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Abstract

This paper presents a physiological model to reproduce hemodynamic responses to blood volume 

perturbation. The model consists of three sub-models: a control-theoretic model relating blood 

volume response to blood volume perturbation; a simple physics-based model relating blood 

volume to stroke volume and cardiac output; and a phenomenological model relating cardiac 

output to blood pressure. A unique characteristic of this model is its balance for simplicity and 

physiological transparency. Initial validity of the model was examined using experimental data 

collected from 11 animals. The model may serve as a viable basis for the design and evaluation of 

closed-loop fluid resuscitation controllers.
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1. Introduction

Fluid infusion is an essential component of circulatory resuscitation for hypovolemia caused 

by infection (e.g., sepsis), perioperative and traumatic hemorrhage, neuro-critical care, burns 

and so forth (Bouglé, Harrois, & Duranteau, 2013; Chatrath, Khetarpal, & Ahuja, 2015; 

Goodman & Kumar, 2014; Haberal, Sakallioglu Abali, & Karakayali, 2010; Rochwerg et al., 

2014). Fluid resuscitation requires titration and retitration of fluid infusion dose to the 

varying physiological state of a patient. In today’s clinical practice, caregivers are 

responsible for the continuous titration tasks. As a practical matter, this tedious but life-

critical requirement presents a few challenges. First, the choice of target endpoints is 
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heterogeneous and depends on the underlying pathophysiology of the patient and the 

preference of caregivers (e.g., blood pressure (BP) was shown effective for fluid infusion 

after uncomplicated hemorrhage in animals (Vaid et al., 2006) while urinary output (UO) 

was shown effective for burns (Salinas et al., 2008)). Second, caregivers may not effectively 

perform titration due to, e.g., heavy workload, distractions, and clinical inertia (Oliveira, 

Garcia, & Nogueira, 2016). Third, caregivers may not make optimal titration due to 

enormous variability in fluid responses across different patients.

The above limitations naturally suggest the desire for autonomy in fluid resuscitation. In 

fact, published reports document that autonomous closed-loop control systems for fluid 

resuscitation may alleviate the caregiver workload while still maintaining the quality of care 

by reducing the laps and errors associated with therapy adjustments (Michard, 2013; 

Rinehart, Liu, Alexander, & Cannesson, 2012; Rinehart, 2014; Bighamian, Kim, Reisner, & 

Hahn, 2016). However, existing work on closed-loop fluid resuscitation is not abundant, if 

not rare, both in terms of design and evaluation. Most closed-loop fluid resuscitation 

controllers reported to date are built upon empiric decision rules and gain tuning (Hoskins et 

al., 2006; Rinehart, Lee, Cannesson, & Dumont, 2013; Salinas et al., 2008; Ying & 

Sheppard, 1990). This state-of-the-art leaves much room for improving the efficacy and 

robustness of closed-loop fluid resuscitation controllers via model-based design approaches 

established in the field of control theory (Ioannou & Sun, 2012; Khalil, 2001; Nise, 2011; 

Skogestad & Postlethwaite, 2005; Slotine & Li, 1991). In addition, most evaluation studies 

have resorted to costly and time-consuming animal experiments (Rafie et al., 2004; Chaisson 

et al., 2003; Elgjo, Traber, Hawkins, & Kramer, 2000). Discussions at the recent Public 

Workshop on Physiological Closed-Loop Controlled Medical Devices organized by the Food 

and Drug Administration (FDA) found that computational models may offer time- and cost-

efficient means for non-clinical testing (FDA Public Workshop, 2015). Hence, a credible 

mathematical model that can reproduce hemodynamic responses to blood volume 

perturbation may open up new opportunities for the design and evaluation of closed-loop 

fluid resuscitation controllers.

A mathematical model must be equipped with a pair of conflicting attributes to be useful for 

both design and evaluation of closed-loop control systems. First, it must be simple enough to 

streamline the design of closed-loop controllers. Second, it must be accurate and transparent, 

or interpretable, enough to produce legitimate evaluation outcomes. However, existing 

mathematical models that aim to reproduce hemodynamic responses to blood volume 

perturbation do not appear to fulfill an adequate balance between these two requirements: 

one class of black-box models are too empiric to offer viable physiological implications 

(Lewis, 1986; Mardel et al., 1995; Simpson et al., 1996; Wears & Winton, 1990), whereas 

the other class of first-principles models are too complex, involving as many as a few 

thousand parameters (Abram, Hodnett, Summers, Coleman, & Hester, 2007; Kofránek & 

Rusz, 2010; Pirkle & Gann, 1976; Hedlund, Zaar, Groth, & Arturson, 1988; Arturson, 

Groth, Hedlund, & Zaar, 1989; Carlson, Kligman, & Gann, 1996), making it inappropriate 

for the purpose of controller design. Therefore, a pre-requisite for the development of next-

generation closed-loop fluid resuscitation controllers is a simple yet accurate and 

mechanistically transparent mathematical model suited to the design and evaluation of 

closed-loop fluid resuscitation controllers. Such a model must be able to reproduce a 
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comprehensive list of hemodynamic responses to blood volume perturbation used as clinical 

endpoints of fluid resuscitation in today’s clinical practice, including blood volume (BV), 

stroke volume (SV) and cardiac output (CO), BP, and central venous pressure (CVP) 

(Roche, Miller, & Gan, 2009; Rinehart, Lee, Canales, et al., 2013; Blankenship, Wallace, & 

Pacifico, 1990; Cannesson, de Backer, & Hofer, 2011; Bighamian, Kim, et al., 2016).

