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ORIGINAL ARTICLE

A genome-wide association study for extremely high

intelligence

D Zabaneh', E Krapohl', HA Gaspar', C Curtis'?, SH Lee'?, H Patel'?, S Newhouse'?, HM Wu', MA Simpson®, M Putallaz®, D Lubinski®,

R Plomin' and G Breen'?

We used a case—control genome-wide association (GWA) design with cases consisting of 1238 individuals from the top 0.0003
(~170 mean IQ) of the population distribution of intelligence and 8172 unselected population-based controls. The single-nucleotide
polymorphism heritability for the extreme 1Q trait was 0.33 (0.02), which is the highest so far for a cognitive phenotype, and
significant genome-wide genetic correlations of 0.78 were observed with educational attainment and 0.86 with population IQ.
Three variants in locus ADAM12 achieved genome-wide significance, although they did not replicate with published GWA analyses
of normal-range 1Q or educational attainment. A genome-wide polygenic score constructed from the GWA results accounted for
1.6% of the variance of intelligence in the normal range in an unselected sample of 3414 individuals, which is comparable to the
variance explained by GWA studies of intelligence with substantially larger sample sizes. The gene family plexins, members of which
are mutated in several monogenic neurodevelopmental disorders, was significantly enriched for associations with high Q. This
study shows the utility of extreme trait selection for genetic study of intelligence and suggests that extremely high intelligence is

continuous genetically with normal-range intelligence in the population.
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INTRODUCTION

One of the best-established findings in cognitive science is that
individual differences in performance on diverse cognitive tasks
correlate about 0.30 and that a general factor explains about 40%
of the total variance. This general cognitive ability factor, usually
called general intelligence (‘g’), is one of the best predictors of
important life outcomes including education, occupation, and
mental and physical health.? General intelligence is also one of the
most heritable behavioural traits, with heritability increasing from
40% in childhood to 80% in later adulthood.?

Identifying some of the many DNA differences that account for
its heritability is key for advancing research in intelligence.*
Throughout the life sciences, genome-wide association (GWA)
studies have been successful in identifying genes associated with
complex traits and common disorders. They have also shown that
many DNA variants of very small effect size contribute to
heritability.> Although the small effect size of individual DNA
variants detracts from their utility in neurocognitive research,
polygenic scores can be created that aggregate the effects of DNA
variants to predict genetic propensities for individuals.>” For
example, the current strongest polygenic score prediction of a
quantitative trait is for height, which predicts nearly 20% of the
variance of height in independent samples.®

However, these GWA successes in the life sciences have not
been reflected in research on intelligence, where relatively few
replicated genome-wide significant associations have been found
and polygenic scores derived from these GWA studies account for
only about 1% of the variance of intelligence."'* Reasons for this

include heterogeneity between measures and samples across
studies in meta-analyses and sample sizes that are underpowered
for detecting small effect sizes.'® The major strategy for improving
the ability of GWA studies to detect DNA variants of small effect
size has been to increase sample size. Empirical support for
increasing sample sizes for IQ GWA studies comes from research
on years of education, which can be viewed as a proxy measure of
intelligence, because it correlates about 0.50 with intelligence.’® A
2016 GWA study of years of education with 329 000 individuals
yielded 74 genome-wide significant hits and a polygenic score
accounted for 4% of the variance in independent samples.'” Even
though years of education only correlates 0.50 with intelligence,
studies of educational attainment are currently much larger, thus
explaining why the polygenic score from the 2016 educational
attainment GWA study accounts for ~3.6% of the variance of
intelligence,'® triple the variance in intelligence explained from
GWA studies of intelligence itself.

An alternate strategy for increasing power to detect small
effects is to study individuals at the extreme of the normal
distribution. Intelligence is a normally distributed trait with a
positive end of high performance and a problematic end of
intellectual disability. The quantitative genetic model proposes
that the normal distribution of quantitative traits is caused by
many genes of small effect.' This implies that extremely high
intelligence occurs only if an individual has many of the positive
alleles and few of the negative alleles that affect intelligence. For
this reason, a large group of individuals of extremely high
intelligence should be enriched for alleles associated with
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intelligence and thus yield increased power to detect associations
for alleles that operate throughout the normal distribution.?

