Table 3.
Method | AUROC | AUPR |
---|---|---|
emVars in Tewhey et al.,76E116 | ||
FUN-LDA | 0.707 | 0.468 |
GenoSkyline | 0.673 | 0.394 |
ChromHMM | 0.669 | 0.420 |
Segway | 0.622 | 0.356 |
IDEAS | 0.645 | 0.321 |
DNase | 0.718 | 0.540 |
DNase-narrow | 0.666 | 0.406 |
DNase-gapped | 0.659 | 0.335 |
cepip_cell | 0.653 | 0.321 |
cepip_combined | 0.642 | 0.373 |
Regulatory Motifs in Kheradpour et al.,77E118 and HepG2 | ||
FUN-LDA | 0.691 | 0.445 |
GenoSkyline | 0.629 | 0.331 |
ChromHMM | 0.606 | 0.344 |
Segway | 0.618 | 0.334 |
IDEAS | 0.546 | 0.290 |
DNase | 0.719 | 0.506 |
DNase-narrow | 0.561 | 0.312 |
DNase-gapped | 0.550 | 0.291 |
cepip_cell | 0.592 | 0.300 |
cepip_combined | 0.641 | 0.364 |
Regulatory Motifs in Kheradpour et al.,77E123 and K562 | ||
FUN-LDA | 0.645 | 0.287 |
GenoSkyline | 0.620 | 0.256 |
ChromHMM | 0.634 | 0.263 |
Segway | 0.585 | 0.241 |
IDEAS | 0.615 | 0.231 |
DNase | 0.656 | 0.337 |
DNase-narrow | 0.524 | 0.191 |
DNase-gapped | 0.565 | 0.205 |
cepip_cell | 0.606 | 0.217 |
cepip_combined | 0.625 | 0.247 |
dsQTLs in Degner et al.,78E116 | ||
FUN-LDA | 0.750 | 0.374 |
GenoSkyline | 0.740 | 0.368 |
ChromHMM | 0.639 | 0.303 |
Segway | 0.580 | 0.277 |
IDEAS | 0.677 | 0.330 |
DNase | 0.823 | 0.474 |
DNase-narrow | 0.665 | 0.345 |
DNase-gapped | 0.662 | 0.313 |
cepip_cell | 0.741 | 0.379 |
cepip_combined | 0.760 | 0.398 |
deltaSVM | 0.751 | 0.589 |
dsQTLs and eQTLs in Degner et al.,78E116 | ||
FUN-LDA | 0.793 | 0.476 |
GenoSkyline | 0.756 | 0.372 |
ChromHMM | 0.721 | 0.403 |
Segway | 0.648 | 0.340 |
IDEAS | 0.700 | 0.334 |
DNase | 0.832 | 0.529 |
DNase-narrow | 0.713 | 0.376 |
DNase-gapped | 0.701 | 0.327 |
cepip_cell | 0.753 | 0.381 |
cepip_combined | 0.769 | 0.473 |
deltaSVM | 0.708 | 0.509 |
AUROC and AUPR values for discriminating between variants likely to be functional and control variants are shown. Results are shown for several datasets (three different cell lines) with experimental validation (MPRA) of potential regulatory variants and one dsQTL dataset (dsQTLs and eQTLs contains a subset of dsQTLs that are also eQTLs). Methods include FUN-LDA, GenoSkyline, ChromHMM (25-state model), Segway, IDEAS, DNase (quantitative, DNase-narrow, and DNase-gapped), cepip, and deltaSVM (note that deltaSVM predictions are available only for the dsQTL dataset).