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Preterm preeclampsia is associated with the failure of trophoblast invasion, placental hypoxic/

ischemic injury and the release of toxic substances, which promote the terminal pathway of 

preeclampsia. In term preeclampsia, factors yet unknown trigger the placenta to induce the 

terminal pathway. The contribution of the villous trophoblast to these pathologic events has not 

been fully elucidated. Here we aimed to study how stress and signaling pathways influence 

trophoblastic functions in various subforms of preeclampsia. Tissue microarrays (TMAs) were 

constructed from placentas obtained from pregnant women in the following groups: 1-2) preterm 

preeclampsia with (n=8) or without (n=7) HELLP syndrome; 3) late-onset preeclampsia (n=8); 

4-5) preterm (n=5) and term (n=9) controls. TMA slides were stained for phosphorylated Akt-1, 

ERK1/2, JNK, and p38 kinases, and trophoblastic immunostainings were semi-quantitatively 

evaluated. BeWo cells were kept in various stress conditions, and the expression of FLT1, GCM1, 

LEP, and PGF was profiled by qRT-PCR, while Akt-1, ERK1/2, JNK, and p38 kinase activities 

were measured with phospho-kinase immunoassays. We found that: 1) Placental LEP and FLT1 
expression was up-regulated in preterm preeclampsia with or without HELLP syndrome compared 

to controls; 2) Mean pp38 immunoscore was higher in preterm preeclampsia, especially in cases 

with HELLP syndrome, than in controls. 3) Mean pERK1/2 immunoscore was higher in preterm 

preeclampsia with HELLP syndrome than in controls. 4) In BeWo cells, ischemia up-regulated 

LEP expression, and it increased JNK and decreased ERK1/2 activity. 5) Hypoxia up-regulated 

FLT1 and down-regulated PGF expression, and it increased ERK1/2, JNK and p38 activity. 6) 

IL-1β treatment down-regulated PGF expression, and it increased JNK and p38 activity. 7) The 

p38 signaling pathway had the most impact on LEP, FLT1 and PGF expression. In conclusion, 

hypoxic and ischemic stress, along with unknown factors, activates trophoblastic p38 signaling, 

which has a key role in villous trophoblastic functional changes in preterm preeclampsia. The 

activation of ERK1/2 signaling may induce additional trophoblastic functional changes in HELLP 

syndrome, while distinct mechanisms may promote late-onset preeclampsia.
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INTRODUCTION

Preeclampsia, diagnosed by new-onset hypertension and proteinuria after 20 weeks of 

gestation, is a major cause of maternal, perinatal and neonatal morbidity and mortality [1]. It 

is a syndrome consisting of various subforms among which preterm preeclampsia develops 

before, while term preeclampsia develops after the 37th week of gestation. Another sub-

classification has suggested the 34th week to differentiate between early-onset and late-onset 

preeclampsia [2]. A growing body of evidence has shown that late-onset or term 

preeclampsia is often mild, while preterm or early-onset preeclampsia is more severe and is 

often associated with HELLP (Hemolysis, Elevated Liver enzymes, and Low Platelet count) 

syndrome and intrauterine growth restriction (IUGR) [1–4]. Although the pathogenesis of 

preeclampsia is not completely understood, it is evident that the placenta plays an important 

role, since the only effective cure of preeclampsia is the delivery of the placenta [1, 4].
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The pathogenesis of preeclampsia may differ in its subforms based on histopathological [5, 

6] and transcriptomic [7, 8] evidence. Preterm preeclampsia is frequently associated with the 

failure of trophoblast invasion and consequent abnormal remodeling of the uterine spiral 

arteries [9, 10] resulting in hypoxic/ischemic placental injury [11–17]. Subsequently, the 

stressed placenta releases increased amounts of anti-angiogenic factors [e.g. soluble fms-like 

tyrosine kinase 1 (sFlt-1/sVEGFR1), soluble endoglin (sEng)] [18–20], pro-inflammatory 

molecules [e.g. leptin, corticotropin-releasing hormone (CRH)] [7, 15, 21, 22] and 

syncytiotrophoblast debris [15, 23]. The release of toxic placental substances and the 

decreased availability of pro-angiogenic molecules [e.g. placenta growth factor (PGF)] then 

promotes the terminal pathway of preeclampsia, including maternal systemic anti-

angiogenic and pro-inflammatory states, generalized endothelial dysfunction, leukocyte 

activation, hypertension and proteinuria [4, 15, 17, 18, 20, 24–28]. Although placental 

histopathological and transcriptomic changes are less prevalent in late-onset preeclampsia 

[4–6], it has recently been suggested that normal placental growth may also induce 

syncytiotrophoblastic stress and increased production of sFlt-1 late in pregnancy, promoting 

the progression of the terminal pathway [29].