The quantitative genetic model could be construed to suggest
that the extreme low end of the distribution of intelligence is the
mirror image of the extreme high end; however, new mutations
may be drivers of very low 1Q, as they can more easily disrupt than
improve finely tuned neurocognitive performance. Recent quanti-
tative genetic research supports the hypothesis that extremely
high intelligence is caused by the same DNA variants responsible
for individual differences in intelligence throughout the normal
distribution,®’ whereas extremely low intelligence is caused by
DNA variants that are not associated with individual differences in
intelligence in the normal distribution.?

Here we capitalize on the increased power of association at the
high extreme of intelligence as a strategy to facilitate the
discovery of alleles that contribute to genetic variation in
intelligence throughout the distribution. We conducted a case—
control GWA analysis with cases consisting of 1238 individuals
from the top 0.0003 (mean IQ score~170) of the population
distribution of intelligence®*** and 8172 unselected population-
based controls.

MATERIALS AND METHODS
Participants

Participants were recruited from two separate US studies. The project
received ethical approval from the King’s College London Research Ethics
Committee (reference number PNM/11/12-51) and from the European
Research Council Executive Agency (reference number Ares (2012)56321).
Informed consent was obtained from all subjects. All methods were
performed in accordance with relevant guidelines and regulations.

High-intelligence cases (TIP). Individuals with extremely high intelligence
were recruited from the Duke University Talent Identification Program
(TIP), a non-profit organization established in 1980 and dedicated to
identifying and fostering the development of academically gifted children.
Individuals were selected from the United States for participation in TIP on
the basis of performance on the Scholastic Assessment Test or American
College Test taken at age 12 years rather than the usual age of 18 years. A
composite that aggregates verbal and mathematics Scholastic Assessment
Test and American College Test scores correlated >0.80 with intelligence
test scores®® and it is estimated that the TIP programme recruits from the
top 3% of the intelligence distribution.?>~2° For the present study, TIP cases
were selected and DNA solicited from the top 1% of these TIP individuals,
representing approximately the top 0.03% of the intelligence distribution.
lllumina Infinium OmniExpress (lllumina.com) genotypes were available for
1409 white European Caucasian individuals (1238 subjects post quality
control (QC), see below and Supplementary Table S1). The TIP sample was
62% male post QC, which is to be expected for a sample of individuals with
high 1Q2” There was no significant difference in intelligence test scores
between males and females. This sample was previously used in a case—
control analysis of putative functional exonic variants assayed on the
lllumina HumanExome BeadChip.?®

Unselected controls (Health and Retirement Study). The controls for this
study were from The University of Michigan Health and Retirement Study
(http://hrsonline.isr.umich.edu), which is a longitudinal panel study that
surveyed a representative sample of ~20 000 people in the United States
over the age of 50 years every 2 years. Saliva was collected for DNA
extraction and genotyping was performed for 12507 subjects. The
genotyping was performed by the NIH Center for Inherited Disease
Research using the Illumina Human Omni-2.5 Quad Beadchip, with
coverage of 2.5 million single-nucleotide polymorphisms (SNPs). Genotype
data were obtained through dbGaP. Matching to TIP and after QC (see
below and Supplementary Table S1) genotypes were available for 8185
white Caucasian individuals.

Extension sample: The Twins Early Development Study. Twins Early
Development Study (TEDS) is a longitudinal UK-based population sample
of over 15000 families with twins born in England and Wales 1994, 1995
and 1996, and identified from birth records.?® At age 12 years, individuals
were assessed on 16 cognitive tests. Individuals with severe recurrent
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medical problems or severe perinatal medical problems were excluded, as
were individuals whose first language was not English and individuals who
reported their ethnicity as other than ‘White’. Phenotypic and genotypic
data were available for individuals after QC in cognitive tests for g and
educational achievement. The g measure was available at age 12 years as a
core four-test composite version, n=3414, and an extended 16-test
version, n= 4731, which includes some items that can be regarded as
educational achievement measures such as reading. The primary educa-
tional achievement phenotype we used in TEDS were the grades achieved
in the English General Certificate of School Education at age 16 years,
n=3584. Full details are given in Supplementary Text.

Quality control

For the TIP and Health and Retirement Study data, before SNP imputation
and genetic association analyses, SNPs were excluded based on standard
criteria such as call rate ( < 98%), minor allele frequency (MAF < 0.5%) and
Hardy—Weinberg equilibrium test (P-value < 107°). Further details are
given in the Supplementary Text and Supplementary Table S2.

