epigenetic

features (histone modifications and DNase) from ENCODE and

Roadmap Epigenomics across a varied set of tissues and cell types.

Let l be the number of tissues and mj be the number of variants

with tissue j annotations in the training set ðm ¼ Pl
j¼1mjÞ. For

each variant i % m in the training set, we denote by ti the corre-

sponding tissue (i.e., the annotations corresponding to this

variant are for tissue ti). For each tissue, the variants’ scores are rep-

resented as a mixture over latent functional classes, where each

functional class is characterized by a distribution over variant

scores. In what follows, for ease of presentation, we assume only

two latent functional classes, but the number of classes can be

chosen to be greater than two (see Choosing the Number of Func-

tional Classes in the LDA Model according to the Perplexity Mea-

sure for a discussion on the choice of the number of functional

classes). We let C ¼ (C1, ., Cm) denote the set of indicator vari-

ables for all the variants, where Ci ¼ 1 if variant i belongs to the
922 The American Journal of Human Genetics 102, 920–942, May 3,
first functional class and Ci ¼ 0 otherwise. We are not able to

observe C.

Let a¼ (a0, a1) be the hyperparameter vector with a0 and a1> 0.

We assume that the functional annotation data have been gener-

ated from the following generative model:

(1) For each tissue j, choose (1 � pj, pj) � Dir(a0, a1).

(2) Given pj, for each variant i with ti ¼ j, choose a class Ci �
Bern(pj).

(3) Given C1, ., Cm, X1, ., Xm are independently generated

such that each Xi is generated from the appropriate multi-

variate distribution: F1 if Ci ¼ 1 and F0 otherwise.

Here, p¼ (p1,. pl) andC are latent variables. We want to calcu-

late the posterior probability that each variant i is in the first func-

tional class,

wi ¼ PðCi ¼ 1 j X;aÞ;

and the densities f0 and f1. Also, we want to estimate the hyper-

parameter a ¼ (a0, a1) empirically by using X. For a given tissue,

the conditional density of (p, C) given X and a is

pðp;C j X;aÞ ¼ pðp;C;X j aÞ
pðX j aÞ :

For the numerator, we have

pðp;C;X j aÞ ¼ pðp j aÞ
Ym
i¼1

pðCi j pÞpðXi j CiÞ:

This is easy to compute. However, the denominator is not. For

the denominator, we have

pðX j aÞ ¼
Z

pðp j aÞ
 Ym

i¼1

X
Ci

pðCi j pÞpðXi j CiÞ
!
dp:

There are 2m terms in the summation, so this is difficult to

compute for moderately largem. We propose instead to use a vari-

ational approach as previously described.31 In the variational

inference approach, we first introduce a family of distributions

{q($,$ j a, w)} over the latent variables (p, C) with its own varia-

tional parameters a ¼ (a0, a1) and w (these are tissue-specific

parameters).

Then

qðp;C j a;wÞ ¼ qðp j aÞ
Ym
i¼1

qðCi j wiÞ;

where q(p j a) is the density of Dir(a), and q(Ci j wi) is the proba-

bility mass function of Bern(wi) for i ¼ 1 . m.

Using Jensen’s inequality, we have

log pðX j aÞ ¼ log

Z X
C

pðp;C;X j aÞdp

¼ log

Z X
C

pðp;C;X j aÞ
qðp;C j a;wÞ qðp;C j a;wÞdp

R

Z X
C

qðp;C j a;wÞlog pðp;C;X j aÞ dp

�
Z X

C

qðp;C j a;wÞlog qðp;C j a;wÞ dp

¼ Eq log pðp;C;X j aÞ � Eq log qðp;C j a;wÞ
¼ Lða;w j aÞ:
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Note that L(a, w j a) is a lower bound on the log likelihood. So

instead of maximizing the log likelihood directly, we maximize

this lower bound with respect to the variational parameters a

and w, as well as the hyperparameter a. It can be shown that log

p(X j a) � L(a, w j a) is the Kullback-Leibler (KL) divergence be-

tween the true posterior p(p, C j a,X) and the variational posterior

q(p, C j a, w) with respect to q(p, C j a, w). Therefore, by maxi-

mizing L(a, w j a) with respect to a and w, we minimize the KL

divergence between the variational posterior probability and the

true posterior probability. Then we can estimate P(Ci ¼ 1 j a, X)
by wi for each variant i. Below, we describe the variational infer-

ence algorithm.

Variational Inference Algorithm

Assume the initial state (w1, ., wm, f0, f1, a). The algorithm pro-

ceeds as follows:

Step 1: Kernel Density Estimation. Fit a multivariate kernel den-

sity estimate for each annotation and component separately

(f new0s and f new1s for each annotation s ¼ 1, ., k) by weighting var-

iants by component membership probability. Specifically, for any

x ¼ ðx1;.; xkÞ˛Rk and s ¼ 1, ., k, we let

f new0s ðxsÞ ¼
Xm

i¼1
ð1�wiÞKhsðxs � XisÞXm

i¼1
ð1�wiÞ

and

f new1s ðxsÞ ¼
Xm

i¼1
wiKhsðxs �XisÞXm

i¼1
wi

:

The scaled kernel KhsðaÞ ¼ ð1=hsÞKða=hsÞ, where K($) is taken to

be the probability density function of a standard normal, and

the bandwidth parameter hs is chosen to be

hs ¼ 0:9 minfSDs; IQRs=1:34gm�1=5

according to a rule of thumb from Silverman,32 where SDs and

IQRs are the standard deviation and interquartile range of annota-

tion s, respectively. Then,

f new0 ðxÞ ¼
Yk
s¼1

f new0s ðxsÞ and f new1 ðxÞ ¼
Yk
s¼1

f new1s ðxÞ:

Step 2: Variational Step. For each tissue j, we obtainwi for all var-

iants i with ti ¼ j and ðaj0; aj1Þ by maximizing the lower bound on

the marginal likelihood of X, i.e., L(a, w j a), with respect to a

and w. Details are shown in the Supplemental Data.

This results in the following iterative algorithm:

wi ¼
f1ðXiÞ exp

�
J
�
aj1
���

f1ðXiÞ exp
�
J
�
aj1
��þ f0ðXiÞ exp

�
J
�
aj
0

��
for variants i with ti ¼ j;

aj0 ¼ a0 þ
X
ti¼j

ð1� wiÞ and aj
1 ¼ a1 þ

X
ti¼j

wi;

where JðxÞ ¼ d log GðxÞ=dx, and GðxÞ is the gamma function.

Step 3: Newton-Raphson Algorithm for Estimating the Hyperpara-

meters a. Obtain the empirical Bayes estimate of a ¼ (a0, a1) by

maximizing the bound L(a,w j a) with the Newton-Raphson algo-

rithm, wherea andw are from step 2. That is, we find optimal a by

iterating

anþ1)an � H�1ðanÞVLðanew;wnew j anÞ;

where H(a) is the Hessian matrix evaluated at current a.
The Ame
The gradient VLðaÞ has this form:

vLðaÞ
var

¼ lðJða0 þ a1Þ �JðarÞÞ þ
Xl

j¼1

�
J
�
ajr
�

�J
�
a
j
0 þ a

j
1

��
for r ¼ 0; 1:

The Hessian matrix takes the following form:

HðaÞ ¼ Diag
�
lJ

0 ða0Þ; lJ0 ða1Þ
�� lJ

0 ða0 þ a1Þ110
:

LDA Implementation
We have implemented the above algorithm in an R package,

FUNLDA. In our implementation, we assume a symmetric Dirich-

let prior, with a ¼ 1, corresponding to a uniform distribution. For

training purposes, we select 4,000 random positions in each of the

127 tissues. The positions are chosen among 9,254,335 single-

nucleotide polymorphisms (SNPs) with a minor allele count

greater than 5 in European samples from the 1000 Genomes

Project. We have also looked at other ways to select variants in

the training set (e.g., randomly from across the entire genome

or with enrichment near genes), and the results were similar, sug-

gesting that our predictions are robust to the choice of variants

used in the training sets. The number of outer iterations in the

variational inference algorithm is 250, and the number of inner

iterations is 200.

We compute FUN-LDA by fitting the LDAmodel with nine clas-

ses to valley scores for the four activating histone modifications

(H3K4me1, H3K4me3, H3K9ac, and H3K27ac) and quantitative

DNase. For the histone modifications and DNase, we start with

the negative log10 of the Poisson p value of ChIP-seq or DNase

counts relative to expected background counts, as output by

ChromImpute.20 The valley scores are computed as previously re-

ported;33 for every window of 25 bp, we calculate the maximum

score for the two regions from �100 to �500 bp and from 100

to 500 bp. If the score at the 25 bp window is less than 90% of

the minimum of those two maxima, we set the value in that win-

dow to that minimum. Otherwise, we set the value in that 25 bp

window to 0. For each variant, we get a set of nine posterior prob-

abilities that the variant is in a specific functional class. To get a

functional score, we sum the posterior probabilities for the active

functional classes, namely active promoters and active enhancers

(Figure S1 and Table S1).

Prediction in a New Tissue
Once the LDA model has been fit to the epigenetic data for cell

types and tissues available in Roadmap, making predictions for a

new cell type or tissue is easy. Basically, one only needs to run

the iterative algorithm in step 2 of the variational inference algo-

rithm on the epigenetic data for the new tissue.

Choosing the Number of Functional Classes in the LDA

Model according to the Perplexity Measure
Choosing the number of functional classes in the LDA model is

not straightforward. Too few classes can be insufficient and can

lower the accuracy of the resulting classifier. Too many classes

can lead to an overly complex model and is subject to overfitting.