This paper presents a lumped-parameter model to reproduce hemodynamic responses to 

blood volume perturbation applicable to the design and evaluation of closed-loop fluid 

resuscitation controllers. A unique characteristic of this model is its balance for simplicity 

(via abstraction of complex microscopic physiological mechanisms into systems-level 

feedback control actions) and physiological transparency (via rigorous use of established 

physiological knowledge). The preliminary validity of the model was examined using 

experimental data collected from 11 animals. First, a fully individualized model (a model 

obtained for each animal by estimating all the parameters from the data) was studied. Then, 

a parametric sensitivity analysis was performed to obtain a well-conditioned model by 

identifying low-sensitivity model parameters and fixing them at nominal values. Finally, a 

partially individualized model (a model obtained by estimating only the parameters to be 

individualized from the data) was studied.

2. Materials and methods

2.1. Lumped-parameter model of hemodynamic responses to blood volume perturbation

The model consists of three sub-models: (a) a control-theoretic model to relate blood volume 

perturbation (specifically, hemorrhage and fluid infusion) to blood volume; (b) a simple 

physics-based model to relate blood volume to stroke volume and cardiac output; and (c) a 

phenomenological model to relate cardiac output to blood pressure (Fig. 1). Compared to 

existing models available in the literature, a unique characteristic of this model is its balance 

for simplicity (via abstraction of complex microscopic physiological mechanisms into 

systems-level feedback control actions) and physiological transparency (via rigorous use of 

established physiological knowledge). Details follow.

2.1.1. Modeling of blood volume response to blood volume perturbation—Fluid 

in the body is distributed in 3 major compartments: intravascular (blood), extravascular 

(interstitial fluid), and intracellular (Guyton, Taylor, & Granger, 1975). In the context of 

critical care, the gain or loss of fluid occurs primarily in the intravascular compartment in 

the form of hemorrhage, UO, fluid infusion etc., but the perturbation in the intravascular 

fluid volume thus occurred is dynamically distributed across all 3 major compartments via 

the inter-compartmental fluid shift (Guyton et al., 1975). In our prior work, a control-

theoretic model of BV response to fluid infusion was developed (Bighamian, Reisner, & 

Hahn, 2016). The basic idea was to formalize established physiological principles 

underlying fluid volume distribution (that fluid infused into the intravascular compartment is 

distributed in the intravascular and extravascular compartments to regulate the ratio between 

their volumetric changes (Guyton et al., 1975)) into a mathematical model by abstracting 

myriads of complex microscopic fluid shift mechanisms into macroscopic feedback control 

actions.
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Given that the ratio between the intravascular and extravascular volumetric changes is 

different for fluid loss (hemorrhage) and gain (fluid infusion) due to the compositional 

differences in the fluids involved in each process (blood lost consists of plasma and red 

blood cells (RBCs) while infused fluid may consist of electrolyte (crystalloid such as 

Lactated Ringer’s solution (LR)) and starch (colloid such as Hextend (Hex))), our original 

model developed primarily for fluid infusion scenarios is not readily applicable to the 

scenarios in which a patient undergoes both hemorrhage and fluid infusion. In the current 

work, our original model was extended as follows to address this limitation. Denoting the 

ratio between the intravascular and extravascular volumetric changes in the steady state in 

response to fluid gain (fluid infusion) and loss (hemorrhage and urine) as αu and αυ, 

respectively, the desired steady-state change in BV, rB(t), can be written as follows:

rB(t) = 1
1 + αu 0

t
u(τ)dτ − 1

1 + αυ 0

t
υ(τ)dτ (1)

where u(t) and υ(t) = υH(t) + υU(t) denote the rates of fluid gain (infusion) and loss 

(hemorrhage υH(t) and UO υU(t)) at time t. At each time t, the inter-compartmental fluid 

shift is dictated by the discrepancy between the desired (rB(t)) versus actual (ΔVB(t)) 
changes in BV as follows:

q(t) = q(eB(t)) = q(rB(t) − ΔVB(t)) (2)

Then, applying the conservation of volume to the intravascular compartment in Fig. 1(a) 

dictates that the rate of change in ΔVB at time t is given by the resultant sum of the fluid 

gain u(t), fluid loss υ(t), and the inter-compartmental fluid shift q(t) (see the inflows and 

outflows associated with the “Blood” bucket):

ΔV̇B(t) = u(t) − υ(t) − q(t) (3)

