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Abstract

Purpose of review—Real-time 3-dimensional (3-D) imaging of cardiovascular injury and 

regeneration remains challenging. We introduced a multi-scale imaging strategy that uses light-

sheet illumination to enable applications of cardiovascular injury and repair in models ranging 

from zebrafish to rodent hearts.

Recent findings—Light-sheet imaging enables rapid data acquisition with high spatiotemporal 

resolution and with minimal photo-bleaching or photo-toxicity. We demonstrated the capacity of 

this novel light-sheet approach for scanning a region of interest with specific fluorescence contrast, 

thereby providing axial and temporal resolution at the cellular level without stitching image 

columns or pivoting illumination beams during one-time imaging. This cutting-edge imaging 

technique allows for elucidating the differentiation of stem cells in cardiac regeneration, providing 

an entry point to discover novel micro-circulation phenomenon with clinical significance for injury 

and repair.

Summary—These findings demonstrate the multi-scale applications of this novel light-sheet 

imaging strategy to advance research in cardiovascular development and regeneration.
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Introduction

Real-time 3-dimensional (3-D) imaging of cardiovascular injury and repair remains a 

significant challenge. Conventional microscopes are confined to low light penetration and a 

small working distance for optical sectioning and parallelization that limit long-term 

biological interrogation (1–3). In addition, mechanical slicing likely distorts the intrinsic 

tissue integrity, and under-sampling occurs following 3-D reconstruction (4). Despite the 

advent of 3-D live imaging techniques such as positron emission tomography (PET) (5, 6), 

computed tomography (CT) (7, 8), and magnetic resonance image (MRI) (9, 10), these 

techniques are limited by spatial resolution (11–15). In addition, they are unable to capture 

fluorescently-labelled molecules that are used frequently in biomedical research. For these 

reasons, we hereby introduce a multi-scale and 3-D approach to imaging organisms ranging 

from live zebrafish embryos (~ 0.4 × 0.5 × 0.6 mm3) to mouse hearts (~2 × 2 × 4 mm3). This 

technique, called light-sheet fluorescence microscopy (LSFM) (16–20), has demonstrated 

high spatiotemporal resolution and specific labeling without needing to stitch image 

columns (21–23) or pivot the illumination beams and has minimal photo-bleaching and rapid 

acquisition time (24).

While fluorescence microscopy technologies in general have become increasingly powerful 

in terms of resolution, speed, and penetration, they are most often performed in thin and 

transparent samples (25, 26). The size and opacity of entire embryos, which are often a few 

millimeters in size, render it challenging to achieve single-cell resolution of ~10 μm (several 

hundred microns deep inside the intact embryos). Current imaging techniques such as 

confocal microscopy are limited by their intrinsic depth penetration and z-axis resolution. 

Images acquired with the conventional microscopy techniques incur 1) significant 

background noise due to out-of-focus illumination, and 2) low axial resolution due to a large 

depth of field. The dynamic range and axial penetration depth are also reduced due to ~95% 

of fluorescent blockage (4). Unlike the confocal and wide-field microscopy, LSFM has the 

capacity to localize the 4-D (3-D spatial + 1-D time or spectra) cellular phenomena with 

multi-fluorescence channels (27–31). Due to the intrinsic properties of the current optical 

microscopy design, depth-of-focus and resolution offset each other. Furthermore, optical 

sectioning for dynamic sample remains a challenging issue. Initially developed to image 

Caenohabditis elegans (32, 33), zebrafish embryos (34, 35), and Drosophilas (36, 37), LSFM 

has now been adapted to image rodent organs such as the mouse hippocampus (38–40) and 

mouse cochlea (41) with the introduction of optical clearing techniques (42). Thus, LSFM 

system has allowed for uncovering both mechanical and structural phenotypes at the cellular 

level (16–18, 20). The Comparative advantages and disadvantages among different optical 

imaging modalities are listed in Table 1. In this review, we will introduce the basic optical 

principle of LSFM. Next, we will provide three areas of applications: 1) analysis of vascular 

injury and regeneration in zebrafish embryos, 2) quantification of doxorubicin 

chemotherapy-induced cardiac injury and repair, and 3) 3-D localization of cardiac 

progenitor lineage in neonatal mouse hearts.
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1. Operating principle of light-sheet system and sample preparation