Studies focusing on placental injury or the placental dysregulation of genes in preeclampsia 

have revealed a complex interplay between hypoxia and ischemia in the activation or 

inhibition of various signaling pathways, leading to altered gene expression and placental 

functions [11–17, 30]. Our recent microarray study [7] has shown the differential placental 

expression of a set of genes in preterm preeclampsia and HELLP syndrome, which are 

induced by villous trophoblast differentiation [7, 31, 32]. This finding suggested an 

important role of the syncytiotrophoblast, the terminally differentiated villous trophoblast 

that covers the placenta towards maternal blood, in preeclampsia pathogenesis [7]. In fact, 

defects in villous trophoblast differentiation and syncytialization, characteristic 

transcriptomic, biochemical and morphological changes governed by cAMP [31, 33, 34], 

were hypothesized to promote the development of preeclampsia [35]. Since several genes 

that are induced by cAMP-signaling and trophoblast differentiation (e.g. CGB, CRH, LEP) 

have increased expression in preeclampsia [7, 8, 36], while the placental expression of the 

syncytialization-inducer GCM1 is down-regulated in early-onset preeclampsia [37], 

emerging evidence suggests that villous trophoblast syncytialization rather than 

differentiation is altered in early-onset preeclampsia. However, the contribution of various 

signaling pathways in the dysregulation of villous trophoblast physiology and the 

pathogenesis of various preeclampsia subforms has not been elucidated to date.

This study targeted how stress and signaling pathways influence villous trophoblastic 

functions in distinct subforms of preeclampsia by the investigation of kinases involved in the 

regulation of cell survival, proliferation, differentiation, apoptosis, and the release of 

inflammatory mediators and anti-angiogenic factors [15, 17]. In addition, selected genes 

were examined, which are highly expressed by the villous trophoblast and have been 

implicated in the placental pathogenesis of preeclampsia [8, 37–39]. In accord, the aims of 

the current study were: 1) to examine the in vivo changes in villous trophoblastic signaling 

pathways in different subforms of preeclampsia by the high-throughput analysis of 

immunostaining signatures of the selected protein kinases; 2) to determine the in vitro effect 

of cAMP signaling on the trophoblastic expression of the selected genes; and 3) to model the 
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alterations in villous trophoblastic signaling pathways and gene expression signatures in 

preeclampsia in vitro by applying various stress conditions to differentiating BeWo cells.

MATERIALS AND METHODS

The collection and use of human biological materials for research purposes were approved 

by the Health Science Board (Budapest, Hungary) and the Institutional Review Boards of 

Wayne State University (Detroit, MI, USA) and the Eunice Kennedy Shriver National 

Institute of Child Health and Human Development (NICHD, NIH, DHHS, Bethesda, MD, 

USA). Placentas were histopathologically examined and used for microarray and tissue 

microarray (TMA) studies [40]. Immunostained TMAs were digitally scanned and used for 

virtual microscopic evaluations [41]. Primary trophoblasts isolated from normal term 

placentas [38] and BeWo cells were used for functional studies. Total RNA and protein 

lysates were isolated and analyzed with quantitative real-time reverse transcription PCR 

(qRT-PCR) and phospho-kinase assays, respectively. Demographic, clinical and 

immunoscore data were analyzed using SPSS v.12.0 (SPSS Inc., Chicago, IL, USA). All 

other data were analyzed in the R statistical language (www.r-project.org). All methods are 

described in detail in the Supplementary Information; additional data are shown in Suppl. 

Tables 1–4 and Suppl. Figs. 1–4.