If the inter-compartmental fluid shift is abstracted into the action of a simple proportional–

integral (PI) controller that strives to drive eB(t) to zero in the steady state (Nise, 2011):

q(t) = − K peB(t) − Ki 0

t
eB(τ)dτ (4)

where Kp and Ki are proportional and integral gains, the dynamics dictating the rate of 

change in BV can be written as follows by combining (1)–(4):
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ΔV ⃛
B(t) + K pΔV̈B(t) + KiΔV̇B(t) = [ü(t) − ϋ(t)] +

K p
1 + αu

u̇(t)

−
K p

1 + αυ
υ̇(t) +

Ki
1 + αu

u(t) −
Ki

1 + αυ
υ(t)

(5)

This model is visualized in Fig. 1(a) as a two-bucket system connected by a bi-directional 

flow valve, where the buckets represent the intravascular and extravascular compartments, 

respectively, while the valve represents the resultant action of all the inter-compartmental 

fluid shift mechanisms.

2.1.2. Modeling of stroke volume and cardiac output responses to blood 
volume changes—A perturbation in BV entails the corresponding perturbations in SV 

and CO. The influence of BV on SV and CO can be viewed from 2 complementary 

standpoints: vascular and ventricular. On one hand, Guyton’s CO-venous return (VR) theory 

dictates that a perturbation in BV results in perturbations in CO and VR by altering mean 

systemic pressure (MSP) (Beard & Feigl, 2011) (Fig. 1(b)):

VR (t) = CO (t) =
PMS(t) − PCV(t)

RVR
(6)

where PVC(t) is CVP, RVR is the resistance to VR, PMS =
(VB − VBU)

CS
 is MSP, VBU is the 

unstressed BV, and CS is the systemic capacitance (Beard & Feigl, 2011; Young, 2010). 

Expanding PMS in (6) yields the following relationship between BV, SV, and CO:

CO (t) = HR (t) · SV (t) = 1
RVR

VB(t) − VBU
CS

− PCV(t)

= 1
CSRVR

VB(t) − 1
RVR

PCV(t) −
VBU

CSRVR

(7)

Note that VB(t) = VB0 + ΔVB(t) is the sum of baseline BV VB0 and its change ΔVB(t) at 

time t given by (5). On the other hand, the Frank–Starling mechanism together with the left 

ventricular (LV) pressure–volume loop theory dictates that a perturbation in BV results in 

perturbations in SV and CO by altering the LV preload: LV end diastolic volume (LVEDV) 

(Sagawa, Maughan, Suga, & Sunagawa, 1988) (Fig. 1(b)). First, SV and CO are related to 

LVEDV Ved(t) as follows:

SV (t) = CO (t)
HR (t) =

ES
ES + EA

(Ved(t) − V0) (8)
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where ES is the LV elastance, EA is the arterial elastance (defined as the product of HR and 

total peripheral resistance (TPR)), and V0 is a constant parameter. Using the LV end-

diastolic pressure–volume relationship (Morley et al., 2007; Santamore & Burkhoff, 1991) 

evaluated at the end of diastole (VLV(t) = Ved(t) and PD(VLV(t)) = Ped(t), where Ped(t) is LV 

end diastolic pressure (LVEDP)):

PD(VLV(t)) = B e
A(VLV(t) − V0)

− 1
VLV(t) = Ved(t)

Ved(t) − V0 = 1
A log  1

BPed(t) + 1 (9)

where A and B are constant parameters specifying the end-diastolic LV pressure–volume 

relationship (Morley et al., 2007; Santamore & Burkhoff, 1991). Assuming that LVEDP 

Ped(t) is proportional to CVP PCV(t), Ped(t) ≈ γPCV(t) (Uemura et al., 2005), (8) reduces to 

the following:

SV (t) = CO (t)
HR (t) =

ES
ES + EA

1
A log  γ

BPCV(t) + 1 (10)

To obtain a direct relationship between BV and SV, (7) and (10) can be combined to yield 

the following by canceling CVP PCV(t):

SV (t) = θ1 log (θ2 · HR (t) · SV (t) + θ3VB(t) + θ4) (11)

where θ1 =
ES

A(ES + EA) , θ2 = −
γRVR

B , θ3 = γ
BCS

, and θ4 = − γ
B

VBU
CS

+ 1 are the parameters that 

must be tuned to each individual based on the experimental data. A direct relationship 

between BV and CO can then be obtained by multiplying HR by (11):

CO (t) = HR (t) · SV (t) = HR (t) · θ1 log (θ2 · CO (t) + θ3VB(t) + θ4) (12)

In this way, SV and CO responses to blood volume perturbation can be reproduced. In 

addition, CVP response may also be reproduced from SV or CO either by (7) or (10). This 

model is visualized in Fig. 1(b).