The custom-made light-sheet microscope (Figure 1a–c) utilized a continuous-wave laser 

(Laserglow Technologies, Canada) as the illumination source. The detection module was 

composed of the scientific CMOS (sCMOS, ORCA-Flash4.0, Hamamatsu, Japan) and a set 

of filters (Semrock, New York, USA). This detection module was perpendicularly installed 

to the illumination plane. The sample holder was oriented by a five-axis mounting stage for 

scanning the biological specimen. Both illumination and detection modules were controlled 

by a computer with a dedicated solid-state drive and the Redundant Array of Independent 

Disks level 0 (RAID 0) storage for fast data streaming. The lateral resolution of the LSFM is 

mainly governed by the numerical aperture (NA) of the objective lens, as denoted by 

dlateral=0.61λ/NA, where λ indicates the wavelength of excitation light. The axial resolution 

is determined by the waist of Gaussian beam and detection NA. The waist ω0 and Rayleigh 

range Z are used to define the light-sheet (Figure 1d): ω0=λf/πω, Z=λf2/πω2, where f is the 

focal length of the excitation objective, and ω denotes the half of the width of illumination 

beam before focusing. Generally, both waist ω0 and Rayleigh range Z drop as the ω 
increases.

For the imaging data presented here, the detection objective was imaged through the liquid-

air interface which introduced a spherical aberration-based point spread function (PSF) 

extension (43). Each image was acquired within a 10–50 ms exposure time. The stepping 

size of mechanical scanning was 1–5 μm, less than one half of the light sheet thickness in 

accordance with the Nyquist-Shannon sampling theorem. Thus, the resolving power of the 

LSFM in cross-section varied from 1 μm to 10 μm, while the waist ω0 ranged from 2 to 9 

μm. All of the raw data were processed to remove stationary noise. The simplified tissue 

clearing method was used to process the mouse hearts as described in (44).

2. Light-sheet imaging of vascular injury and regeneration in zebrafish embryos

We studied zebrafish blood cell migration in response to vascular injury and regeneration by 

using the transgenic Tg(fli1:GFP; gata1:DsRed) and Tg(fli1:GFP; cmlc2:mCherry) lines, in 

which we were able to track blood cells in the vasculature in response to tail amputation at 3 

days post fertilization (dpf). Using the transgenic Tg(fli1:GFP;gata1:DsRed) line in which 

the fli1 promoter drives expression of GFP in all vasculature throughout embryogenesis and 

gata1 promoter drives the expression of DsRed in blood cells (Figure 2a), we applied dual-

channel detection to simultaneously track 1) the vascular loop connection between the dorsal 

aorta (DA) and the dorsal longitudinal anastomotic vessel (DLAV) at 3 dpf, and 2) the blood 

cells circulating to the injured site (Figure 2b). At 100 fps, the measured angle and 

displacement allowed computation of the velocity of the targeted cells as 2.9 ± 0.1 μm/ms 

(Figure 2c). This method may allow studies of non-linear shear rates in a low Reynolds 

number system (Re: 100 ~ 1000). Genetic manipulation of the ADAM10 inhibitor (which 

inhibits proteolytic cleavage of the Notch extracellular domain) also enabled us to elucidate 

Notch-mediated vascular regeneration to connect the loop between DLAV with DA (Figure 

2d vs. 2b). Thus, LSFM enables the discovery of novel micro-circulation phenomenon with 

clinical significance for injury and repair.
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3. Light-sheet imaging to analyze doxorubicin chemotherapy-induced cardiac injury and 
repair

In adult zebrafish, the regenerating myocardium electrically couples with uninjured 

myocardium (45) and represents an evolutionarily-conserved model of cardiomyopathy (46). 