Heuristic methods exist on the basis of computing the perplex-

ity of a model with a given number of clusters on held-out data-

sets. Perplexity is used in information theory to describe how

well a statistical model fits the data. The lower the perplexity,
rican Journal of Human Genetics 102, 920–942, May 3, 2018 923



the better the model and its generalization performance. In our

case, if we let LðXtiÞ ¼ logðpðXti

��aÞÞ be the log-likelihood for a

held-out set of variants for each tissue ti, the perplexity is

defined as

perplexityðXtestÞ ¼ exp

(
�
Xl

i¼1
L
�
Xti

�
Xl

i¼1
mi

)
;

where l is the total number of tissues, andmi is the number of var-

iants for tissue ti. Evaluating the perplexity measure directly is

computationally intractable (the computation of the likelihood

for each tissue involves a summation over Kmi terms, where K is

the number of classes), and therefore we use the lower bound on

the log-likelihood, i.e., L(a, w j a) (see Supplemental Data), to

derive an upper bound on the perplexity. This upper bound on

the perplexity is referred to as the variational Bayesian bound on

the perplexity. In the large data limit, the bound on the log per-

plexity evaluated on the training data converges to the Bayesian

information criterion (BIC) for the model.34 If the training and

testing datasets are assumed to come from the same distributions,

then the variational Bayesian bound on the log perplexity con-

verges to the BIC.
Alternative Functional Annotation Methods Used in Our

Comparisons
We compare our approach with the following state-of-the-art

functional annotation methods.

Tissue- and Cell-Type-Specific Functional Prediction Methods

Individual Histone Modifications and DNase Scores. Instead of

integrating the various epigenetic marks, one can use the individ-

ual scores to predict functional variants. For the histone modifica-

tions and DNase, we use the negative log10 of the Poisson p value

of ChIP-seq or DNase counts relative to expected background

counts, as output by ChromImpute.20 In addition, for DNase, we

also use narrow peaks and gapped peaks (defined as broad peaks

that contain at least one strong narrow peak).

GenoSkyline: Multivariate Bernoulli Mixture Models. A simpler

mixturemodel than the LDA described here is the two-component

mixture model j ¼ ðp; f0; f1Þ, where f0 and f1 are the probability

densities for each of the components, and p is a mixing parameter.

We can fit such a model to data from each tissue separately and

calculate posterior probabilities that each variant is in the ‘‘func-

tional’’ class given the observed scores X, i.e., PjðCi ¼ 1jXÞ. For
tractability, it is often assumed that the individual scores are

conditionally independent given the functional class. Such a

two-component multivariate Bernoulli mixture model using

dichotomized data from peak-calling algorithms—an approach

called GenoSkyline—has been proposed previously.28

ChromHMM. ChromHMM19 is a method for chromatin-state

discovery and characterization through the integration of multiple

chromatin datasets. The underlying algorithm is a multivariate

HMM that produces a segmentation of the genome; each segment

is assigned a putative function on the basis of enrichment analyses

ofdifferentbiological states in thesesegments. TheChromHMM25-

statemodel20 is basedon12marks and, like ours, uses imputeddata:

H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H4K20me1,

H3K79me2,H3K36me3,H3K9me3,H3K27me3,H2A.Z, andDNase.

ChromHMMisbasedonthecompletepoolingofdata frommultiple

tissues and fitting a single model to this superdataset.

Segway. Like ChromHMM, Segway21 is a genome segmenta-

tion approach based on a DBN model. Segway is based on fitting
924 The American Journal of Human Genetics 102, 920–942, May 3,
separate models to data from each tissue. Segmentations for

most of the cell types and tissues in Roadmap have been recently

generated.35

IDEAS. IDEAS25 is an integrative and discriminative epigenome

annotation algorithm that, like ChromHMM and Segway, seg-

ments the genome and assigns each segment a specific functional

class. Unlike ChromHMM and Segway, IDEAS models the correla-

tions both along the genome and across cell types. Segmentations

for all 127 cell types and tissues in Roadmap have been produced

with IDEAS.26

deltaSVM. deltaSVM29 is a new sequence-based computational

method that predicts the effect of regulatory variation by using

a classifier (gkm-SVM) that encodes cell-specific regulatory

sequence vocabularies. The induced change in the gkm-SVM

score, deltaSVM, quantifies the effect of variants.

cepip. By connecting large-scale epigenome profiles to eQTLs

across human tissues and cell types, Li et al.30 identified combina-

tions of chromatin features that are predictive of a variant’s regu-

latory potential. They developed a joint likelihood framework to

measure the probability that genetic variants are functional in a

context-dependent manner.

Organism-Level Functional Prediction Methods

CADD. CADD11 is based on a supervised approach (support

vector machine) to training a discriminative model. That is, it

begins with two sets of variants—one labeled deleterious and the

other labeled benign—and fits a model that best separates the

two sets. It selects benign variants by comparing the human

genome to the inferred genome of the most recent shared hu-

man-chimpanzee ancestor. Alleles that are not found in the com-

mon ancestor and that are fixed in the human genome are

assumed to be mostly benign. These are compared with de novo

variants generated randomly according to models of mutation

rates across the genome.

Eigen. Eigen13 is an unsupervised spectral approach for scoring

variants and does not make use of labeled training data. Eigen uses

a variety of functional annotations in both coding and noncoding

regions and combines them into one single measure of functional

importance. Eigen produces estimates of predictive accuracy for

each functional annotation score and subsequently uses these es-

timates of accuracy to derive the aggregate functional score.

DANN. DANN14 uses the same feature set and training data as

CADD to train a deep neural network (DNN). Unlike CADD, which

trains a linear kernel support vector machine to differentiate be-

tween likely benign and likely deleterious variants and therefore

cannot capture non-linear relationships among the features,

DNNs can capture non-linear and interactive relationships among

features.

LINSIGHT. LINSIGHT16 is a statistical method that combines a

generalized linear model for functional genomic data with a prob-

abilistic model of molecular evolution to predict the fitness conse-

quences of mutations.

DeepSea. DeepSea15 is a deep-learning-based approach for pre-

dicting the chromatin effects of sequence alterations with single-

nucleotide sensitivity.

PhyloP. PhyloP36 quantifies evolutionary conservation at indi-

vidual sites.

Generalized Jaccard Index of Overlap
We are interested in computing a similarity measure of predicted

functional variants in two different tissues. Because the distribu-

tion of posterior probabilities in any one tissue is highly bimodal

(where most of the mass is at 0 and a small proportion of variants
2018



Table 1. Enrichment of eQTLs fromDifferent Sources (GTEx, Geuvadis, and TwinsUK Cohort) among Functional Variants Predicted by FUN-
LDA in Tissues and Cell Types in Roadmap Epigenomics

Tissue Roadmap Epigenomics Name �log10(p) �log10(FDR.p) Enrichment Ratio

GTEx

Whole blood primary neutrophils from peripheral blood 189.72 185.92 1.38

Cells – transformed fibroblasts muscle satellite cultured cells 62.69 59.59 1.22

Cells – EBV-transformed lymphocytes GM12878 lymphoblastoid cells 37.74 35.23 1.48

Liver liver 31.82 29.45 1.68

Muscle – skeletal skeletal muscle male 19.42 17.26 1.13

Heart – left ventricle fetal heart 15.83 13.74 1.22

Esophagus – mucosa esophagus 12.78 10.74 1.15

Pancreas pancreas 10.84 8.89 1.25

Colon – transverse rectal mucosa donor 31 10.46 8.52 1.23

Artery – tibial stomach smooth muscle 7.74 5.87 1.10

Esophagus muscularis stomach smooth muscle 6.74 4.91 1.11

Thyroid fetal intestine small 5.96 4.19 1.06

Skin – sun exposed (lower leg) foreskin keratinocyte primary cells skin03 5.47 3.73 1.07

Spleen primary B cells from peripheral blood 5.35 3.61 1.22

Artery – aorta aorta 5.28 3.57 1.14

Brain – hippocampus brain cingulate gyrus 5.10 3.42 1.38

Small intestine – terminal ileum fetal intestine large 5.04 3.37 1.37

Heart – atrial appendage fetal heart 4.90 3.25 1.15

Adipose – subcutaneous adipose nuclei 4.74 3.11 1.07

Colon – sigmoid colon smooth muscle 4.62 2.99 1.19

Brain – caudate (basal ganglia) brain substantia nigra 4.17 2.60 1.18

Nerve – tibial brain hippocampus middle 4.11 2.56 1.05

Adrenal gland fetal adrenal gland 3.94 2.42 1.14

Skin – not sun exposed (suprapubic) foreskin keratinocyte primary cells skin03 3.56 2.07 1.09

Brain – putamen (basal ganglia) brain substantia nigra 3.36 1.90 1.23

Brain – cerebellum primary T cells from cord blood 3.20 1.78 1.11

Brain – cerebellar hemisphere brain angular gyrus 3.08 1.67 1.12

Stomach stomach mucosa 3.02 1.63 1.13

Lung primary hematopoietic stem cells G-CSF-
mobilized male

2.42 1.13 1.05

Adipose – visceral (omentum) primary T helper cells from peripheral blood 2.00 0.82 1.08

Brain – nucleus accumbens (basal ganglia) H9 cells 1.80 0.67 1.17

Pituitary ES-I3 cells 1.75 0.64 1.13

Brain – cortex primary natural killer cells from peripheral blood 1.61 0.54 1.11

Esophagus – gastresophageal junction primary B cells from peripheral blood 1.49 0.46 1.09

Artery – coronary primary B cells from peripheral blood 1.35 0.38 1.10

Brain – hypothalamus primary natural killer cells from peripheral blood 1.26 0.33 1.16

Brain – frontal cortex (BA9) H1 cells 1.08 0.22 1.11

Brain – anterior cingulate cortex (BA24) primary natural killer cells from peripheral blood 1.00 0.19 1.12

(Continued on next page)