2.1.3. Modeling of blood pressure response to cardiac output changes—A 

perturbation in CO entails the corresponding perturbations in BP and TPR. Specifically, a 

perturbation in CO first results in a proportional change in BP, which is compensated by a 

decrease in TPR via the arterial autonomic-cardiac regulation (Coleman & Guyton, 1969; 

Montani & Van Vliet, 2009). Despite its complex first principles nature, it has been 

suggested that autonomic-cardiac regulation can be abstracted into a sigmoidal relationship 

reasonably well (Cheng, Ivanova, Fan, & Khoo, 2010; Kawada et al., 2001; Toru Kawada et 

al., 2004; Magosso, Biavati, & Ursino, 2001; Pruett et al., 2013; Ursino, Antonucci, & 

Belardinelli, 1994). Hence, the following phenomenological model was used to relate the 
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influence of BP on TPR (it is noted that a multitude of phenomenological sigmodal 

relationships were considered, and (13) turned out to offer the best ability to fit the 

experimental data among the models considered):

TPR (t) = TPR0 − ΔTPR
2

sgn (BP (t) − BP0) |BP (t) − BP0|3

1 + |BP (t) − BP0|3 (13)

where TPR0 and BP0 are TPR and BP at nominal state, respectively, and ΔTPR is the 

maximal possible change in TPR. Then, the relationship between CO and BP can be given 

by multiplying (13) by CO:

BP (t) = CO (t) × TPR (t) = Co (t) × TPR0 − ΔTPR
2

sgn (BP (t) − BP0) |BP (t) − BP0|3

1 + |BP (t) − BP0|3

(14)

This model is visualized in Fig. 1(c).

In sum, the mathematical model relating blood volume perturbation to hemodynamic 

responses of BV, SV, CO, and BP consists of (5), (12), and (14).

2.2. Experimental data

The experimental data used to validate the proposed lumped-parameter model were 

collected from 11 conscious sheep undergoing intravenous blood volume perturbation in the 

forms of hemorrhage and fluid infusion. The measurements included the rates of 

hemorrhage, fluid infusion, and UO as well as BV, CO, BP, and HR. The data collection 

protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the 

University of Texas Medical Branch and is described in detail elsewhere (Rafie et al., 2004).

All 11 animals received LR. 5 of these animals also received Hex. For the 5 animals which 

received both fluids, LR and Hex experiments were performed separately in a randomized 

order, with the experiments at least 5 days apart from each other. The duration of study for 

each fluid in each animal was 180 min. After the baseline data were recorded, an initial 

hemorrhage (25 mL/kg) was performed over 15 min. Fluid infusion was started 30 min after 

the start of the hemorrhage and continued for 150 min. Second and third hemorrhage (5 

mL/kg) were performed 50 and 70 min after the start of the initial hemorrhage, and each 

lasted for 5 min. Fluid infusion was performed automatically with a rule-based closed-loop 

controller described in our prior work (Marques et al., 2017; Rafie et al., 2004; Vaid et al., 

2006). In brief, a maximum flow of 100 ml/min (crystalloid) or 30 ml/min (colloid) per 70 

kg was set when BP was equal to or lower than 40 mmHg, 80% of the maximum infusion 

rate was set when BP was between 41 and 44 mmHg, 60% of the maximum infusion rate 

was set when BP was between 45 and 49 mmHg, 30% of the maximum infusion rate was set 
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when BP was between 50 and 69 mmHg, and 10% maximum infusion rate when BP was 

between 70 and 89 mmHg. At 90 mmHg and above, there was no infusion rate. In fact, it 

had previously been found that an effective means to maintain BP at a target level using the 

decision table algorithm, was to continue to infuse a small volume at a low rate until 10 

mmHg above target BP (Marques et al., 2017; Vaid et al., 2006).

In each animal, baseline BV was measured via indocyanine green dye (ICG) (Henschen, 

Busse, Zisowsky, & Panning, 1993). Hematocrit, defined as the ratio between the red blood 

cell volume (RBCV) and BV, was measured before and throughout the experiment at 5 to 10 

min intervals and was used to measure the fractional change in BV (see (Henschen et al., 

1993) for details). Other hemodynamic responses were measured at similar time instants.

2.3. Individualized model evaluation method

The ability of the proposed model to reproduce hemodynamic responses to blood volume 

perturbation was evaluated. Our primary focus was to investigate if the model could be 

adapted to each individual animal and reproduce subject-specific hemodynamic responses. 

First, the model was fitted to the experimental data of each animal (called fully 

individualized model identification). Second, parametric sensitivity analysis of a generalized 

model (obtained by averaging the 11 fully individualized models) was performed in order to 

obtain a well-conditioned model by identifying low-sensitivity model parameters and fixing 

them at nominal values. Third, the model was fitted to the experimental data of each animal 

while fixing low-sensitivity model parameters to their nominal values (called partially 

individualized model identification). Fourth, the performance of the fully and partially 

individualized models were compared in terms of accuracy and accuracy-complexity trade-

off as well as physiological transparency.

2.3.1. Individualized model identification and analysis—The fully individualized 

model identification was performed via numerical optimization. All sub-models combined, 

the model involves 10 tunable parameters: 4 in (5) (αu, αυ, Kp, Ki); 4 in (12) (θi, i = 1 ⋯ 4); 

and 2 in (14) (TPR0 and BP0) after fixing ΔTPR to cover experimentally observed maximal 

change in TPR in all animals (30 [mmHg·min/l]). Given a set of initial parameter estimates, 

the model computed BV, CO, and BP responses from the inputted experimental hemorrhage, 

fluid infusion, UO, and HR data as follows. First, the change in BV was computed from (5). 