RESULTS

Demographic, clinical and histopathological data

Demographic and clinical characteristics are displayed in Suppl. Table 1. Peak systolic and 

diastolic blood pressures were higher in all patient groups than in controls. Proteinuria was 

detected in all cases, but not in controls. Term and preterm controls were matched to cases 

within two weeks of gestational age; however, the median gestational age of term controls 

was slightly higher than that of cases with late-onset preeclampsia. Birth weight was 

significantly lower in late-onset preeclampsia, and it tended to be lower in preterm 

preeclampsia with or without HELLP syndrome than in respective controls.

Placental gene expression changes in preterm preeclampsia with or without HELLP 
syndrome

First, we revisited our placental microarray data [7] for potential target genes of signaling 

pathways altered in the villous trophoblast. Out of the selected four genes, we found two to 

be differentially expressed in our microarray data (Suppl. Fig. 1). Placental LEP expression 

was 108.9-fold (q=6.4×10−5) and 56.9-fold (q=0.002) up-regulated in preterm preeclampsia 

without or with HELLP syndrome compared to preterm controls, respectively. Similarly, 

placental FLT1 expression was 3.6-fold (q=0.085) and 4.3-fold (q=0.04) up-regulated in 

preterm preeclampsia without or with HELLP syndrome compared to preterm controls, 

respectively. The magnitude of changes for GCM1 (1.9-fold) and PGF (1.8-fold) were 

higher in preterm preeclampsia with HELLP syndrome than without this severe syndrome; 

however, the differential expression of these genes did not reach statistical significance 

according to the criteria set by our study [7]. Nevertheless, the placental down-regulation of 

these genes in preeclampsia has been shown by recent studies [37–39].
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Changes in trophoblastic signaling pathways in preeclampsia and HELLP syndrome

Next, we looked for alterations in trophoblastic signaling pathways by evaluating 

phosphorylated Akt-1, ERK1/2, JNK, and p38 immunostainings of the villous trophoblast in 

various subforms of preeclampsia. In accord with the findings of a parallel study on 

placental signaling pathway alterations in preeclampsia [30], the most impact of 

preeclampsia was observed on the p38 signaling pathway. Phosphorylated p38 immunoscore 

was higher in all preterm preeclampsia cases (mean±SD: 2.07±0.39, p<0.001) than in 

preterm controls (1.19±0.51), while it was not changed in late-onset preeclampsia 

(1.60±0.39, p=0.5) compared to term controls (1.33±0.53) (Fig. 1). Among cases of preterm 

preeclampsia, the mean pp38 immunoscore was increased in larger extent in cases with 

HELLP syndrome (2.15±0.43, p=0.004) than in those who did not have HELLP syndrome 

(1.98±0.37, p=0.01) (Fig. 1).

Similar, but less intense changes were observed in the ERK1/2 signaling pathway (Suppl. 

Fig. 2A). The mean pERK1/2 immunoscore tended to be higher in all preterm preeclampsia 

cases (1.23±0.56, p=0.09) than in preterm controls (0.72±0.50), while it was not changed in 

late-onset preeclampsia (0.46±0.54, p=0.8) compared to term controls (0.53±0.52). Among 

cases of preterm preeclampsia, the mean pERK1/2 immunoscore was significantly higher in 

cases associated with HELLP syndrome (1.33±0.38, p=0.03), while the increase in mean 

pERK1/2 immunoscore did not reach statistical significance in cases who did not have 

HELLP syndrome (1.11±0.73, p=0.3).

There was no change in pJNK immunoscores in preterm or term preeclampsia although it 

tended to be higher in late-onset preeclampsia (1.80±0.4, p=0.14) compared to term controls 

(1.51±0.37) (Suppl. Fig. 2B). We did not observe difference between pAkt-1 immunoscores 

in any of the comparisons (Suppl. Fig. 2C). These results suggest that mitogen-activated 

protein kinase (MAPK) signaling pathways are activated in the villous trophoblast in 

preterm but not in late-onset preeclampsia, and that these changes are exaggerated in 

preterm preeclampsia cases associated with HELLP syndrome.

Trophoblast differentiation affects angiogenic/anti-angiogenic gene expression balance

Next, we modeled in vitro how the alterations in signaling pathways may impact villous 

trophoblastic expression of selected genes. To optimize our assays, we differentiated primary 

villous trophoblasts obtained from normal term placentas, and observed that days 2 and 3 

represented the peak expression for the selected genes (Suppl. Fig. 3A). The expression of 

FLT1 modestly changed, while PGF expression had large increase by day 3, suggesting that 

differentiation affects angiogenic/anti-angiogenic gene expression balance in the trophoblast, 

which may have impact on the development of preeclampsia.