The American Journal of Human Genetics 102, 920–942, May 3, 2018 925



Table 1. Continued

Tissue Roadmap Epigenomics Name �log10(p) �log10(FDR.p) Enrichment Ratio

Geuvadis

Lymphoblastoid cell line GM12878 lymphoblastoid cells 9.27 7.35 1.13

TwinsUK

Blood primary neutrophils from peripheral blood 7.30 5.46 1.42

Fat mesenchymal stem cell derived adipocyte
cultured cells

6.26 4.45 1.21

Skin foreskin keratinocyte primary cells skin02 3.99 2.45 1.18

Lymphoblastoid cell line GM12878 lymphoblastoid cells 3.08 1.67 1.08

The top Roadmap tissue (with smallest enrichment p value) is given for each eQTL tissue, along with the p value from a two-sample proportion test, the FDR-
adjusted p value (FDR.p), and the enrichment ratio (see Material and Methods). Tests that are significant at an FDR of 0.05 have �log10(FDR.p) > 1.30.
have posterior probabilities close to 1; in other words, we are

dealing with sparse binary data), a natural measure of similarity

is the Jaccard measure of overlap, defined as follows. If X ¼ (x1,

., xk) andY¼ (y1,., yk) are two vectors with xi and yiR 0, respec-
pGi j R�j
¼ no: of eQTLs in tissue Gi in functional components excluding Rj

no: of eQTLs in functional components excluding Rj

:

tively (e.g., vectors of posterior probabilities that variants are in

the functional components for two different tissues), then the

generalized Jaccard index of overlap is defined as

JðX;YÞ ¼
X

i
min

�
xi; yi

�
X

i
max

�
xi; yi

�:
WhenX andYare binary vectors, then the Jaccard index of over-

lap is simply the size of the intersection divided by the size of the

union of the two sets. The closer it is to 1, themore overlap there is

between the two sets. A Jaccard index of 0 means no overlap.
Promoter and Tissue-Specific Enhancer Regions
The promoter region of a protein-coding gene is defined as the

union of the regions 2,500 bases upstream of any protein-coding

transcripts for the gene, as defined by GENCODE version 24. For

enhancer regions, we use the Roadmap Stringent enhancer list

available at the Reg2Map website.
eQTL Enrichment
Let G1, ., G44 be the 44 GTEx tissues with at least 70 samples

(Table S2) and R1,., R127 be the 127 Roadmap tissues. For a given

tissue in GTExGi, we are interested in identifying the Roadmap tis-

sue Rj with a higher enrichment in eQTLs from Gi than other tis-

sues in Roadmap.

Let

pGi j Rj
¼ no: of eQTLs in tissue Gi in functional component Rj

no: of eQTLs in functional component Rj

:

Note that the number of eQTLs in GTEx tissue Gi is a weighted

count (an eQTL is weighted by the inverse of the number of GTEx

tissues in which the variant is eQTL) such that
P

ipGi jRj
¼ 1. This
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way, eQTLs that are unique to tissue Gi are given higher weight

than eQTLs that are shared across many tissues. For GTEx tissue

Gi, to test whether there is an enrichment in the functional compo-

nent of Roadmap tissue Rj, we compare pGi jRj
with
The null hypothesis is H0: PGi jRj
¼ PGi jR�j

versus H0: PGi jRj
>

PGi jR�j
. We apply a two-sample proportion test for each Roadmap

tissue Rj and report the Roadmap tissue with minimum p value

in Table 1. Also reported in Table 1 is the enrichment ratio

PGi jRj
=PGi jR�j

.

The eQTLs that we used in these analyses are all significantly

associated SNP-gene pairs for eGenes in each of these 44 GTEx tis-

sues and were obtained by the permutation-threshold-based

approach described by the GTEx Consortium37 (seeWeb Resources

for more details). For the follow-up study making use of eQTLs

from Geuvadis and the TwinsUK cohort, we used the lead eQTLs,

i.e., those most strongly associated with gene expression (publicly

available for download from Brown et al.38).

Stratified LD Score Regression Approach to Identifying

the Tissue of Interest
The stratified linkage disequilibrium (LD)-score regression

approach1 uses two sets of SNPs, reference SNPs and regression

SNPs. The regression SNPs are SNPs that are used in a regression of

chi-square statistics from GWASs against the LD scores of those

regression SNPs. The LD score of a regression SNP is a numeric

score that captures the amount of genetic variation tagged by

the SNP. Here, following Finucane et al.,39 we use HapMap3

SNPs as regression SNPs because of their high imputation quality

and use SNPs with a minor allele count greater than 5 in the 379

European samples from the 1000 Genomes Project as reference

SNPs.2 We first compute tissue-specific scores by using each of

our methods for the 9,254,335 reference SNPs.

In the stratified LD-score regression approach, a linear model is

used to model a quantitative phenotype yi for an individual i:

yi ¼
X
j˛G

Xijbj þ ei:
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Here, G is some set of SNPs, Xij is the standardized genotype of

individual i at SNP j, bj is the effect size of SNP j, and ei is mean-

zero noise. In this framework, b, the vector of all bj, is modeled

as a mean-zero random vector with independent entries, and the

variance of bj depends on the functional categories included in

the model. We have a set of functional categories, C1, ., CC,

and the variance of a SNP’s effect size will depend on which func-

tional categories it belongs to:

Var
�
bj

� ¼ X
c:j˛Cc

tc:

Here, tc is the per-SNP contribution to heritability of SNPs in

category CC. Lindblad-Toh et al.1 show that under this model, tc
can be estimated through the following equation:

E
h
c2
j

i
¼ N

X
c

tclðj; cÞ þ 1:

Here, c2
j is the chi-square statistic for SNP j from a GWAS,N is the

sample size from that study, and l(j, c) is the LD score of SNP jwith

respect to category Cc, lðj;cÞ ¼Pk˛Cc
r2jk. This equation therefore al-

lows for the estimation of tc via the regression of the chi-square

statistics from a GWAS on the LD scores of the regression SNPs.

Here, we extend the stratified LD score by allowing SNPs to be

assigned to a category Cc probabilistically, i.e., we assume a proba-

bility pkc that SNP k belongs to category Cc and therefore that the

variance of its effect size is affected by its membership in that cate-

gory. This involves only minor changes to the above equations,

namely, we have that

Var
�
bj

� ¼ X
c:j˛Cc

pjctc;

where pjc is the probability that SNP j belongs to categoryCc, and as

above,

E
h
c2
j

i
¼ N

X
c

tclðj; cÞ þ 1;

although now lðj;cÞ ¼Pk˛Cc
pkcr

2
jk, where pkc is the probability that

SNP k belongs to category Cc. We can therefore still estimate tc via

the regression of the chi-square statistics from a GWAS on the LD

scores of the regression SNPs, but in calculating these LD scores,

we weight the squared correlation of a SNP k with a regression

SNP j by the probability that SNP k belongs to a particular category.

For each tissue and phenotype and each of our functional

scores, we fit a separate LD-score regression model, including the

LD score derived from the posterior probability that each regres-

sion SNP is in the functional component in that tissue, to estimate

the per-SNP contribution of SNPs belonging to that component to

heritability. To control for overlap of the tissue-specific functional

score with other functional categories, we use the same 54 baseline

categories used in Lindblad-Toh et al.,1 which represent various

non-tissue-specific annotations, including histone-modification

measurements combined across tissues, measurements of open

chromatin, and super enhancers.

Assessing Pairwise Correlations among 21 Complex

Traits
Our aim here is to calculate a correlation matrix of 21 phenotypes

on the basis of the Z scores from the LD-score regression procedure

and a p value corresponding to each pair of phenotypes. From the

LD-score regression approach, we obtain a matrix of Z scores cor-

responding to 127 (p ¼ 127) tissues and 21 (q ¼ 21) phenotypes.
The Ame
The main issue we need to account for when computing the cor-

relations and the p values is that the tissues are correlated.

Let Zij be the Z score corresponding to the ith tissue and jth

phenotype, and let Zi ¼ (Zi1, ., Ziq) and Zj ¼ (Z1j, ., Zpj) be

the row and column vectors, respectively, of matrix Z. Given

that the elements of Z are Z scores, we assume Zi � N(0, Sq) and

Zj � N(0, Sp).

Estimation of the Correlation Matrix

We aim to estimate Sq, but the problem is that Zi values are not

independent. To solve the problem, we propose the following

perturbation method.

Let B be the number of perturbation replicates. For the bth repli-

cate, we generate p independent random variables from N(0, 1),

ab1, ., abp. Let

Xb ¼ 1ffiffiffi
p

p
X

1%i%p

abiZi:

It can be shown that cov(Xb) ¼ Sq and cov(Xb, Xb0) ¼ 0 for any

1 % b and b0 % B, so we are able to use the uncorrelated perturba-

tion samplesX1,., XB to approximate Sq and the corresponding

correlation matrix Pq. We take B ¼ 100,000.

p Values Corresponding to All Pairs of Phenotypes

For pairs from an uncorrelated bivariate normal distribution, the

sampling distribution of a certain function of Pearson’s correlation

coefficient follows Student’s t distribution with degrees of freedom

M � 2, where M is the number of uncorrelated random variables.

Specifically, if the underlying variables have a bivariate normal dis-

tribution, the variable

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � 2

1� r2

s

follows a Student’s t distribution with degrees of freedom M � 2.

In our case, the number of uncorrelated random variables M

depends on the correlation structure of the 127 tissues. M can be

understood as the effective number of tissues. Similar to the calcu-

lation of the number of effective tests by Gao et al.,40 we estimate

M by applying an eigen decomposition to the Jaccard matrix. Sup-

pose that l1 R l2 R . R lp are the eigenvalues arranged in de-

scending order. We estimate M by the smallest value such that

ðPM
i¼1li=

Pp
i¼1liÞ > C. It should be noted that a smaller C will

result in more conservative p values because the number of ‘‘effec-

tive tissues’’ is smaller, e.g., M ¼ 124 when C ¼ 99.5% and M ¼ 96

when C ¼ 95%. A threshold C that is too large or too small could

cause M to be either overly liberal or overly conservative. The

p values were calculated on the basis of C ¼ 99.5%.
Availability of Code and Functional Scores
We have implemented the LDA algorithm into an R package,

FUNLDA. The package and FUN-LDA scores for all genome-wide

positions across all 127 tissues and cell types are available online

(see Web Resources).
Results

Overview of the FUN-LDA Approach

We propose here an integrative functional score for pre-

dicting the functional effects of genetic variants at a tissue-

and cell-type-specific level. The model is based on the LDA

model, a generative probabilistic model commonly used in
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the topic modeling literature. The variant scores in each

tissue are modeled as a mixture over latent functional clas-

ses. In the mixture distribution, we assume that the

mixture components are shared across all tissues, whereas

the mixture proportions for the different functional classes

can vary from tissue to tissue (more details on the model

and inference algorithm are given in the Material and

Methods). Because our primary goal is to provide a func-

tional score (as opposed to a functional element annota-

tion), we focus on integrating four activating histone

modifications (i.e., H3K4me1, H3K4me3, H3K9ac, and

H3K27ac) and DNase. For the data on the four activating

histone modifications, we compute ‘‘valley’’ scores (Mate-

rial and Methods) on the basis of previous work showing

that within regions of high histone acetylation, local

minima (or valleys) are strongly associated with transcrip-

tion factor binding sites.33 We fit the LDA model with

multiple functional classes to these data and compute for

each position its posterior probability of belonging to a

functional class in a specific tissue. We define the func-

tional score at a position as the sum of posterior probabil-

ities for the designated active functional classes (see next

sub-section).