At the same time, the change in RBCV was computed as follows:

ΔVRBC(t) = −
0

t
H(τ)υH(τ)dτ (15)

where ΔVRBC(t) is the change in RBCV at time t, υH(t) is the fluid loss due to hemorrhage 

at time t, and H(t) is hematocrit at time t, related to BV and RBCV as follows:

H(t) =
VB0H(0) + ΔVRBC(t)

VB0 + ΔV(t) (16)
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Second, CO response was computed by inputting the computed BV and measured HR to 

(12) and using a root finding algorithm to solve for CO that best satisfies (12) at each time t. 
Third, BP was computed by inputting the computed CO to (14). The computed BV, CO, and 

BP responses were compared with the respective experimental data, and the discrepancy 

between them was minimized by solving the following optimization problem to estimate the 

optimal set of model parameters:

Ω∗ = αu
∗, αυ

∗, K p
∗, Ki

∗, θ1
∗, θ2

∗, θ3
∗, θ4

∗, TPR0
∗, BP0

∗

= arg min
Ω

ΔVB(t) − ΔVB(t |Ω)

ΔVB(t)
CO (t) − CO (t |Ω)

CO (t)
× BP (t) − BP (t |Ω)

BP (t) 2

(17)

where ΔVB(t), CO  (t), and BP  (t) are measured BV, CO, and BP responses, while ΔVB(t|Ω), 

CO(t|Ω), and BP(t|Ω) are the same hemodynamic variables predicted by the model. 

ΔVB(t), CO  (t), and BP  (t) are the same hemodynamic variables averaged over the entire 

study duration, used to normalize the error magnitudes associated with each hemodynamic 

variables. The optimization problem (17) was solved using the differential evolution 

algorithm (Storn & Price, 1997), a derivative-free method suited to solve problems with 

multimodal and continuous-valued cost functions.

The fully individualized model was analyzed for (i) its ability to reproduce hemodynamic 

responses in each animal, (ii) accuracy-complexity trade-off via Akaike’s Information 

Criterion (AIC) (Burnham & Anderson, 2003), and (iii) the relevance of its parameter 

estimates. First, the models’ ability to reproduce experimental hemodynamic responses was 

assessed by computing the root-mean-squared errors (RMSEs) between the measured versus 

model-reproduced BV, hematocrit, SV, CO, and BP responses. Second, the AIC value 

associated with the model identified for each animal was computed. Third, the physiological 

relevance of the estimated model parameters was assessed in terms of the following: (i) αu
∗

identified for crystalloid (LR) infusion versus colloid (Hex) infusion (colloid contains large 

molecules, which allows it to be better retained in the intravascular compartment than 

crystalloid, resulting in smaller αu
∗ compared to crystalloid (Bighamian, Reisner, et al., 2016; 

Hedin & Hahn, 2005)); (ii) measured VB0 versus VBU derived from the identified CO model 

parameters (VBU
∗ = (1 − θ4

∗)/θ3
∗); (iii) correlation between measured VB0 and RVR derived 

from the identified CO model parameters ( CS
∗RVR

∗ = − θ2
∗/θ3

∗; noting that inter-individual 

variability in systemic compliance CS
∗ is not large (Oren, Grossman, & Frohlich, 1996) and 

that VB0 and RVR are known to exhibit positive correlation (Chirinos et al., 2009), model-

derived CS
∗RVR

∗  may be positively correlated to VB0); and (iv) discrepancy between measured 

BP and TPR in the steady state versus BP0
∗ and TPR0

∗ (noting from (13) that BP0
∗ and TPR0

∗
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indicate nominal BP and TPR, they may be close to experimental values in the steady state 

in each animal).

2.3.2. Post-hoc parametric sensitivity analysis—The post-hoc parametric sensitivity 

analysis was conducted using the identified fully individualized models in order to 

determine high-sensitivity parameters (those having a large influence on the model outputs) 

and low-sensitivity parameters (those having a small influence on the model outputs), and 

thereby to (a) understand the identifiability properties of the model (it is noted that analytical 

identifiability analysis based on, e.g., linear regression analysis (Ljung, 1999) is not feasible 

due to a subset of the model parameters that are nonlinearly involved) as well as to (b) 

obtain a well-conditioned model (a model with low parametric variance) by fixing low-

sensitivity parameters to their nominal values. Noting that BV, CO, and BP were all used in 

identifying the model, the parametric sensitivity analysis was performed a{t the sub-model 

level. That is, the sensitivity of the BV model (5) to αu
∗, αυ

∗, K p
∗, Ki

∗  was examined; the 

sensitivity of the CO model (12) to θ1
∗, θ2

∗, θ3
∗, θ4

∗  was examined; and the sensitivity of the 

BP model (14) to TPR0
∗, BP0

∗  was examined. Details follow.