Because of the limitations in obtaining enough primary trophoblast cells for the experiments, 

we looked for the gene expression changes in the trophoblast-like BeWo cells, which 

syncytialize similarly to primary trophoblasts after cAMP-induced differentiation. When we 

differentiated BeWo cells with the cAMP-analogue Forskolin, we observed a plateau in the 

expression of the selected genes between days 2 and 3 of differentiation (Suppl. Fig. 3B). 

Similar to primary trophoblasts, we detected a remarkable increase in PGF and LEP 
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expression during differentiation, while FLT1 expression changed only modestly. Since a 

relatively high and stable expression of these genes was needed for further experiments with 

BeWo cells, we chose to use the day 2 to 3 time-window in differentiation.

Trophoblastic hypoxia and ischemia mimic gene expression changes in preterm 
preeclampsia

To study the changes in selected genes’ expression in stress conditions relevant to 

preeclampsia in the placenta, we differentiated BeWo cells, and then applied three different 

stress conditions (Fig. 2A): 1) In ischemia, LEP expression increased by 2.1-fold (p=0.04), 

in accord with that LEP was the most up-regulated placental gene in preterm preeclampsia 

and HELLP syndrome in our study [7]. We did not see a difference in FLT1 or PGF 
expression in this condition. 2) In hypoxia, the expression of FLT1 increased by 2.5-fold 

(p=0.056), while PGF was down-regulated by 1.4-fold (p=0.04), consistent with the 

increased placental FLT1 expression in preterm preeclampsia [7]. 3) After IL-1β treatment 
that mimicked pro-inflammatory changes in the placenta, we observed the down-regulation 

of PGF by 1.6-fold (p=0.01); however, there was no significant change in the expression of 

FLT1 or LEP. These findings suggest that the combination of ischemia and hypoxia along 

with unknown factors may promote the functional changes in the villous trophoblast in 

preterm preeclampsia and HELLP syndrome.

Hypoxia and ischemia mimic kinase pathway changes in preterm preeclampsia

To investigate the possible changes in the activities of kinases that are stimulated by 

oxidative stress and may promote the observed gene expression changes, we treated BeWo 

cells in the same way as for the qRT-PCR experiments, and kinase activity assays were run 

on protein lysates (Fig. 2B): 1) In ischemia, JNK had a 2.5-fold increased activity (q=0.03), 

ERK1/2 had a 2.4-fold decreased activity (q=0.02), while there was a 1.3-fold, marginally 

significant increase in p38 activity (q=0.17). 2) In hypoxia, there was a 1.7-fold increase in 

ERK1/2 activity (q=0.03), a 1.6-fold increase in JNK activity (q=0.1), and a 1.3-fold 

increase in p38 activity (q=0.06). 3) After IL-1β treatment, JNK had a 2.1-fold increased 

activity (q=0.03), while p38 activity was increased by 1.4-fold (q=0.04). These findings 

suggest that trophoblastic p38 and JNK kinases may be activated in all three stress 

conditions, while the effect of ischemia and hypoxia may be opposing on ERK1/2 activation 

in the trophoblast.

p38 signaling regulates gene expression changes in hypoxic and ischemic BeWo cells

Finally, we tested how the inhibition of kinase pathways may change gene expression 

patterns in stress conditions applied to BeWo cells compared to normoxic control BeWo 

cells. As depicted in Fig. 3 and Suppl. Fig. 4, in normoxia, the ERK1/2 inhibitor decreased 

the expression of FLT1, LEP and PGF, in line with the role of ERK1/2 in supporting 

trophoblast differentiation and the expression of trophoblastic genes [42]. In hypoxia, the 

p38 and JNK inhibitors had the most effect on gene expression compared to normoxic 

control cells, in line with the role of p38 and JNK kinases in signaling environmental stress 

in the placenta [22, 43, 44]. In ischemia, the p38 and Akt-1 inhibitors had the most effect on 

gene expression compared to normoxic control cells, while the p38 inhibitor impacted 

mostly gene expression after IL-1β treatment compared to normoxic control cells. Overall, 
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p38 signaling had the most impact on LEP, FLT1 and PGF expression in the applied stress 

conditions.