FUN-LDA Model with Nine Classes

Here, we use data on four activating histonemodifications,

namely H3K4me1, H3K4me3, H3K9ac, and H3K27ac, and

DNase for 127 different cell types and tissues represented

in the Roadmap datasets (see Tables S3 and S4). Not all of

the histone marks were profiled for each of the 127

different cell types and tissues. However, using the rela-

tionships between different marks within and across tis-

sues, previous studies have predicted signal tracks for

each of these marks across all tissues.10,20 We make use of

these predicted signal tracks to compute integrated func-

tional scores for every possible position in the human

genome for 127 cell types and tissues. Specifically, using

the perplexity-based criterion (see Material and Methods),

visual inspection of the resulting classes, and prior knowl-

edge of the relationship between histone modifications

and chromatin states, we investigate models with varying

numbers of classes and chose as our final model a model

with nine classes (as shown in Figure S2, the perplexity

measure begins to plateau with models with nine classes).

We fit the LDA model with nine classes to the valley

scores for the data on active histone modification and

quantitative DNase and compute posterior probabilities

at each position for the different functional classes in the

different tissues and cell types. The active functional clas-

ses correspond to active promoters and active enhancers

(Figure S1). As in genome segmentation approaches such

as ChromHMM (25-state model), Segway, and IDEAS, we

also make a similar partition (see Material and Methods

and Table S1). For each position, both our method and

ChromHMM use the sum of the posterior probabilities

for the classes in the functional group to score the position.

Segway and IDEAS provide only a functional-class assign-
928 The American Journal of Human Genetics 102, 920–942, May 3,
ment for each position for each cell type and tissue in

Roadmap, and we use these assignments to identify the

functional variants. The proportions of positions in the

functional groups across different tissues and cell types

for each method are shown in Figure S3. FUN-LDA,

ChromHMM, and DNase-narrow (DNase narrow peaks) es-

timate that an average of 2% of the genome is functional in

a cell type or tissue in Roadmap, and the remaining

methods produce higher estimates for the size of the func-

tional component.

Sharing Predicted Functional Variants across Tissues and Cell

Types

For each variant in the 1000 Genomes Project, we sepa-

rately compute the probability that each Roadmap tissue

is in the functional class. In Figure 1, we provide a global

picture of the sharing of predicted functional variants

across tissues in Roadmap by using the generalized Jaccard

similarity index, a measure of overlap between predicted

functional variants in two tissues (see Material and

Methods). General tissue groupings are indicated in

different colors. As expected, tissues that are functionally

related tend to cluster together. There are roughly three

major groups: blood cells (indicated in red), including

various primary immune cell subtypes, stem cells (indi-

cated in blue), and a third group corresponding to various

solid organs (this grouping is also apparent in the multi-

dimensional scaling visualization of the correlations be-

tween the functional scores in Figure S4; see also Kundaje

et al.,10 Ernst and Kellis,19 and Figure S5 for related results

using single histone marks and DNase).

Overall, the median Jaccard index across all pairs of tis-

sues is 0.24. As a comparison, we also compute the Jaccard

overlap indices by using predicted functional variants that

fall in promoters and separately in enhancers (Material and

Methods; see also Figures S6 and S7, which show the Jac-

card indices for all pairs of tissues by using predicted func-

tional variants that fall in promoters and enhancers,

respectively). The median Jaccard index for variants falling

in promoters is 0.33, and that for variants falling in en-

hancers is 0.16, concordant with existing literature

showing that there tends to be more tissue specificity

(less sharing) for predicted functional variants in en-

hancers than for those in promoters.41

Enrichment Analyses Using eQTLs from the GTEx,

Geuvadis, and TwinsUK Data

eQTLs from the GTEx Project

The GTEx project is designed to establish a comprehensive

data resource on genetic variation, gene expression, and

other molecular phenotypes across multiple human tis-

sues.37 We focus here on the cis-eQTL results from the

GTEx v.6 release, which comprises RNA sequencing data

on 7,051 samples in 44 tissues, each with at least 70 sam-

ples (Table S2). For each GTEx tissue, we are interested in

identifying the Roadmap tissue that has a more significant

enrichment of eQTLs from that GTEx tissue than from

other Roadmap tissues (see Material and Methods). We
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Figure 1. Jaccard Index of Overlap among Predicted Functional Variants in Different Cell Types and Tissues in Roadmap Epigenomics
Hierarchical clustering is used for clustering the different cell types and tissues.
exclude from analysis the sex-specific GTEx tissues (ovary,

vagina, uterus, testis, prostate, and breast), most of which

have no relevant counterpart in Roadmap. In Table 1, we

show the top Roadmap tissue for each remaining GTEx tis-

sue, along with the p value and the enrichment ratio from

the enrichment test. In most cases, eQTLs from a GTEx

tissue show the most significant enrichment in the func-

tional component of a relevant Roadmap tissue. For

example, for liver tissue in GTEx, liver is the Roadmap tis-

sue with the most significant enrichment; for pancreas tis-

sue in GTEx, pancreas is the Roadmap tissue with the most
The Ame
significant enrichment; for skeletal muscle tissue in GTEx,

skeletal muscle is the corresponding Roadmap tissue. How-

ever, there are also a few cases where the top tissue is not

necessarily the most intuitive one, such as for lung and

several brain tissues. Generally, the tissues with unex-

pected combinations tend to either have small sample sizes

for eQTL discovery in GTEx (such as brain tissues) or inad-

equate representation in Roadmap (e.g., thyroid, pituitary

gland, tibial artery, coronary artery, gastroesophageal junc-

tion of the esophagus, etc.). Controlling the false-discovery

rate (FDR) at the 0.05 level, we find that most of the
rican Journal of Human Genetics 102, 920–942, May 3, 2018 929



Table 2. Top Cell Types and Tissues in Roadmap for 21 GWAS Traits according to FUN-LDA Posterior Probabilities

Trait Roadmap Epigenomics Name �log10(p) nGWAS

Schizophrenia fetal brain female 14.69 82,315

Height mesenchymal-stem-cell-derived chondrocyte cultured cells 12.27 133,653

Rheumatoid arthritis GM12878 lymphoblastoid cells 6.92 58,284

Crohn disease primary B cells from cord blood 6.24 20,883

Age at menarche H9-derived neuronal progenitor cultured cells 6.14 132,989

Educational attainment fetal brain female 5.83 101,069

BMI brain germinal matrix 4.79 123,865

HDL liver 4.72 99,900

Coronary artery disease liver 4.60 86,995

Ulcerative colitis primary T helper 17 cells PMA-I stimulated 4.44 27,432

Type 2 diabetes pancreatic islets 4.20 69,033

Epilepsy brain anterior caudate 4.11 34,853

Triglycerides liver 4.10 96,598

LDL liver 4.08 95,454

Alopecia areata primary T cells from cord blood 3.90 7,776

Alzheimer primary hematopoietic stem cells G-CSF-mobilized male 3.78 54,162

IGAN primary natural killer cells from peripheral blood 3.28 11,946

Bipolar disorder fetal brain female 3.19 16,731

Ever smoked brain inferior temporal lobe 2.67 74,035

Autism primary monocytes from peripheral blood 2.40 10,263

Fasting glucose pancreatic islets 1.44 58,074

The p value from the stratified LD-score regression and the GWAS sample size are reported for each trait.
mismatches are not significant at this level (Table 1). We

note that enrichment ratios tend to be small, especially

for those tissues above the FDR threshold. This might be

due to considerable tissue sharing of cis-eQTL effects re-

ported in the GTEx study.42

eQTLs from the Geuvadis and TwinsUK Data

We sought to perform similar analyses by using eQTLs

identified in other studies, particularly those in lympho-

blastoid cell lines (LCLs) from the Geuvadis project and

four tissues (fat, LCLs, skin, and whole blood) in individ-

uals from the TwinsUK cohort. We have focused here on

the lead eQTLs, i.e., those variants most associated with

gene expression levels.38 As shown in Table 1, in each

case, themost significantly enriched Roadmap tissue corre-

sponds very well to the tissue of origin used in the eQTL

discovery, providing an independent validation of the

findings using the eQTLs from GTEx.

Prediction of Causal Tissues for 21 Complex Traits

As an application of our scores to the genetics of complex

traits, we use the recently developed stratified LD-score

regression framework39 to identify the most relevant cell

types and tissues for 21 complex traits for which moderate

to large GWASs have been performed (Table 2).43–63 The
930 The American Journal of Human Genetics 102, 920–942, May 3,
stratified LD-score regression approach uses information

from all SNPs and explicitly models LD to estimate the

contribution to heritability of different functional classes

of variants. We modify this method to weigh SNPs by their

tissue-specific functional score (e.g., FUN-LDA), and in this

way we assess the contribution to heritability of predicted

functional SNPs in a particular Roadmap cell type or tissue

(see Material and Methods for more details).

In Table 2, we show the top Roadmap cell type or tissue

(the one with the smallest p value from testing whether

predicted functional variants in a tissue contribute signifi-

cantly to SNP heritability) for each of the 21 complex traits

from using FUN-LDA to predict functional variants in spe-

cific cell types and tissues. For most disorders, the top tis-

sue has previously been implicated in their pathogenesis.