SNP imputation

Genotype imputation was carried out based on the Haplotype Reference
Consortium reference panel (rv1.1) (www.haplotype-reference-consortium.
org) using PBWT*° as implemented in the Sanger Imputation Server
(imputation.sanger.ac.uk). Post imputation QC was carried out using
QCTOOL v2 (see URLs). Further details are given in the Supplementary
Text.

Single SNP association analysis

The single SNP association analysis was performed using a logistic
regression for the imputed SNPs with MAF>0.01 and imputation info
score >0.90 using SNPTEST v2.523" These conservative MAF and info
score thresholds were applied to accommodate the fact that the two
cohorts have been genotyped separately. An additive model was used
after adjusting for sex and the first 10 principal components to control for
population structure.>? In SNPTEST we used method ‘expected’ to account
for genotype uncertainty of the genotype dosage scores.

Replication

Lookups were performed of the genome-wide significant SNP-based
findings in four published studies. We also investigated replication of
published genome-wide significant findings from related traits from these
four studies in the TIP sample.

LD score regression

Linkage disequilibrium (LD) score regression®® was used to estimate
SNP heritability (hyp) from GWA summary statistics. Estimates of hZyp
on the liability scale were assessed with a prevalence estimate of
0.0003. In addition, genetic correlations (rg) were estimated with several
traits from GWA summary statistics, as well as partitioned LD score hine
to assess enrichment of heritability in SNPs with specific function
annotations and tissue-specific genomic annotations, including the
central nervous system. For a full description of these procedures, see
Supplementary Text.

We also used LD score regression to estimate genetic correlations
between high intelligence estimated from our TIP GWA analysis with other
studies of intelligence and a range of other traits.>>** The intent of these
comparisons was to evaluate similarities and differences in 1Q genetic
architecture, to suggest hypotheses about the fundamental genetic basis
of intelligence, between very high IQ and 1Q in the normal range.

Gene-based association and pathway analysis

P-values quantifying the degree of association of genes and gene-sets in
TIP were generated using MAGMA (v1.03).3°> Our approach was guided
by rigorous method comparisons of type | error rates of different
algorithms. 337 Further details are given in Supplementary Text.

Heritability estimation

We estimated the contribution of all common SNPs (MAF >0.01) in this
sample by performing a linear mixed-model analysis to fit all genotyped
SNPs simultaneously in the model as implemented in GCTA.3® Heritability
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Figure 1.

Manhattan (a) and Q-Q plot (b) of P-values of the single-nucleotide polymorphism (SNP)-based association analysis for the case-

control status of high 1Q. The dotted line indicates the threshold for genome-wide significance (P < 5 x 10~8) for 6 773 587 SNPs adjusted for

sex and the first 10 principal components.

was estimated on the liability scale with prevalence =0.0003 and adjusted
for sex and the first 10 PCs for the genotyped SNPs. Heritability was also
estimated using the LD score®® method; estimates were from imputed
SNPs and LD was calculated from HapMap 3.

Polygenic scores

We used GWA results from TIP to create polygenic scores for the
UK-representative TEDS*® (Supplementary text). Individuals were tested at
12 years and the phenotypes g-4 and g-16 were calculated from 4 and 16
tests at age 12 years, respectively, where the 4 tests are a subset of the 16.
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More details about these phenotypes is in Supplementary Text. The two
phenotypes were adjusted for age within each testing period and first
principal component scores were derived using principal component
analysis implemented in R. Imputed genotypes were available for 6710
samples. Stringent QC procedures were applied followed by imputation of
SNPs using the Haplotype Reference Consortium reference panel®
(Supplementary Text). After QC, 7 581 516 genotyped or well-imputed
(info >0.70) variants were available for the polygenic score analyses;
4657 119 overlapped with variants tested in the independent TIP GWA
analysis'” after exclusions due to nucleotide inconsistencies and
MAF < 0.01. We created genome-wide polygenic scores for each individual



in the TEDS sample using summary statistics from the TIP GWA analyses
and all SNPs. To avoid a reduction in predictive accuracy and loss of
information due to pruning markers by LD, we used LDpred,*" which infers
the posterior mean effect size of each marker using a prior based on the
proportion of real effects and the distribution of possible effect sizes and
reference LD data (we used our sample as the LD reference), and SNPs are
weighted accordingly. This was used to assess the association of these
polygenic scores with general cognitive ability at age 12 years and
educational achievement at the end of compulsory education at age 16
years, using the first 10 principal components as well as genotyping array
and plate as covariates to control for population stratification and possible
genotyping errors, respectively.