DISCUSSION

Principal findings of this study

1) Trophoblastic pp38 immunoscore was higher in preterm preeclampsia, especially in cases 

with HELLP syndrome, than in controls, while it was not changed in late-onset 

preeclampsia; 2) pERK1/2 immunoscore was higher in preterm preeclampsia with HELLP 

syndrome than in controls while it was not changed in other patient groups; 3) Placental LEP 
and FLT1 expression was up-regulated in preterm preeclampsia with or without HELLP 

syndrome compared to controls; 4) In BeWo cells, ischemia up-regulated LEP expression, 

and it increased JNK and decreased ERK1/2 activity; 5) Hypoxia up-regulated FLT1 and 

down-regulated PGF expression, and it increased ERK1/2, JNK and p38 activity; 6) IL-1β 
treatment down-regulated PGF expression, and it increased JNK and p38 activity; and 7) 

The p38 signaling pathway had the most impact on LEP, FLT1 and PGF expression in BeWo 

cells under stress conditions compared with control normoxic BeWo cells.

Villous trophoblastic signaling pathways affected in preterm preeclampsia 
and HELLP syndrome—The emerging data suggest a complex interplay between 

hypoxia and ischemia in the activation and inhibition of signaling pathways in the placenta, 

leading to altered functions and gene expression, and the pathogenesis of preeclampsia [11–

17]. First, the increased placental production and release of anti-angiogenic sFlt-1 and sEng 

in hypoxia was found [13, 14]. Subsequently, in vitro and in vivo evidence have suggested 

that oxidative stress may play a dominant role in the pathogenesis of preeclampsia by 

activating the MAPK and NFκB signaling pathways and inhibiting the PI3 kinase/Akt 

pathway in the placenta [15, 17, 22]. These signaling pathways strongly impact cell survival 

or apoptosis, cell proliferation or differentiation, and the release of inflammatory mediators 

and anti-angiogenic factors, all relevant for the pathogenesis of preeclampsia [15, 17]. 

Among MAPK kinases, ERK1/2 can be activated by mitogenic signals and reactive oxygen 

species (ROS), whereas JNK and p38 signaling are initiated largely by ROS and pro-

inflammatory conditions [42, 45]. When activated by ROS, the ERK1/2 pathway promotes 

cell survival and proliferation, while JNK and p38 pathways are inducers of apoptosis [15, 

45]. These findings are particularly significant since trophoblastic apoptosis and aponecrosis 

have been implicated as key pathologic events in preeclampsia [41, 46, 47].

Studies to date only focused on the examination of altered signaling in the whole placenta in 

preeclampsia. Our study is the first to explore the contribution of the villous trophoblast to 

placental stress signaling in distinct subforms of preeclampsia and HELLP syndrome. 

Among the characteristic alterations, the most significant change was found for the activated 

pp38 kinase, which had a higher mean immunoscore in the villous trophoblast in preterm 

preeclampsia compared to controls, while there was no change in the pp38 immunoscore in 

late-onset preeclampsia. Of note, no change was observed in the activated pJNK kinase 

immunoscores in the disease groups (Fig. 4). These findings are in accord with the 

observations on placental stress pathways in preeclampsia by a parallel study [30], and 
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suggest that preterm but not late-onset preeclampsia is associated with villous trophoblastic 

stress. Moreover, these results are consistent with the more extensive placental pathology 

[4–6, 9, 10] and transcriptomic changes [7, 8], and the earlier and larger increase in anti-

angiogenic protein release from the placenta [4] in preterm than in late-onset preeclampsia. 

Of interest, among patients with preterm preeclampsia, the pp38 immunoscore was more 

robustly increased in cases with HELLP syndrome, suggestive for a heightened stress 

response in the villous trophoblast (Fig. 4). This phenomenon is in accord with the findings 

of our microarray study using the same placentas, which showed a more severe placental 

pathology and pronounced inflammatory gene expression signature in cases with HELLP 

syndrome [7].