For example, the top tissues for body mass index (BMI)

are brain tissues, consistent with recent findings indicating

that BMI-associated loci are enriched with expression

in the brain and central nervous system.64 Similarly, the

brain represents the top tissue for most neuropsychiatric

disorders, education levels, and smoking. Blood-derived

and immune cells represent the top tissue for virtually

all of the autoimmune conditions available for analysis.

For example, GWAS findings for ulcerative colitis map
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Figure 2. Tissue Correlations for 21
Common Traits
Hierarchical clustering (average linkage
method) is used for clustering diseases.
The x symbol indicates that those correla-
tions are not significant at the 0.0001 level.
specifically to the regulatory elements in T helper 17 cells,

whereas LCLs represent the top cell type for rheumatoid

arthritis. Another interesting finding involves primary he-

matopoietic stem cells for Alzheimer disease, consistent

with emerging data on the involvement of bone-marrow-

derived immune cells in the pathogenesis of neurodegen-

eration.65 For the top cell type or tissue for each trait, we

further estimate the contribution to heritability of variants

in different functional classes (in Figure S1) and show that,

overall, the variants in active promoters and active en-

hancers for the top tissue are the most enriched in herita-

bility, whereas many of the non-functional classes show

no enrichment or disenrichment.

Although in Table 2 we report only the top-ranked tissue

for each trait, clearly other top-ranked tissues might be

relevant as well. Indeed, as a result of high correlation

among particular tissue and cell types in Roadmap (e.g.,

many different blood cell types, including various primary

immune cell subtypes), it is difficult to distinguish among

the top tissues. As shown in Figure S8, for autoimmune and

inflammatory conditions (including Crohn disease, alope-

cia areata, rheumatoid arthritis, and immunoglobulin A

[IgA] nephropathy), because of the large number of im-

mune cells in Roadmap, several top cell types show similar

patterns of enrichment. On the other hand, for traits such

as low-density lipoprotein (LDL), high-density lipoprotein

(HDL), and triglycerides, the top tissue (liver) is substan-

tially more enriched than the next few tissues.

Results for other methods are shown in Tables S5–S7. Es-

timates of enrichment (defined as the proportion of SNP
The American Journal of Human
heritability in the category divided

by the proportion of SNPs in that

category) for the functional compo-

nent in the top tissues in Tables S5–

S7 are shown in Figure S9. On average

across traits, the functional compo-

nent for the top tissue as defined by

FUN-LDA shows a higher enrichment

than other methods. FUN-LDA is

followed closely by DNase-narrow

and ChromHMM. Methods such as

DNase-gapped, GenoSkyline, Segway,

and IDEAS show substantially lower

enrichments. However, in terms

of actual heritability explained,

methods such as DNase-gapped, Seg-

way, and IDEAS lead to more ex-

plained heritability than methods

such as FUN-LDA (Figure S9). For
example, for FUN-LDA, 2% of the SNPs (functional in

the top tissue) explain an estimated 32% of SNP heritabil-

ity, whereas for IDEAS, 7.1% SNPs explain an estimated

52% of heritability. Essentially, FUN-LDA tends to have

higher specificity at the expense of lower sensitivity,

whereas methods such as IDEAS and Segway tend to

have higher sensitivity and lower specificity. In the next

sub-section, we compare these different methods on the

basis of the AUROC (area under a receiver operating char-

acteristic curve), which rigorously accounts for sensitivity-

specificity tradeoffs, for different test datasets.

In terms of the top tissues identified by each method, it

is difficult to make an objective comparison given that the

underlying tissues and cell types are not known for many

complex traits. However, looking at the results in Tables

S5–S7, one can point out several likely mismatches, such

as ‘‘lung’’ identified for coronary artery disease by both

GenoSkyline and DNase-narrow or ‘‘Dnd41 T cell leukemia

cell line’’ and ‘‘fetal thymus’’ identified for epilepsy by

DNase and DNase-narrow, respectively. Notably, for

type 2 diabetes, FUN-LDA, Segway, and DNase-gapped

are the only methods to point to pancreatic tissue, well-

known to be relevant to type 2 diabetes.

In Figure 2, we show the correlation matrix for the 21

traits on the basis of the Z scores from the LD-score regres-

sions (see Material and Methods for more details on how

these pairwise correlations were estimated). This correla-

tion matrix reflects the extent to which traits share the

same causal tissues rather than the genetic correlation.66

Three large phenotypic clusters are clearly evident. The
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most tightly correlated cluster contains autoimmune and

inflammatory conditions, including Crohn disease, alope-

cia areata, rheumatoid arthritis, and IgA nephropathy. As

expected, these conditions share the highest functional

scores in blood-derived immune cells. The second most

strongly inter-correlated cluster is driven by scores in

neuronal tissues and consists of BMI, age at menarche,

educational attainment, schizophrenia, and smoking his-

tory, as well as somewhat weaker correlations with autism,

epilepsy, and bipolar disorder. Lastly, there is a clear co-

clustering of cardiometabolic traits that map to the tissues

of liver, pancreas, and small intestine. Also, as shown, Alz-

heimer disease clusters with LDL, HDL, and triglycerides,

concordant with recent reports on a link between cardio-

vascular disease and Alzheimer disease.67

Validations of OurModel’s Predictions and Comparisons

with Existing Methods for Functional Annotation

To further assess the accuracy of our predictions and

compare with existing approaches for functional predic-

tion, we use variants that have been shown in the literature

to have some evidence of a regulatory function. We focus

on several main lists of variants with tissue- and/or cell-

type-specific functional evidence: (1) eight variants that

have been implicated in Mendelian and complex diseases

and have additional experimental validation of their func-

tional effects;68–75 (2) confirmed regulatory variants from a

multiplexed reporter assay in LCLs;76 (3) regulatory motifs

in 2,000 predicted human enhancers from a MPRA in two

human cell lines: liver carcinoma (HepG2) and erythro-

cytic leukemia (K562);77 (4) a collection of dsQTLs (DNase

I sensitivity quantitative trait loci) in LCLs;78 and (5) vali-

dated enhancers in 167 ultra-conserved sequence ele-

ments.79 We also employed several non-tissue-specific da-

tasets: (6) manually curated, experimentally validated

regulatory SNPs;80 (7) allelic-imbalanced SNPs in chro-

matin accessibility from a large number of DNase

sequencing (DNase-seq) assays;81 (8) refined causal SNPs

in noncoding regions from different sources (including

the Human Gene Mutation Database [HGMD], ClinVar,

and OregAnno) and variants from fine-mapping candidate

causal SNPs for 39 immune and non-immune diseases in a

recent fine-mapping study;80 and (9) eQTLs from 11 uni-

formly processed fine-mapping studies.38

Tissue- and Cell-Type-Specific Functional Predictions

Noncoding Variants Implicated in Mendelian and Complex

Traits with Experimentally Predicted Regulatory Function. We

selected the following eight SNPs that have been shown

experimentally to have a regulatory function in particu-

lar tissues: rs6801957,68 rs12821256,69 rs12350739,70

rs12740374,71 rs356168,72 rs2473307,73 rs227727,74 and

rs144361550.75 In Figure 3 and Figures S10–S15, we show

the predictions in �2 kb windows centered at these SNPs

from the different approaches: FUN-LDA, GenoSkyline,

ChromHMM (25-state model), Segway, and IDEAS. For

each of these SNPs, we selected the Roadmap tissue that

we believe is closest to the tissue used in the original func-
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tional studies68–75 (Table S8). We summarize below the re-

sults for two of the SNPs (rs6801957 and rs12821256) that

showed more tissue specificity than the other SNPs in the

set (i.e., were predicted to be functional in a small number

of Roadmap tissues). For the remaining six SNPs, the re-

sults are summarized in the Supplemental Material and

Methods and Figures S10–S15.

In their report, van den Boogaard et al.68 showed that

SNP rs6801957, found to be associated with electrocardiog-

raphy measures in GWASs, is associated with lower SCN5A

(MIM: 600163) expression in heart tissue in humans and

mice. In Figure 3, we show the predictions for Roadmap tis-

sue E104 (right atrium).

SNP rs12821256, associated with blond hair color in Ice-

land and the Netherlands, is located in an enhancer and

influences expression of KITLG (MIM: 184745) in cultured

human keratinocytes.69 In Figure 3, we show the predic-

tions for Roadmap tissue E127 (primary normal human

epidermal keratinocytes).

For both SNPs, FUN-LDA assigns a posterior probability

of 1 that they are functional in the corresponding tissues.

Compared with that of existing integrative methods (last

five rows in Figure 3), the region predicted to be functional

by FUN-LDA tends to be substantially smaller, and there-

fore FUN-LDA has a better ability to predict the causal

variant in a region of interest than commonly used

approaches.

Confirmed Regulatory Variants (emVars) from a Multiplexed

Reporter Assay. Tewhey et al.76 applied a new version of

the MPRA to identify variants with effects on gene expres-

sion. In particular, they applied it to 32,373 variants from

3,642 cis-eQTLs and control regions in LCLs and identified

842 variants showing differential expression between al-

leles, or emVars (expression-modulating variants). We

used this set of 842 emVars as positive control variants.

We paired each positive control with four variants tested

by using the MPRAwhere neither allele showed expression

different from that of the control and applying a threshold

of 0.1 for the Bonferroni-corrected p value. After removing

from the list of positive and negative control variants those

variants that we could not map to a genomic location by

using Ensembl (see Web Resources), we were left with

693 positive control variants and 2,772 negative control

variants.