RESULTS

Analysis of genome-wide SNPs

After performing the GWA single SNP analysis using an additive
model for 6773 587 SNPs, three intronic SNPs: rs4962322,
rs4962520 and rs10794073 located in ADAM12 on chromosome
10 reached genome-wide significant P-values of 8.0x107°
12x107% and 2.0x 1078 respectively. The three SNPs are in
high LD with  ranging between 0.9 and 1.0, with rs4962322
representing the sentinel SNP after clumping. ADAM12 encodes a
member of the ADAM (a disintegrin and metalloprotease) protein
family. Members of this family are membrane-anchored proteins
and have been implicated in a variety of biological processes
involving cell-cell and cell-matrix interactions, including fertiliza-
tion, muscle development and neurogenesis (www.ncbi.nlm.nih.
gov/gene). Results for all SNPs are presented in Figure 1 and
details of the top three SNPs are in Table 1. A regional plot
for rs4962322 is shown in Figure 2 and a comparison of the MAF
for rs4962322 from the different samples is in Supplementary
Table S3.

The genomic inflation A for these analyses was equal to 1.096
and the LD score intercept is 1.020. This is consistent with inflation
largely driven by polygenic variation rather than population
stratification.>® Although there is no similar study in which to carry
out replication for the top SNP, we performed a look up of all SNPs
with P-values < 1077 including rs4962322 in other studies with
similar phenotypes, as described below.

Replication of single SNP variation

We have performed a look-up of the three top SNPs in four studies
with related phenotypes: CHIC® (childhood intelligence),
CHARGE'' (normal range adult intelligence), educational
attainment'” and VNR-UKB'? (numerical and verbal reasoning)
(Supplementary Table S4). The direction of effect was concordant
with two of the studies for rs4962322 and rs4962520, and only for
one study for rs10794073. None of the SNPs replicated in
significance. Summary data for rs4962520 were not available for
CHIC or CHARGE. We also compared the associations of the four
published GWAS with our results; a summary of these is in
Supplementary Table S5. There were 95 published genome-wide
significant SNPs from the four studies and we found comparable
SNP data for 63 of these. Ninety-four percent of the TIP-GWA SNPs
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showed concordance in direction of effect with the published
SNPs, although none reached genome-wide significance.

Gene-based association and pathway analyses

To test whether the combined effect of SNPs within a gene has a
significant effect, we conducted a gene-based analysis using
MAGMA v1.05. The gene with the genome-wide significant
marker, ADAM12, also ranked first in the gene-based analysis with
P-value=5.82x10"° (Bonferroni threshold=2.57x107°). The
second top gene, SH2D1A, with P-value=7.66x10"°, is located
on the X chromosome. Both genes are suggestive but not
significant. Top results from the gene-based analyses are in
Supplementary Table S6; the full results are in Supplementary
Table S7. Pathway analyses were applied to three sets of
pathways: gene families, gene intolerance gene sets based on
Residual Variation Intolerance Score percentiles and biological
pathways. Complete results with links to source data are provided
in Supplementary Tables $S8-510 and S10a. Information on gene
sets and pathway analysis procedures is given in Supplementary
Text. One gene family showed a significant association (P-
value=6.43x 107>, Bonferroni threshold=1.26x10"%: plexins.
Plexins are transmembrane proteins which act as receptors to
semaphorins. We also determined the enrichment of intolerant
genes in the GWAS by testing gene-sets with decreasing or
increasing gene intolerance. The gene intolerance results are
given in Supplementary Table S9.

Heritability and genetic correlation estimation

The proportion of variance explained by all common variants
using GCTA was 0.33 (0.02); using LD score regression (with
unconstrained intercept), heritability was 0.42 (0.06). These
estimates are compatible with a highly polygenic architecture of
this extreme 1Q trait, given the few genome-wide significant hits
we observe. Using LD score regression we also find large and
significant genetic correlations between high 1Q and other
phenotypes from other studies (Table 2). Genetic correlations
ranged from 0.75 (0.13) with childhood IQ° to 0.86 (0.10) with
verbal and numerical reasoning.'?