However, the small size and the two-chambered zebrafish heart limits precise morphologic 

assessment. In the setting of chemical clearing to achieve tissue transparency and laser light 

transmission, advances of light-sheet imaging coupled with automated image segmentation 

based on histogram analysis led to rapid and robust 3-D cardiac reconstruction, thereby 

unraveling the architecture of doxorubicin chemotherapy-induced cardiac injury and 

regeneration in adult zebrafish (47). By combining light-sheet imaging with automated 

segmentation, we observed dynamic changes in cardiac volumes in response to doxorubicin-

induced cardiac toxicity. Precise 3-D reconstruction further enabled quantitation of cardiac 

volumes at days 3, 30, and 60 following chemotherapy treatment (Figure 3a). Compared to 

control fish, doxorubicin treatment led to an acute decrease in myocardial and endocardial 

volumes at day 3 (P < 0.01), demonstrating global cardiac injury (Figure 3b). This was 

followed by ventricular remodeling at day 30 (P < 0.01) and complete regeneration and 

restoration of normal architecture at day 60. Our results demonstrate the suitability of light-

sheet imaging combined with automated segmentation as a high-throughput method to 

monitor 3-D cardiac ultrastructural changes in adult zebrafish, with translational 

implications to drug discovery and modifiers of chemotherapy-induced cardiomyopathy.

4. Light-sheet to localize cardiac progenitor lineage in neonatal mouse hearts

Accumulating evidence supports the ability of the mammalian heart to generate new 

cardiomyocytes during development and in response to injury (48, 49). However, 3-D 

distribution of cardiac progenitor cells to cardiac tissue formation remain poorly understood 

for both cardiac morphogenesis and regeneration (48, 49). We applied two reporter systems 

to demonstrate LSFM-imaged cardiac progenitor lineage. A rainbow multi-color reporter 

system (50) was used to retrospectively identify the source of new cardiomyocytes in a 

mouse heart at postnatal day 1 (P1) (Figure4). Cre-mediated recombination of paired lox P 

sites in the αMHCCre;R26VT2/GK mouse model resulted in expression of all four fluorescent 

proteins (Cerulean, GFP, mOrange and mCherry, Figure 4b–c). We applied a sub-voxel 

light-sheet imaging method to precisely localize and subsequently quantify the numbers of 

cells and size of the individual clones (Figure 4d). Another fetal mouse model (embryonic 

day 16.5, E16.5) was Mesp1Cre/+ crossed with Rosa26tdT/+ reporter system to study the 

contribution of tdT+ cell (red hot) in an intact fetal mouse heart (Figure 4e–h). 3-D LSFM 

imaging showed the majority of the cardiac cells that were labeled with tdT arose from a 

mesoderm posterior1 homolog (Mesp1) origin and allowed tracing of their 3-D distribution, 

proliferation, and tissue formation. Thus, light-sheet imaging allows for clonal analysis of 

cardiomyocyte generation during development and injury.

Conclusions and Discussion

We have established a holistic strategy for multi-scale applications of LSFM to elucidate 

cardiovascular injury and repair in both zebrafish and mouse models. This method provides 

an efficient and robust platform for detailed analysis of cardiovascular phenomena ranging 
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from tissue clearing ex vivo to 4-D imaging in vivo. This framework builds on the high axial 

and temporal resolution provided by LSFM, which allows for long-term, 3-D and 4-D 

visualization of in vivo cellular events and organogenesis with minimal photo-bleaching or 

photo-toxicity.

Light-sheet imaging allows one to image the entire vasculature and cardiac architecture 

without the need for mechanical slicing or stitching of image columns. By this means, 

LSFM bypasses the need to move the tissue volume or light-sheet along the propagation of 

the illumination, thereby allowing us to carry out multi-scale imaging in a wide range of 

specimens, from embryos to adults, with the light-sheet thickness ranging from 1 μm to 18 

μm (18, 20). Our methodology expands the field of view from hundreds of micrometers to 

tens of millimeters to cover the entire mouse heart with sufficient spatiotemporal resolution 

to track cardiovascular development in rodents. Our imaging strategy simplifies the 

operation during image acquisition, reduces the complexity of pre- and post-processing of 

cardiac images, and enhances the robustness of the imaging system to provide dual-channel 

in vivo imaging at over 100 fps. This strategy brings advanced imaging to studies of tissue 

injury and regeneration with multi-scale applications to fundamental studies of 

cardiovascular development and translational work in congenital cardiac anomalies and 

disease.
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Figure 1. 
Fundamental concept of the light-sheet imaging strategy. (a) The critical procedures of the 

multi-scale imaging are indicated for both embryonic zebrafish and mouse studies. (b) The 

specimen is mounted at the intersection of the illumination lens (IL) with the detection lens 