We computed the AUROC and AUPR (area under the

precision-recall curve) values for several methods, in-

cluding FUN-LDA, GenoSkyline, ChromHMM (250state

model), Segway, IDEAS, and cepip (both cepip_cell and

cepip_combined). For ChromHMM, we partitioned the

25 states into two groups, functional and non-functional;

the functional group consisted of TssA (active transcription

start site [TSS]), PromU (promoter upstream TSS), PromD1

(promoter downstream TSS 1), PromD2 (promoter down-

stream TSS 2), EnhA1 (active enhancer 1), EnhA2 (active

enhancer 2), and EnhAF (active enhancer flank). For each

variant, we used the sum of ChromHMM posterior proba-

bilities for the classes in the functional group above to
2018



Figure 3. Functional Predictions from
Different Methods
Valley scores for four activating histone
marks and DNase, posterior probabili-
ties from FUN-LDA, GenoSkyline, and
ChromHMM, and segmentations from
ChromHMM, IDEAS, and Segway are
shown in 2 kb windows centered around
the lead SNPs. For clarity, we highlight in
the segmentations only the type of states
we consider functional (enhancer states
in red and promoter states in blue) for
the different segmentation approaches.
score the variant. For FUN-LDA, we similarly grouped the

designated active promoter and active enhancer classes

to form the functional class (see the Material and Methods

and Table S1). Segway and IDEAS provided only a func-
The American Journal of Human
tional-class assignment for each posi-

tion, and we used these assignments

to identify the functional variants.

Results are shown in Table 3. As

shown, FUN-LDA had a higher

AUROC (0.707) than the existing

methods: ChromHMM (0.669), Gen-

oSkyline (0.673), IDEAS (0.645), Seg-

way (0.622), cepip_cell (0.653), and

cepip_combined (0.642). Compared

with DNase, FUN-LDA performed

significantly better than the two bi-

narized versions—DNase-narrow

(0.666) and DNase-gapped (0.659),

the two versions commonly used in

practice—but it did not outperform

the quantitative DNase (0.718). We

report the results in terms of both

AUROC and AUPR, which exhibited

similar patterns.

Regulatory Motifs in 2,000 Predicted

Human Enhancers from a MPRA. Kher-

adpour et al.77 used a MPRA to mea-

sure the transcriptional levels pro-

duced by targeted motif disruptions

in 2,104 candidate enhancers in two

human cell lines, liver carcinoma

(HepG2) and erythrocytic leukemia

(K562) cell lines, providing one of

the largest resources of experimen-

tally validated enhancer manipula-

tions in human cells. We used as

positive control variants those vari-

ants where the p value comparing

expression values for the sequence

including the motif with expression

values for the sequences including

scrambled versions of the motif was

less than 0.05. We used as negative

control variants those variants where
this p value was greater than 0.1. After removing those var-

iants whose genomic coordinates we could not resolve, we

were left with 525 positive and 1,451 negative control var-

iants for HepG2 and 342 positive and 1,578 negative
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Table 3. Tissue- and Cell-Type-Specific Functional Predictions

Method AUROC AUPR

emVars in Tewhey et al.,76 E116

FUN-LDA 0.707 0.468

GenoSkyline 0.673 0.394

ChromHMM 0.669 0.420

Segway 0.622 0.356

IDEAS 0.645 0.321

DNase 0.718 0.540

DNase-narrow 0.666 0.406

DNase-gapped 0.659 0.335

cepip_cell 0.653 0.321

cepip_combined 0.642 0.373

Regulatory Motifs in Kheradpour et al.,77 E118 and HepG2

FUN-LDA 0.691 0.445

GenoSkyline 0.629 0.331

ChromHMM 0.606 0.344

Segway 0.618 0.334

IDEAS 0.546 0.290

DNase 0.719 0.506

DNase-narrow 0.561 0.312

DNase-gapped 0.550 0.291

cepip_cell 0.592 0.300

cepip_combined 0.641 0.364

Regulatory Motifs in Kheradpour et al.,77 E123 and K562

FUN-LDA 0.645 0.287

GenoSkyline 0.620 0.256

ChromHMM 0.634 0.263

Segway 0.585 0.241

IDEAS 0.615 0.231

DNase 0.656 0.337

DNase-narrow 0.524 0.191

DNase-gapped 0.565 0.205

cepip_cell 0.606 0.217

cepip_combined 0.625 0.247

dsQTLs in Degner et al.,78 E116

FUN-LDA 0.750 0.374

GenoSkyline 0.740 0.368

ChromHMM 0.639 0.303

Segway 0.580 0.277

IDEAS 0.677 0.330

DNase 0.823 0.474

DNase-narrow 0.665 0.345

Table 3. Continued

Method AUROC AUPR

DNase-gapped 0.662 0.313

cepip_cell 0.741 0.379

cepip_combined 0.760 0.398

deltaSVM 0.751 0.589

dsQTLs and eQTLs in Degner et al.,78 E116

FUN-LDA 0.793 0.476

GenoSkyline 0.756 0.372

ChromHMM 0.721 0.403

Segway 0.648 0.340

IDEAS 0.700 0.334

DNase 0.832 0.529

DNase-narrow 0.713 0.376

DNase-gapped 0.701 0.327

cepip_cell 0.753 0.381

cepip_combined 0.769 0.473

deltaSVM 0.708 0.509

AUROC and AUPR values for discriminating between variants likely to be func-
tional and control variants are shown. Results are shown for several datasets
(three different cell lines) with experimental validation (MPRA) of potential reg-
ulatory variants and one dsQTL dataset (dsQTLs and eQTLs contains a subset
of dsQTLs that are also eQTLs). Methods include FUN-LDA, GenoSkyline,
ChromHMM (25-state model), Segway, IDEAS, DNase (quantitative, DNase-
narrow, and DNase-gapped), cepip, and deltaSVM (note that deltaSVM pre-
dictions are available only for the dsQTL dataset).
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control variants for K562. For all methods, we calculated

the scores for these motifs by averaging across all bases in

the motifs. As shown in Table 3, FUN-LDA had better

accuracy than GenoSkyline, ChromHMM, IDEAS, Segway,

and cepip, and for HepG2, the improvement was substan-

tial (e.g., AUROC ¼ 0.691 for FUN-LDA, 0.606 for

ChromHMM, 0.629 for GenoSkyline, 0.592 for cepip_cell,

and 0.641 for cepip_combined).

We attempted to form the functional group in an objec-

tivemanner on the basis of prior knowledge of which func-

tional classes from the different segmentation approaches

(ChromHMM, Segway, and IDEAS) should be considered

active functional elements. We performed an additional

analysis where we computed the AUROC for all combina-

tions of states (individual AUROCR 0.5) for each segmen-

tationmethod and selected the state combination with the

highest AUROC for the three datasets above. The results

from these analyses are shown in Table S10. Even with

this optimized state combination, the AUROCs for the

various methods were mostly lower than for our (unbias-

edly selected) state combination for FUN-LDA. Further-

more, the state combination with the maximum AUROC

often contained states such as poised and bivalent pro-

moters, which would not be considered functional a priori.

dsQTLs in LCLs. We also utilized a collection of dsQTLs

in human LCLs, originally identified with the use of
2018



DNase I sequencing data from human LCLs.78 Lee et al.29

further processed this list of dsQTLs and generated 579

dsQTLs (with p value < 1 3 10�5) and randomly selected

as controls a larger set of common SNPs (minor allele fre-

quency > 5%) only from the top 5% of DHSs that had

been used for identifying dsQTLs in the original study.78

After removing variants with missing functional predic-

tions, we were left with 560 dsQTLs in the positive control

set. We paired each of these dsQTLs with four randomly

selected controls (2,236 negative controls). In addition,

Degner et al.78 observed that a substantial fraction (16%)

of dsQTLs are also associated with variation in the expres-

sion levels of nearby genes (i.e., these loci are also eQTLs).

Therefore, we also separately considered 102 dsQTLs that

are also eQTLs and paired them with 408 randomly

selected (from the set above) negative controls. We present

the results in Table 3. It should be noted that the vast ma-

jority of dsQTLs reside close to the target DHS, and hence

methods such as DNase and deltaSVM are expected to

perform well for these datasets. Despite this, FUN-LDA at-

tained an AUROC similar to that of deltaSVM for the

dsQTL dataset and a substantially higher value for the

dsQTL and eQTL dataset (0.793 for FUN-LDA and 0.708

for deltaSVM). In terms of AUPR, FUN-LDA performance

was third after DNase and deltaSVM.

In Figure S16, we use hierarchical clustering to show how

the different tissue-specific methods are grouped together.

Methods such as DNase and FUN-LDA are closest together

in terms of AUROC and tend to perform best across the

various tissue-specific datasets, whereas segmentation

methods such as ChromHMM, Segway, and IDEAS are

grouped together along with the binary DNase scores

(DNase-gapped and DNase-narrow).

Ultra-conserved Sequence Elements. Pennacchio et al.79

used extreme evolutionary sequence conservation as a

filter to identify putative gene regulatory sequences.

Using this approach, they identified 167 ultra-conserved

sequence elements and then used a transgenic mouse

enhancer assay that linked each of these candidate ele-

ments to a mouse promoter fused to a lacZ reporter gene.

In total, 75 of 167 candidate sequences functioned repro-

ducibly as tissue-specific enhancers of gene expression by

the readout of lacZ expression at mouse embryonic day

11.5 (E11.5). Out of 75 positive fragments, 50 mapped to

a single anatomical structure in the E11.5 embryonic tis-

sue, whereas the remaining 25 enhancers directed expres-

sion to two or more anatomical structures. Here, we

compare the functional scores for the variants falling

into these 75 positive enhancers with scores of variants

in the remaining 92 elements. In Table S11, we show the

top Roadmap tissue for each method and the correspond-

ing AUROC values. Notably, most methods, including

FUN-LDA, selected embryonic tissue as the top tissue,

consistent with the conducted experiment. Importantly,

FUN-LDA outperformed all other methods except for

GenoSkyline in predicting functional elements on the ba-

sis of these enhancer assays. Results based on AUPR values
The Ame
show similar patterns. It is important to bear in mind that

the negative controls we used in this analysis (and more

generally in our other analyses) could in fact be functional

in different experimental environments, and the perfor-

mance of the prediction methods we considered was

affected by such misclassifications.