Two nominal models were constructed for parametric sensitivity analysis: one nominal 

model to simulate crystalloid response, equipped with the parameters averaged over all the 

animals and αu
∗ averaged over 11 crystalloid animals, and another nominal model to simulate 

colloid response, equipped with the parameters averaged over all the animals and αu
∗

averaged over 5 colloid animals. To elucidate the parametric sensitivity of the models to both 

fluid gain and loss, the model was simulated with a hemodynamic perturbation scenario 

consisting of (i) 30 min of 0.05 ml/kg/min hemorrhage and (ii) 30 min of 0.05 ml/kg/min LR 

infusion or 0.05/3 ml/kg/min Hex, which were separated by 150 min zero-input period. The 

data thus acquired were used to compute the parametric sensitivity as follows. First, the 

control-theoretic BV model (5) was formulated into the following state space model:

ẋ(t) = f x(t), u(t), υ(t), ΩVB
= 𝒜x(t) + ℬ u(t)

υ(t)

=

−K p Ki
K p

(1 + αu)
−K p

(1 + αυ)

−1 0 1
(1 + αu)

−1
(1 + αυ)

0 0 0 0
0 0 0 0

x(t) +

1 −1
0 0
1 0
0 1

u(t)
υ(t) , x(t0) = x0

(18)
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ΔVB(t) = 𝒞x(t) = [1 0 0 0]x(t)

where x(t) = [ΔVB(t) ∫ eB (τ) dτ ∫ u (τ) dτ ∫ υ (τ) dτ]T, ΩVB = [αu αυ Kp Ki]T, and  and 

ℬ are the system and input matrices. From (18), the following sensitivity function was 

constructed (Khalil, 2001):

�̇�x(t) = 𝒜𝒮x(t) + ℋ(t), 𝒮x(t0) = 04 × 4 (19)

𝒮VB
(t) = 𝒞𝒮x(t)

where x(t) is the parametric sensitivity matrix associated with x(t), VB(t) is the 

parametric sensitivity function associated with BV, and ℋ(t) is given by the Eq. (20) in Box 

I.

Second, the sensitivity functions associated with the physics-based CO model (12) and 

phenomenological BP model (14) were constructed by computing their partial derivatives 

with respect to the respective model parameters:

𝒮CO(t) =

∂CO (t)
∂θ1

∂CO (t)
∂θ2

∂CO (t)
∂θ3

∂CO (t)
∂θ4

=

HR (t)(θ2CO (t) + θ3VB(t) + θ4) log (θ2CO (t) + θ3VB(t) + θ4)
(θ2CO (t) + θ3VB(t) + θ4) − θ1θ2HR (t)

θ1HR (t)CO(t)
(θ2CO (t) + θ3VB(t) + θ4) − θ1θ2HR (t)

θ1HR (t)VB(t)
(θ2CO (t) + θ3VB(t) + θ4) − θ1θ2HR (t)

θ1HR (t)
(θ2CO (t) + θ3VB(t) + θ4) − θ1θ2HR (t)

(21)

𝒮BP(t) =

∂BP (t)
∂TPR0
∂BP (t)
∂BP0

=

CO(t) 1 + |BP(t) − BP0|3 2

1 + |BP(t) − BP0|3 2 + 5CO(t)( |BP(t) − BP0 | )−2/3

5CO(t)( |BP(t) − BP0 | )−2/3

1 + |BP(t) − BP0|3 2 + 5CO(t)( |BP(t) − BP0 | )−2/3

(22)

Then, VB(t), CO(t), and BP(t) were numerically computed by solving (19), (21), and 

(22) simultaneously with (5), (12), and (14) subject to the hemodynamic perturbation 

scenario described above. Since the model parameter values exhibited diversity in terms of 

magnitude, the computed VB(t), CO(t), and BP(t) were normalized using the respective 

Bighamian et al. Page 11

Control Eng Pract. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nominal parameter values and time series sequences of ΔVB(t), CO(t), and BP(t). For each 

sub-model, the magnitudes of the normalized parametric sensitivity functions were 

compared and low-sensitivity parameter(s) were identified as those whose sensitivity 

magnitudes are considerably small relative to the sensitivity functions associated with the 

remaining parameters. Since these parameters do not exert a large influence on the model’s 

response compared to the remaining parameters, they may not be identified accurately, and 

therefore, may be fixed at nominal value(s) without making any notable influence on the 

model’s ability to reproduce the experimental hemodynamic responses.

2.3.3. Partially individualized model identification and analysis—The partially 

individualized model identification was performed via numerical optimization. The 

parametric sensitivity analysis showed that Ki and θ1 could be classified as low-sensitivity 

parameters (see Results). All sub-models combined, the model involves 8 tunable 

parameters: 3 in (5) (αu, αυ, Kp); 3 in (12) (θi, i = 2 ⋯ 4); and 2 in (14) (TPR0 and BP0) 

after fixing Ki and θ1 to their respective average values across all the animals. The 

optimization problem was solved as previously described to estimate the optimal set of 

model parameters for the partially individualized model. Then, the partially individualized 

model was analyzed in comparison with its fully individualized counterpart for (i) its ability 

to reproduce hemodynamic responses in each animal, (ii) accuracy-complexity trade-off via 

AIC, and (iii) the relevance of its parameter estimates.