We carried out partitioned heritability analysis using LD score
regression. The results show that the central nervous system
category accounts for the largest proportion of the heritability:
68.8% from 14.8% of SNPs (enrichment P-value=4.07x10">,
Bonferroni threshold=8.06 x 10™%). A summary table with the
proportions explained by the 62 categories is in Supplementary
Table S11.

Polygenic scores

The results from the TIP GWA analyses of extremely high
intelligence were used to build polygenic scores in the unselected
and representative TEDS sample. Highly significant predictions
were observed for individual differences in intelligence (*=2.4%
for the broader 16-test composite g score at age 12 years and
1.6% for the 4-test composite g score at age 12 years. Although
the TEDS 16-test composite was better predicted by the polygenic
score, this composite includes educationally relevant skills such as

Table 1. Genome-wide significant SNPs (P < 5x 10~8) from the logistic regression

SNP CHR BP OR s.e. P-values Al A2 MAF Function Gene

rs4962322° 10 127 932 765 1.489 0.070 8.05x 1077 A C 0.089 Intronic ADAM12
rs4962520 10 127 917 302 1.469 0.070 1.18x1078 C T 0.091 Intronic ADAM12
rs10794073 10 127 945 261 0.672 0.070 2.02x1078 C A 0.085 Intronic ADAM12

Abbreviations: MAF, minor allele frequency; OR, odds ratio; SNP, single-nucleotide polymorphism. ®Sentinel SNP after clumping.
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Figure 2. Regional plot for single-nucleotide polymorphism (SNP) rs4962322, P-value=2.1x 1072,

Table 2. Genetic correlations estimated through LD score regression
with summary statistics from publicly available data

Phenotypel  Phenotype2 rg s.e. P-values
TIP_IQ Childhood 1Q° 075 013 1.6x10°°
TIP_IQ Cognitive performance’’ 080 0.08 3.1x1072°
TIP_IQ College completion 079 008 20x10°%
TIP_IQ Years of education 079 007 19x10°%°
TIP_IQ VNR-UKB reasoning'? 086 0.10 16x107'®

Abbreviation: LD, linkage disequilibrium.

reading and mathematics. The TIP-based polygenic score pre-
dicted 2.1% of the variance in educational achievement in TEDS
(General Certificate of School Education scores at age 16 years),
more than explained for intelligence.

DISCUSSION
We conducted a GWA analysis on the unique TIP sample of highly
intelligent individuals selected from the top 0.03% of the
intelligence distribution, which reveals that very high 1Q is
continuous in genetic terms with the normal range of intelligence.
We show that polygenic prediction from TIP is stronger than from
all current 1Q GWAS, only being exceeded by very large studies of
the partially correlated phenotype of educational attainment. Our
analysis imposed a liability threshold model in which the very high
IQ sample were used as cases and compared with a much larger
unselected sample of controls. We chose this control group rather
than selecting the extreme low end of IQ as controls, because
extreme low 1Q may be distinct from the rest of the distribution
due to the effect of rare mutations such copy number variants.??
Strikingly, our data captured a high and significant amount of
variation as evident from the estimated SNP heritability of 0.33
(0.02), the highest thus far for GWAS of cognitive abilities.>'"'>"”
The high SNP heritability suggested that we had good power to
investigate the genetic relationship between high 1Q and other
phenotypes. Genetic correlations from the TIP GWAS summary
statistics calculated with LD score regression were high and
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significant for cognitive phenotypes, ranging from 0.75 (0.13) with
childhood 1Q° to 0.86 (0.10) for verbal and numerical reasoning.'?

In our pathway analysis, the gene family plexins, members of
which are mutated in several monogenic neurodevelopmental
disorders, was significantly enriched for associations with high 1Q
(P-value =6.43x 10~ >). The plexin-semaphorin pathway has been
linked to axon guidance,** mental disability and neural
connectivity,** axon regeneration in the central nervous system,
bone disorders, cancer and inflammatory diseases.** Noticeably,
the top biological pathway was GO:SEMAPHORIN_RECEPTOR_AC-
TIVITY with P-value=5.82x 10~ % however, it was not significant.
Partitioned LD score analyses also demonstrated a highly
significant enrichment of SNP heritability in the central nervous
system-annotated portion of the genome—68.8% of the SNP
heritability results from 14.8% of SNPs—suggesting a strong role
for variation in brain-expressed genes and their regulatory
regions.