Patients with HELLP syndrome had a significant increase in the pERK1/2 immunoscore 

compared to those without HELLP syndrome (Fig. 4), suggestive for an additional stimulus 

that could facilitate the activation of the villous trophoblastic ERK1/2 signaling. Of note, the 

activation of ERK1/2 signaling promotes cell proliferation [15, 45], and it is pivotal for the 

regulation of cytotrophoblast proliferation and differentiation [42]. In accord with our 

findings, cytotrophoblast proliferation was found to be increased in placentas from patients 

with HELLP syndrome but not in placentas from women with preeclampsia as evaluated by 

Ki67 immunostainings [48, 49], suggestive for an ERK1/2 signaling mediated imbalance in 

cytotrophoblast proliferation and differentiation in HELLP syndrome.

Hypoxia and ischemia alters gene expression in BeWo cells similar to those 
found in preeclampsia—Next, we investigated which stress stimuli may activate a 

similar response in BeWo cells as in the villous trophoblast in preeclampsia. We set up an in 
vitro model in which we induced BeWo cells with Forskolin to syncytialize in order to 

model the mixture of cytotrophoblasts and the syncytiotrophoblast in the villi, and used a 

time-window for the stress stimuli when the expression of the four genes was high and 

stable.

The first experiments revealed that the pro-inflammatory condition mimicked by IL-1β 
treatment did not increase FLT1 or LEP expression, suggesting that it cannot be the cause of 

the placental transcriptomic changes in preeclampsia. On the other hand, ischemia up-

regulated LEP expression, while hypoxia increased FLT1 expression and decreased PGF 
expression. Since the placental up-regulation of LEP and FLT1 is a hallmark of preterm 

preeclampsia [7, 8], our in vitro results suggest that the combination of ischemia and 

hypoxia may promote the characteristic changes in gene expression and function of the 

villous trophoblast in preterm preeclampsia and HELLP syndrome. Since neither of these in 
vitro stress conditions could solely mimic placental findings in preterm preeclampsia, it is 

possible that the extent of hypoxia or ischemia applied in our experiments, or the use of 

BeWo cells, might have been suboptimal for modeling villous trophoblastic stress in 

preeclampsia. Moreover, yet unknown factors in addition to hypoxia or ischemia may also 

contribute to these transcriptomic and functional changes in the villous trophoblast in 

preeclampsia. Supporting this latter concept, it has recently been shown that preeclampsia is 

associated with the differential methylation of LEP and FLT1 in the placenta in 

preeclampsia, which may promote the increased placental expression of these genes [50, 

51].

Szabo et al. Page 8

Pathol Oncol Res. Author manuscript; available in PMC 2018 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Signaling pathways affected in BeWo cells by hypoxic, ischemic and pro-
inflammatory stimuli—Interestingly, all applied stress conditions could induce the 

activation of the p38 and JNK pathways, hypoxia and ischemia had an opposing effect on 

ERK1/2 signaling, while IL-1β did not affect this latter pathway (Fig. 4). Similar to that 

proposed by the gene expression changes, kinase activity assays also suggest the 

combination of hypoxia and ischemia to lead to the closest simulation of altered signaling 

pathways in the villous trophoblast in preterm preeclampsia. Our results may also suggest 

that a robust hypoxic component besides ischemia may activate ERK1/2 signaling in the 

villous trophoblast and the development of HELLP syndrome. Nevertheless, we can 

conclude that either the applied in vitro stress conditions could not entirely mimic those 

present in vivo, or yet unknown factors in addition to hypoxia or ischemia may also 

contribute to villous trophoblastic stress in preeclampsia and HELLP syndrome.

The use of various kinase inhibitors revealed that the ERK1/2 pathway had the most impact 

on gene expression in normoxic conditions in accord with the pivotal role of ERK1/2 in 

villous trophoblast differentiation [42]. However, in all stress conditions when compared to 

normoxia, p38 signaling had the most impact on trophoblastic LEP, FLT1 and PGF 
expression. These findings are in line with the role of p38 kinase in signaling environmental 

stress in the villous placenta [22], and they underline its pivotal role in the development of 

the anti-angiogenic and pro-inflammatory states in preeclampsia.