Widths of Predicted Functional Regions for Each Method. In

Figure S17, we show the distribution of the widths of pre-

dicted functional regions that include validated functional

variants from the three lists above for the tissue- and cell-

type-specific methods. We determined the width of the

functional region around a variant by finding the width

of the window around the variant for which the value of

the score (the probability) was greater than 0.5. Widths

were truncated at 20,000 bp (so all widths greater than

20,000 bp were represented as 20,000 bp). Regions pre-

dicted by FUN-LDA were predicted to be substantially nar-

rower than those predicted by the other methods (median

width was 600 bp for FUN-LDA, 2,100 bp for ChromHMM,

1,800 bp for GenoSkyline, 1,100 bp for DNase-narrow,

4,400 bp for DNase-gapped, 4,100 bp for IDEAS, 1,300 bp

for Segway, and 2,300 bp for cepip_cell); hence, compared

with existing methods, FUN-LDA has the ability to more

precisely localize the functional variants in a region of

interest.

Comparison with Organism-Level Functional Prediction

Methods on Tissue- and Cell-Type-Specific Datasets. Whereas

above we focused on comparing FUN-LDA with other tis-

sue- and cell-type-specific functional prediction methods

on datasets with available tissue- and cell-type-specific pre-

dictions for variants, we also compared them on the same

datasets with some of the more popular organism-level

prediction methods, including phyloP,36 CADD, DANN,

Eigen, DeepSea, and LINSIGHT. The results are in Table

S12. In most cases, FUN-LDA had a higher AUROC and

AUPR than the organism-level methods, illustrating that

prediction at the level of the tissue or cell type is more

informative than it should be given that the underlying

functional effects of variants are tissue or cell-type specific

and can vary from tissue to tissue. Note, however, that for

the dsQTLs, DeepSea performed better than FUN-LDA

most likely because DeepSea was trained to predict DHSs,

and the vast majority of dsQTLs reside close to the target

DHSs. This is similar to what we observed with DNase as

well, namely that DNase substantially outperformed other

methods, including FUN-LDA, on those datasets.

Organism-Level Functional Predictions

In addition to considering tissue- and cell-type-specific

functional predictions, we also considered applications to

datasets where the functional evidence is not restricted

to a particular tissue. In such cases, for the tissue and

cell-type functional prediction methods discussed above,

we defined the functional score for a variant as the

maximum of the functional scores across the 127 tissues

in ENCODE and Roadmap (this is the most severe func-

tional score and is similar to common practice, e.g.,

when a variant matches multiple functional categories in
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Table 4. Organism-Level Functional Prediction

Method AUROC AUPR

Validated Regulatory SNPs

FUN-LDA-max 0.878 0.764

GenoSkyline-max 0.846 0.647

ChromHMM-max 0.865 0.796

Segway-max 0.711 0.461

IDEAS-max 0.694 0.451

DNase-max 0.885 0.818

DNase-narrow-max 0.828 0.707

DNase-gapped-max 0.807 0.590

Eigen 0.806 0.679

CADD 0.718 0.492

DANN 0.711 0.531

LINSIGHT 0.818 0.615

PhyloP 0.575 0.417

DeepSea 0.774 0.680

Allelic-Imbalanced SNPs in Chromatin Accessibility

FUN-LDA-max 0.935 0.899

GenoSkyline-max 0.906 0.849

ChromHMM-max 0.863 0.846

Segway-max 0.793 0.688

IDEAS-max 0.794 0.694

DNase-max 0.968 0.952

DNase-narrow-max 0.869 0.859

DNase-gapped-max 0.849 0.778

Eigen 0.753 0.732

CADD 0.692 0.638

DANN 0.619 0.557

LINSIGHT 0.880 0.815

PhyloP 0.581 0.584

DeepSea 0.865 0.839

Refined Causal SNPs

FUN-LDA-max 0.803 0.534

GenoSkyline-max 0.811 0.529

ChromHMM-max 0.748 0.504

Segway-max 0.714 0.332

IDEAS-max 0.720 0.342

DNase-max 0.807 0.510

DNase-narrow-max 0.680 0.411

DNase-gapped-max 0.756 0.418

Eigen 0.655 0.206

CADD 0.591 0.122

Table 4. Continued

Method AUROC AUPR

DANN 0.587 0.109

LINSIGHT 0.775 0.435

PhyloP 0.560 0.257

DeepSea 0.686 0.379

Fine-Mapped eQTLs

FUN-LDA-max 0.775 0.727

GenoSkyline-max 0.785 0.725

ChromHMM-max 0.680 0.671

Segway-max 0.687 0.603

IDEAS-max 0.686 0.605

DNase-max 0.778 0.721

DNase-narrow-max 0.615 0.611

DNase-gapped-max 0.707 0.655

Eigen 0.653 0.616

CADD 0.621 0.562

DANN 0.573 0.506

LINSIGHT 0.777 0.685

PhyloP 0.548 0.519

DeepSea 0.684 0.629

AUROC and AUPR values for discriminating between variants likely to be func-
tional and control variants for are shown for four non-tissue specific datasets.
Methods include FUN-LDA-max (maximum across 127 different tissues),
GenoSkyline-max, ChromHMM-max (25-state model), Segway-max, IDEAS-
max, and DNase-max (quantitative, DNase-narrow, and DNase-gapped). In
addition, results for several organism-level functional prediction methods,
including phyloP (primate), Eigen, CADD, DANN, DeepSea, and LINSIGHT,
are reported.
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the Ensembl Variant Effect Predictor). We were unable to

include cepip and deltaSVM in these comparisons because

these two methods’ scores are not yet available across all

127 tissues and cell types in Roadmap. We compared our

proposed method with several popular organism-level

functional prediction methods, including phyloP (pri-

mate), CADD, Eigen, DANN, DeepSea, and LINSIGHT.

Validated Regulatory SNPs. We used a set of 76 manually

curated experimentally validated regulatory SNPs80 and

the same set of 156 frequency-matched background SNPs

within 10 kb of the curated causal variants as in Li

et al.80 The results are shown in Table 4. FUN-LDA

achieved an excellent AUROC of 0.878, substantially out-

performing the organism-level functional prediction

methods phyloP (0.575), CADD (0.718), Eigen (0.806),

DANN (0.711), DeepSea (0.774), and LINSIGHT (0.818).

Allelic-Imbalanced SNPs in Chromatin Accessibility. We also

considered a dataset of allelic-imbalanced SNPs in chro-

matin accessibility (9,456 positive controls and 9,678

negative controls) identified by a large number of DNase-

seq assays.81 The negative controls were frequency-

matched background SNPs around the nearest TSS of
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randomly selected genes. After removing variants with

missing functional predictions, we were left with 8,592

dsQTLs and 9,610 controls. It should be noted that the

allelic-imbalanced SNPs were identified by DNase-seq as-

says, and hence DNase was expected to perform well for

this dataset. As shown in Table 4, FUN-LDA performed

very well with an AUROC of 0.935, higher than that of tis-

sue-specific functional prediction methods GenoSkyline

(0.906), ChromHMM (0.863), Segway (0.793), and IDEAS

(0.794) and substantially better than that of organism-level

functional prediction methods phyloP (0.581), CADD

(0.692), Eigen (0.753), DANN (0.619), DeepSea (0.865),

and LINSIGHT (0.880).

Refined Causal SNPs. We used a collection of 5,229

refined ‘‘causal’’ SNPs in noncoding regions from different

sources, including the HGMD, ClinVar, and ORegAnno,

and variants from fine-mapping candidate causal SNPs

for 39 immune and non-immune diseases in a recent

fine-mapping study.80 The controls consisted of 20,916

randomly selected frequency-matched noncoding SNPs.

FUN-LDA performed very well with an AUROC of 0.803,

outperforming almost all the other functional predic-

tion methods, especially the organism-level prediction

methods (Table 4): phyloP (0.560), CADD (0.591), Eigen

(0.655), DANN (0.587), DeepSea (0.686), and LINSIGHT

(0.775).

Fine-Mapped eQTLs. Finally, we used a collection of

eQTLs (31,118 positive controls and 36,540 negative con-

trols) from the uniformly processed eQTL fine-mapping

data in Brown et al.38 The eQTLs were originally identified

by multi-trait Bayesian linear regression models from 11

studies on 7 tissues and cell lines and then pre-processed

by Li et al.80 for the generation of a dataset of 31,118

most likely functional eQTLs (our positive controls) and

36,540 frequency-matched background SNPs around the

nearest TSS of randomly selected genes (our negative con-

trols). FUN-LDA performed very well with an AUROC of

0.775, which was the same as that of LINSIGHT but sub-

stantially better than that of phyloP (0.548), CADD

(0.621), Eigen (0.653), DANN (0.573), and DeepSea

(0.684). With AUROCs of 0.785 and 0.778, respectively,

GenoSkyline and DNase performed slightly better than

FUN-LDA for this dataset.

In Figure S18, we use hierarchical clustering to show how

the different organism-level methods are grouped together.

As with the tissue-specific datasets, methods such as DNase

and FUN-LDA are closest together in terms of AUROC and

tend to perform best across the various datasets, whereas

segmentation methods such as ChromHMM, Segway,

and IDEAS are grouped together along with the binary

DNase scores (DNase-gapped and DNase-narrow).
Discussion

Here, we have introduced FUN-LDA, an unsupervised

approach that uses histone modification and DNase data
The Ame
from the ENCODE and Roadmap Epigenomics projects

for the functional prediction of genetic variation in specific

cell types and tissues, and have provided comparisons with

commonly used functional annotation methods both at

the tissue- and cell-type-specific level and at the organism

level. FUN-LDA is based on a mixture model that focuses

on identifying the narrow genomic regions whose disrup-

tion is most likely to interfere with function in a particular

cell type or tissue. Such context-specific functional predic-

tion of genetic variation is essential for understanding the

function of noncoding variation across cell types and tis-

sues and for interpreting genetic variants uncovered in

GWASs and sequencing studies. Although existing seg-

mentation approaches can be used to derive a numeric

functional score as well, we have shown that they tend

to be less accurate at predicting functional effects and

tend to predict wider functional regions than the proposed

approach. Relative to other recently developed functional

scores, such as GenoSkyline, FUN-LDA can have substan-

tially better prediction accuracy, can use annotation data

on the original scale (e.g., quantitative or binary), and

furthermore makes it explicit which classes are considered

functionally active, namely active promoters and active

enhancers, providing an attractive tool for functional

scoring of variants.