The primary single-variant findings from our GWA association
analysis with high 1Q were three intronic SNPs in high LD, r*> 0.90:
rs4962322 (P=8.05x10"°) and rs4962520 (P=1.18x 10" %), and
rs10794073 (P=2.02x10"%, all genome-wide significant and
located in ADAM12 on chromosome 10. Gene-based analyses
also pointed to the same locus, with a gene-wise P-value=
5.82%107° Similar to another study using this same case
cohort,®® there is no available replication cohort with extremely
high 1Q. Therefore, we compared results from our case—control
design to comparable phenotypes in GWA studies of individual
differences in the normal range. The three single variants
identified in ADAM12 did not replicate in published data for the
normal range of intelligence," childhood intelligence,” educa-
tional attainment,'” and verbal and numerical reasoning,'?
although the effect was in the same direction in two of the
studies for rs4962322 and rs4962520, and only for one study for
rs10794073 (Supplementary Table S2). Conversely, lookup of
GWA-significant SNPs from these same GWA studies in TIP were
likewise not significant (Supplementary Table S5). One possibility
is that ADAM12 affects high IQ but not IQ in the normal range.

We also used polygenic scores to test the generalizability of TIP
GWA results to individual differences in intelligence and educa-
tional achievement. For this, we used TEDS, which is a UK-based
study also of white European Caucasian individuals. We used GWA



results from TIP to create polygenic scores, in order to predict
variance in normal-range intelligence and educational achieve-
ment in TEDS for g based on four cognitive tests at age 16 years,
as well as a broader measure of g that includes 16 tests, some of
which could be considered as assessing educational performance
such as reading, mathematics and language. A polygenic score
created from the TIP GWA results accounted for 1.6% of the
variance in individual differences in intelligence in TEDS at age 16
years for our 4-test composite of intelligence and 2.4% for our
16-test measure of g.

Focusing on the core 4-test g measure, we think that
accounting for 1.6% of the variance of intelligence is exciting for
several reasons. First, this effect size is greater than the effect sizes
from previous GWA studies of the normal range of intelligence.*®
The effect size of 1.6% represents >2.5% of the heritable variance
of intelligence, which is comparable to the most robust effect sizes
in behavioural research.*® Second, the result demonstrates that
genetic effects on extremely high intelligence are similar to those
responsible for the heritability of the normal range of intelligence
in the population. That is, extremely high intelligence is
quantitatively, not qualitatively, different from the rest of the
distribution.' Third, it shows the utility of extreme trait
ascertainment for genetic analysis of neurocognitive traits as
individuals with the extreme (high) phenotype should be enriched
for 1Q-increasing alleles.

One puzzling finding is that the TIP polygenic score accounts for
more variance in educational achievement as assessed by General
Certificate of School Education at age 16 (2.1%) years than in
intelligence (1.6%). It may be that although the TIP sample has
extremely high 1Q, individuals were nominated initially by their
schools. They were then screened using college entrance
examinations, which are a mix of intelligence and educational
achievement. For this reason, we speculate that the TIP GWA
results represent a mix of intelligence and educational achieve-
ment. It may also be the case that additional elements of high IQ
are captured by educational achievement.

Although not the focus of this study, we acknowledge the role
of the environment, which has been shown to be particularly
important in childhood studies of IQ with, conversely, increasing
heritability of IQ with age.*” This work has several limitations. As
mentioned previously, there is a lack of a similar replication
sample of extremely high IQ individuals to validate our findings.
Furthermore, cases and controls were collected separately, which
is why our QC protocols were very stringent, resulting in a reduced
number of individuals and SNPs. In addition, our case—control
design resulted in some loss of power, in contrast to GWA analysis
using a quantitative scale. Finally, another limitation is that this
study, similar to the other studies mentioned above, is restricted
to white Europeans.

In summary, we have shown that extremely high intelligence is
a polygenic trait and its high heritability indicates that GWA
analysis captures a large portion of the genetic variance. The novel
aspect of the present study is that it represents a complementary
strategy to the ‘brute force’ approach of increasing sample sizes of
GWA studies of 1Q variation in the normal range (and is an
example for quantitative trait genetics in general). It demonstrates
the utility of a ‘positive genetics’ strategy of focusing on the
extremely high end of the distribution of Q. Larger scale studies
focusing on either high 1Q or IQ in the normal range are likely to
be successful in the identification of many significant loci and
biological pathways.
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