3. Results

Table 1 shows the RMSEs associated with the fully and partially individualized models in 

reproducing BV, hematocrit, SV, CO, and BP (mean (SD)). In terms of AIC, partially 

individualized model outperformed its fully individualized counterpart in 6 (out of 11) 

animals for LR and in 4 (out of 5) animals for Hex. In sum, the former was superior to the 

latter, for either LR or Hex or both, in 8 out of 11 animals. Fig. 2 shows a representative 

example of measured hemodynamic responses to (a) LR and (b) Hex, and the same 

responses reproduced by the partially individualized model in an animal (the results 

associated with the fully individualized model were highly comparable and thus are not 

shown). Fig. 3 shows BV, CO, and BP errors associated with all 11 LR animals and 5 Hex 

animals, in terms of (a) the error distribution through time (median and IQR) and (b) the 

Bland–Altman plot. Table 2 summarizes the model parameter values associated with the 

fully and partially individualized models. Fig. 4 shows the time evolution of normalized 

parametric sensitivity functions in response to hemorrhage and crystalloid infusion (the 

results for colloid infusion exhibited the same trend and thus are not shown).

4. Discussion

A lumped-parameter model that can reproduce hemodynamic responses to blood volume 

perturbation was developed, equipped with simplicity to facilitate the design of closed-loop 

controllers and transparency to allow credible validation and interpretation. Here, the 

accuracy and physiological relevance properties of the proposed model are elaborated.
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4.1. Fully versus partially individualized models

Once tuned to the data associated with individual animals, both fully and partially 

individualized models could reproduce hemodynamic responses to hemorrhage as well as 

infusion of crystalloid (LR) and colloid (Hex) fluids accurately, including BV, hematocrit, 

SV, CO, and BP (Table 1). When root-mean-squared across all the animals, the RMSEs 

associated with BV, SV, CO, and BP were 1.9 ml/kg and 2.2 ml/kg, 0.12 ml/kg and 0.13 

ml/kg, 0.42 lpm and 0.44 lpm, and 7.2 mmHg and 7.3 mmHg, respectively. On the average, 

these errors amounted to less than 14.4% of the mean value of the corresponding responses 

in case of crystalloid and less than 11.7% in case of colloid. The goodness of fit observed for 

BV, ISFV, RBCV, and hematocrit suggests the validity of abstracting the inter-

compartmental fluid shift (which involves many complex physiological mechanisms) into a 

simple closed-loop (PI) control action, while the goodness of fit observed for SV and CO 

illustrates the appropriateness of minimum-complexity physics-based expression for the 

relationship between BV versus SV and CO (Fig. 2 and Fig. 3). Overall, the model exhibited 

remarkable performance in reproducing the experimental hemodynamic responses despite its 

simple architecture, indicating its potential to offer complementary value to the class of 

highly complex first-principles models currently available in the field, e.g., (Abram et al., 

2007; Kofránek and Rusz, 2010).

Close scrutiny of the fully individualized model showed that the model parameters are 

physiologically relevant. First, the values of αu
∗ associated with crystalloid (LR) infusion 

versus colloid (Hex) infusion were significantly different (p < 0.05). This observation is 

consistent with the physiological anticipation: colloid, compared to crystalloid, enhanced 

BV expansion via reduced fluid shift from BV to ISFV due to the large molecules it contains 

(Bighamian, Reisner, et al., 2016; Hedin & Hahn, 2005). This finding highlights the 

potential need for fluid-dependent models in the design and evaluation of closed-loop fluid 

resuscitation controllers. Second, VBU derived from the identified CO model parameters 

(VBU
∗ = (1 − θ4

∗)/θ3
∗) was closely correlated with the measured VB0 (r = 0.87). This 

observation is consistent with the physiological anticipation that individuals with small 

(large) VB0 tend to have small (large) VBU (Peterson & Bronzino, 2007). Third, RVR derived 

from the identified CO model parameters (CS
∗RVR

∗ = − θ2
∗/θ3

∗) was correlated positively with 

measured VB0 (r = 0.59), which is consistent with an earlier finding that RVR has a tendency 

to be proportional to VB0 (Chirinos et al., 2009). Finally, the agreement between BP0
∗ and 

TPR0
∗ versus their steady-state experimental values in each animal was adequate with average 

discrepancy of 12.3% for BP0
∗ and 29.3% for TPR0

∗. Overall, these observations indicate that 

at least a subset of the parameters in the proposed model are physically transparent and 

physiologically interpretable, which encourages follow-up work on subject-specific 

estimation of these parameters and its applications to the development of decision-assist and 

control algorithms as well as in-silico testing tools for investigational closed-loop fluid 

resuscitation controllers.