In terms of prediction accuracy, we have shown that,

overall, FUN-LDA outperforms existing methods over a

variety of test datasets, sometimes substantially. In partic-

ular, FUN-LDA has substantially better accuracy than pop-

ular organism-level functional scores, such as phyloP,

CADD, Eigen, DANN, DeepSea, and LINSIGHT. We have

also shown that quantitative DNase can have a higher pre-

dictive power than FUN-LDA and other tissue- and cell-

type-specific functional prediction methods, although

the difference between FUN-LDA and DNase is minor in

most comparisons and is smaller than the difference be-

tween FUN-LDA and other integrative methods (except

for the DNase-based datasets, such as dsQTLs and allelic-

imbalanced SNPs in chromatin accessibility, where DNase

has an inherent advantage). This observation is concor-

dant with a recent study showing that within open chro-

matin regions, transcription factor binding is strongly

correlated with the quantitative level of chromatin accessi-

bility (as measured by DNase-seq).82 Therefore, the pro-

posed FUN-LDA method, by being able to integrate

annotation data with arbitrary distributions, has clear

advantages over other mixture-based methods such as

GenoSkyline and ChromHMM, which make use of binary

peak calls. However, not being a probabilistic score is a sig-

nificant deficiency of DNase (e.g., it is more difficult to

implement and interpret enrichment analyses shown

here for eQTLs and LD-score regression analyses), and in

practice, in the vast majority of cases, researchers use bi-

nary DNase peak calls (DNase-narrow and DNase-gapped)

rather than quantitative DNase scores; as we have shown,

FUN-LDA significantly outperforms DNase peaks on the

metrics we considered. One approach of interest would
rican Journal of Human Genetics 102, 920–942, May 3, 2018 937



be to develop a probabilistic DNase score. Using FUN-LDA

or other non-parametric mixture models with only DNase

is not straightforward, given that in general, non-para-

metric mixture models are not identifiable with only one

dimension, so one needs to either add additional annota-

tions as we have done here or make parametric assump-

tions on the distribution of DNase (which is not straight-

forward). We leave this extension to future work.

These cell-type- and tissue-specific functional scores

have numerous applications. We have shown here that

eQTLs from several large studies, such as GTEx, Geuvadis,

and the TwinUK cohort, are most enriched in the func-

tional components from relevant Roadmap tissues. As pre-

viously shown,39 and as illustrated here as well, they can be

used for inferring the most relevant cell types and tissues

for a trait of interest and canhelp focus the search for causal

variants in complex traits by restricting the set of candidate

variants to only those that are predicted to be functional in

tissues relevant for the trait under consideration. Beyond

the applications shown here, such functional predictions

have numerous other applications. They can naturally be

used in gene-discovery studies to potentially improve po-

wer in sequence-based association tests such as SKAT and

burden83,84 and in fine-mapping studies.85,86 They can

also be used in identifying regulatory regions that are

depleted in functional variation in a specific tissue, similar

to recent efforts to identify coding regions that are depleted

in functional variation (e.g., missense, nonsense, and

splice acceptor or donor variants).9 Other applications

include improving power of trans-eQTL studies by using

cell-type- and tissue-specific functional predictions as prior

information. Similarly, studies on gene-gene and gene-

environment interactions can benefit from an analysis

focused on variants predicted to be functional in a cell

type or tissue relevant to the trait under study.

Choosing the number of functional classes in the LDA

model is not an easy task, partly because the number of

functional classes is not well defined. Here, we focused

on a model that includes nine functional classes and is

based on combining an objective measure (such as the per-

plexity of the model), visual inspection of the resulting

states, and biological knowledge. In our investigations,

the results were not very sensitive to the number of classes,

but models with fewer classes (i.e., 3–7) were not able to

distinguish among different functional classes (such as en-

hancers and promoters). There is some subjectivity in any

method that seeks to partition the genome into functional

classes both in terms of the number of such classes and in

terms of their interpretation. Further experiments that pro-

duce catalogs of specific types of elements with validated

tissue-specific functions would aid in determining the

number of states that a genomic annotation model should

have and interpreting those states, leading to potential im-

provements in the accuracy of such functional predictors.

Such tissue-specific experimental data would also allow the

use of supervised methods that could lead to improved tis-

sue-specific functional scores.
938 The American Journal of Human Genetics 102, 920–942, May 3,
Unlike our method, most of the existing segmentation

methods smooth the genomic signal spatially. Although

they thereby use information from neighboring regions

in making predictions for a particular variant, they can

be less able to predict functionality of narrow regions

with different histone-modification profiles from neigh-

boring regions. Another difference between our method

and those that use binary peak calls is that ours can incor-

porate the quantitative level of the functional annotations,

which can be important; for example, in the case of DNase,

it has been recently shown that the quantitative level of

chromatin accessibility is strongly correlated with tran-

scription factor binding.82 Furthermore, the use of the val-

ley score allows our method to predict narrower functional

regions than existing methods.

Overall, we propose a general framework for integrating

various features in order to predict the functional effects of

variants in noncoding regions of the genome. Although

the epigenetic features we integrate are mostly helpful for

predicting the effects of variants in cis-regulatory elements,

such as promoters, enhancers, silencers, and insulators, the

integration of additional features can lead to the discovery

of other types of functional variants, such as those with ef-

fects on post-transcriptional regulation by alteration of

RNA secondary structure or RNA-protein interactions.

Similar to segmentation approaches (such as ChromHMM

and Segway), our LDA framework could also be used for

segmenting the genome into detailed functional classes.

We have computed FUN-LDA posterior probabilities for

every position in the human genome for 127 tissue and

cell types available in Roadmap. These scores are available

on our website and can be imported into the UCSC

Genome Browser. Note also that it is easy to make predic-

tions in a new tissue once the model has been fit to the

tissues in Roadmap. Furthermore, as with some other

existing methods,19 it is possible to make predictions in a

new tissue even if not all the epigenetic features we

included are available, as long as one can impute the

missing features by taking advantage of the correlations

of epigenetic signals across both marks and samples as in

ChromImpute.20
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Web Resources

1000 Genomes, http://www.1000genomes.org/

CADD, http://cadd.gs.washington.edu/

cepip, http://jjwanglab.org/cepip/

ChromHMM, http://compbio.mit.edu/ChromHMM/

DANN, http://jjwanglab.org/PRVCS/index.html#Download

deltaSVM, http://www.beerlab.org/deltasvm/

Eigen, http://www.columbia.edu/�ii2135/eigen.html

ENCODE, https://www.encodeproject.org/

Ensembl, http://grch37.ensembl.org/index.html

FUNLDA: Genomic Latent Dirichlet Allocation, https://cran.

r-project.org/web/packages/FUNLDA

FUN-LDA, http://www.funlda.com/

GenoSkyline, http://genocanyon.med.yale.edu/GenoSkyline

GIANT consortium data files (BMI, height), http://www.

broadinstitute.org/collaboration/giant/index.php/GIANT_

consortium_data_files

GTEx Portal, http://www.gtexportal.org/home/

GTEx analysis methods, https://www.gtexportal.org/home/

documentationPage#staticTextAnalysisMethods

IDEAS, http://bx.psu.edu/�yuzhang/Roadmap_ideas/

Reg2Map, https://personal.broadinstitute.org/meuleman/reg2map/

HoneyBadger2-intersect_release/

Roadmap Epigenomics, http://www.roadmapepigenomics.

org/

Segway, http://noble.gs.washington.edu/proj/encyclopedia/

UCSC Genome Browser, https://genome.ucsc.edu/

GWAS Summary Statistics:

AgeatMenarche,http://www.reprogen.org/Menarche_Nature2014_

GWASMetaResults_17122014.zip

Alopecia areata (link no longer available), http://www.

broadinstitute.org/�sripke/sharelinks/sRSxpynHPaYRJ1SnYXD17

eo3qK8IE6daner_ALO4_1011b_mdsex/

Alzheimer disease, http://web.pasteur-lille.fr/en/recherche/u744/

igap/igap_download.php

Autism, http://www.med.unc.edu/pgc/shared-methods/data-access-

portal

Bipolar disorder, http://www.med.unc.edu/pgc/files/resultfiles/

pgc.bip.2012-04.zip

Crohn disease, ftp://ftp.sanger.ac.uk/pub/consortia/ibdgenetics/

cd-meta.txt.gz

Coronary artery disease, ftp://ftp.sanger.ac.uk/pub/

cardiogramplusc4d/cardiogram_gwas_results.zip

Educational attainment, http://ssgac.org/documents/SSGAC_

Rietveld2013.zip

Epilepsy, http://www.epigad.org/gwas_ilae2014/ILAE_All_Epi_11.

8.14.txt.gz

Ever smoked, http://www.med.unc.edu/pgc/files/resultfiles/tag.

evrsmk.tbl.gz

Fasting glucose, ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_

Manning_et_al_FastingGlucose_MainEffect.txt.gz

HDL, http://www.broadinstitute.org/mpg/pubs/lipids2010/HDL_

ONE_Eur.tbl.sorted.gz

IgA nephropathy, https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id¼phs000431.v2.p1

LDL, http://www.broadinstitute.org/mpg/pubs/lipids2010/LDL_

ONE_Eur.tbl.sorted.gz
The Ame
Rheumatoid arthritis, http://plaza.umin.ac.jp/yokada/datasource/

files/GWASMetaResults/RA_GWASmeta_European_v2.txt.gz

Schizophrenia, http://www.med.unc.edu/pgc/files/resultfiles/

scz2.snp.results.txt.gz

Triglycerides, http://www.broadinstitute.org/mpg/pubs/lipids2010/

TG_ONE_Eur.tbl.sorted.gz

Type 2 diabetes, http://www.diagram-consortium.org/downloads.

html

Ulcerative colitis, ftp://ftp.sanger.ac.uk/pub/consortia/ibdgenetics/

ucmeta-sumstats.txt.gz
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