CONCLUSIONS

Hypoxic and ischemic stress, along with unknown factors, activates trophoblastic p38 

signaling, which may have a key role in villous trophoblastic functional changes in preterm 

preeclampsia, associated with or without HELLP syndrome. The activation of ERK1/2 

signaling may induce trophoblastic functional changes characteristic for HELLP syndrome, 

while distinct mechanisms may promote the development of late-onset preeclampsia.
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Fig. 1. Villous trophoblastic pp38 immunostaining is increased in preterm preeclampsia 
associated with or without HELLP syndrome
A-E) Phosphorylated p38 (pp38) immunostaining was detected mostly in the nuclei of 

villous trophoblasts. A,C,E) Villous trophoblastic nuclear immunostaining was stronger in 

preterm preeclampsia with or without HELLP syndrome than in preterm controls. B,D) 

There was no difference in villous trophoblastic nuclear immunostaining between term 

controls and late-onset preeclampsia cases. Representative images for the groups are shown 

in 400× magnifications. F) Villous trophoblastic pp38 immunoscores were higher in preterm 
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preeclampsia (mean+SD: 1.98+0.37, p=0.01) and in preterm preeclampsia with HELLP 

syndrome (2.15+0.43, p=0.004) than in preterm controls (1.19+0.51). Mean pp38 

immunoscores were not different between late-onset preeclampsia (1.60+0.39, p=0.5) and 

term controls (1.33+0.53). PE, preeclampsia; HELLP, HELLP syndrome; PE+HELLP, 

preeclampsia with HELLP syndrome. Stars denote significant changes.
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Fig. 2. Gene expression and kinase activity changes in BeWo cells under various stress conditions
A) Heatmap representing qRT-PCR data reveals various effects of stress conditions on FLT1, 

GCM1, LEP and PGF expression in differentiating BeWo cells. The color bar depicts fold-

changes relative to differentiating BeWo cells in normoxic conditions. In ischemia, LEP 
expression increased by 2.1-fold (p=0.04). In hypoxia, the expression of FLT1 increased by 

2.5-fold (p=0.056), while PGF was down-regulated by 1.4-fold (p=0.04). After IL-1β 
treatment, PGF expression was decreased by 1.6-fold (p=0.01). B) Bar-charts representing 

kinase activity assay data reveal various effects of stress conditions on pAkt-1, pERK1/2, 

pJNK and pp38 activities in differentiating BeWo cells (n=3). In ischemia, JNK had a 2.5-

fold increased activity (q=0.03), ERK1/2 had a 2.4-fold decreased activity (q=0.02), while 

there was a 1.3-fold, marginally significant increase in p38 activity (q=0.17). In hypoxia, the 

activity pERK1/2 (1.7-fold, q=0.03), pJNK (1.6-fold, q=0.1) and pp38 (1.3-fold, q=0.06) 

increased significantly. After IL-1β treatment, pJNK had a 2.1-fold increased activity 

(q=0.03), while pp38 activity was increased by 1.4-fold (q=0.04). All experiments were run 

in triplicate. Stars denote significant changes.
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Fig. 3. Gene expression changes in BeWo cells treated with kinase inhibitors under various stress 
conditions
The tables represent altered effects of kinase inhibitors on gene expression in differentiating 

BeWo cells in a given stress condition compared to control, normoxic conditions. The actual 

qRT-PCR data is presented in Suppl. Fig. 4. Red arrows depict increase in expression so that 

up-regulation trends observed in normoxia become significant in the current stress condition 

or the significance of down-regulation observed in normoxia is lost in the current stress 

condition. Green arrows represent decrease in expression so that down-regulation trends 

observed in normoxia become significant in the current stress condition or the significance 

of up-regulation observed in normoxia is lost in the current stress condition.
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Fig. 4. Summary figure
A) The table summarizes differential expression among selected genes and activation among 

selected kinases in placentas in the disease groups and in BeWo cells in the applied stress 

conditions. Red letters denote significant increase, orange letters denote marginal increase, 

while green letters denote significant decrease. Data in boxes highlighted with blue suggest 

that trophoblastic ischemia and hypoxia may lead to the signaling and transcriptomic 

changes observed in preterm preeclampsia. Treatments with kinase inhibitors revealed the 

key role of p38 signaling in impacting trophoblastic gene expression unique to various stress 

conditions. B) The activation of trophoblastic p38 signaling may be key in placental 

transcriptomic changes and consequent angiogenic/anti-angiogenic imbalance in preterm 

preeclampsia. The trophoblastic activation of ERK1/2 signaling may drive the more 

extensive transcriptomic changes and placental inflammation, and the increased 

cytotrophoblast proliferation in preterm preeclampsia with HELLP syndrome compared to 

preterm preeclampsia alone.
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