(DL). The laser light-sheet is excited from the IL in a 2-D plane which is orthogonal to the 

detection axis. The LSFM system provides a long working distance with air objective lenses 

in comparison to water-dipping lenses in conventional light-sheet systems. (c–d) A photo 

and a schematic illustrate the layout of the light-sheeting imaging system. A cylindrical lens 

(CL) converts the laser beam to a sheet of laser light that can transversely illuminate a thin 

layer of the sample. The illuminated 2-D thin layer (fluorescent detection in red) is captured 

by the high-frame rate sCMOS camera. The filter wheels (FW I and II) in front of sCMOS 

cameras are used for multi-color acquisitions. (e) A photo depicts an array of laser beams 

aligned for multi-channel fluorescent detection. M: mirror; BS: beam splitter; BE: beam 

expander; TL: tube lens; DC: dichroic mirror; FW: filter wheel.
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Figure 2. 
Light-sheet microscopic illumination of vascular regeneration and circulating blood cells in 

response to tail amputation. (a) An inverted fluorescence image of a transgenic 

Tg(fli1:GFP;gata1:DsRed) zebrafish embryo showing the vasculature (green) at 3 dpf. ISV: 

intersegmental vessel; DLAV: dorsal longitudinal anastomotic vessel; SIV: subintestinal 

vessel; PCV: posterior cardinal vein; DA: dorsal aorta. Box b indicates the site of tail 

amputation. (b) LSFM captures blood cells (red) proximal to the site of amputation and 

regeneration. Dashed yellow boxes indicate locations of higher power images in the 

subsequent panels (c1–6). Arrows indicate the position of an individual RBC (red) in relation 

to the vascular endothelial layer (green) acquired by LSFM at 100 fps. The average angle 

between the vein (green PCV) and vertical axis of the frame is 75°, and the relative 

displacement along the horizontal axis of the frame in each 30 ms period is 88 μm (c4-c1), 

85 μm (c5-c2) and 80 μm (c6-c3), respectively. These measures correspond to a net velocity 

of nearly 2.9 ± 0.1 μm/ms for that blood cell of interest. (d) The dashed line indicates the 

incomplete vascular regeneration between DLAV and DA in a separate zebrafish embryo 

treated with an inhibitor of ADAM10 (GI254023X, Sigma) which blocks Notch signaling. 

Scale bars: 200 μm.
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Figure 3. 
Cardiac architecture following doxorubicin treatment. Following intraperitoneal treatment 

with doxorubicin or control vehicle, adult zebrafish hearts were harvested at days 3, 30, and 

60. (a) Throughout the duration of the study, control hearts exhibited a preserved 

architecture. In contrast, doxorubicin-treated hearts demonstrated a profound cardiac 

remodeling leading to acute decrease in size at day 3, followed by gradual increase at day 

30, and normalization at day 60. (b) Cardiac architecture characterization by quantitative 

analysis of the total heart, myocardial, and endocardial volumes compared to control values 

demonstrating the cardiac repair process following response to chemotherapy-induced 

injury. Legend. ** P < 0.01. Doxo: doxorubicin. Scale bar: 200 μm. (Reproduced with 

permission from: Packard et al. Sci Rep. 2017;7) (47).
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Figure 4. 
3-D tracking of the cardiac progenitor lineage in the fetal and neonatal mouse hearts. (a) 

Expression of Cre in the neonatal mouse heart induces random recombination between 

mutated paired lox P sites leading to expression of Cerulean, GFP, mOrange and mCherry 

respectively. (b–c) Sub-voxel imaging of the rainbow heart was captured in four channels. 

Multi-view reconstruction was performed to enhance the spatial resolution for tracking and 

localizing the differentiation of cardiomyocytes in the intact neonatal heart. (d) 

Quantification of the number of labeled cells is illustrated in the pie chart, and the sizes of 

individual clones in a heart by the bar graphs. (e–f) Spatial distribution of tdT+ cells (red 

hot) in a fetal mouse heart which was Mesp1Cre/+ crossed with Rosa26tdT/+ reporter. (g) A 3-

D orthogonal slice and (h) 2-D inset reveal the contribution of tdT+ cells in the heart. Scale 

bars: (a & c) 1 mm; (e–g) 500 μm; (h) 100 μm.
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