Comparing fully and partially individualized models, the RMSEs associated with the former 

were comparable to those associated with the latter. Specifically, RMSEs for BV (p = 0.24), 
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hematocrit (p = 0.20), SV (p = 0.26), CO (p = 0.50), and BP (p = 0.29) responses were not 

significantly different. In addition, AIC preferred partially individualized model to fully 

individualized model in many animals (see Results). The difference in the 8 tunable 

parameters was minimal and mostly insignificant (p > 0.05 for both LR and Hex, except Kp 

associated with Hex (p = 0.03)). Further, the physiological relevance of parameters observed 

for the fully individualized model was preserved in the partially individualized model. 

Hence, the impact of fixing Ki and θ1 to their nominal values on the validity and 

physiological relevance of the model was minimal. Considering that the partially 

individualized model involves fewer tunable parameters and equivalent RMSEs, it may be 

claimed that it is equipped with superior accuracy-complexity tradeoff to the fully 

individualized model.

4.2. Parametric sensitivity

Examining the time evolution of the parametric sensitivity functions offered additional 

insights as to the relative importance and identifiability properties of the model parameters. 

First, the time evolution of VB(t) indicates that BV response in the steady state is primarily 

sensitive to αu and αυ while the same response during transients is also influenced by Kp 

and Ki (Fig. 4(b)). This is plausible in that αu and αυ specify steady-state changes in BV 

and ISFV, whereas Kp and Ki are parameters dictating dynamic inter-compartmental fluid 

shift. In addition, the amplitudes of the sensitivity functions associated with Kp and Ki are 

relatively smaller than those associated with αu and αυ, suggesting the relative importance 

of the latter parameters compared to the former parameters. In particular, Ki appears to be 

the least important parameter in the control-theoretic BV model, suggesting that the inter-

compartmental fluid shift may be adequately described by individualizing the proportional 

control action alone, at least for the data used in this paper. Second, the time evolution of 

CO(t) indicates that CO response is sensitive to θ3 and θ4 relative to θ1 and θ2 (Fig. 4(c)). 

This observation is plausible in that θ3 and θ4 are related to BV and unstressed BV, the 

changes in which directly influences SV and CO. The amplitude of sensitivity functions was 

in general larger under hemorrhage than fluid infusion (Fig. 4(c); except ∂CO(t)
∂θ1

 which 

exhibited the opposite trend), which may be attributed to an increase in the denominator 

term (θ2CO(t) + θ3VB(t) + θ4) − θ1θ2 HR(t) in CO(t) (21) in response to BV expansion 

during fluid infusion. In sum, θ1 appears to be the least important parameter in the physics-

based CO model. Third, the time evolution of BP(t) indicates that both TPR0 and BP0 

make a large influence on BP response (Fig. 4(d)). In particular, noting that (13) is a 

saturating function in the BP-TPR plane (Fig. 1(c)), perturbing TPR0 and BP0 shifts the 

function (13) in vertical and horizontal directions, respectively. Hence, the function, and thus 

BP response as well, is more sensitive to TPR0 than BP0 when BP is far away from BP0 (i.e., 

the saturating ends of the function) while it is more sensitive to BP0 than TPR0 when BP is 

near BP0. The sensitivity functions in Fig. 4(d) clearly follow this anticipated behaviors: 
∂BP(t)
∂TPR0

 exhibited larger amplitude during hemorrhage (with which BV decreases away from 

its baseline value) than during fluid infusion (with which BV increases back towards its 

baseline value), while ∂BP(t)
∂BP0

 exhibited the opposite behaviors. Though TPR0 and BP0 
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influence BP response in different regimes, their peak amplitudes were quite comparable. 

Thus, both parameters were regarded as important in reproducing BP response accurately.

4.3. Potential avenues for model improvements

There are a few aspects of the model that may potentially be improved in future work to 

make it more amenable to the design and evaluation of closed-loop fluid resuscitation 

controllers, by refining the trade-off between the first-principles and abstract components in 

the model. First, to make it more amenable to controller design, the nonlinearity originating 

from the first principles and nonlinear abstract components (e.g., those in Eqs. (12) and (14)) 

may be removed by the use of linear abstract components with acceptable accuracy, so that 

the analysis of the model’s structural properties (including identifiability, controllability, and 

observability) as well as the design of controllers can be streamlined. Second, to make it 

more suited to controller evaluation, additional first-principles components may be 

incorporated. For example, one weakness of the current model from controller evaluation 

standpoint is the assumption that heart rate is available as input to the model. However, an 

ideal model for controller evaluation must be self-sufficient so that it can generate all the 

desired hemodynamic responses once fluid gain and loss are inputted. In addition, the 

current model does not explicitly consider the regulation of unstressed blood volume 

(Costanzo, 2014), which may be important in certain hemorrhage and fluid resuscitation 

scenarios. These expansions may be achieved by incorporating autonomic-cardiac regulation 

and renin–angiotensin–aldosterone functions among others. In this way, judicious balance 

between first-principles and abstract components in the model may facilitate the creation of 

an array of physiological models suited to the context of use (i.e., design and evaluation of 

closed-loop controllers).

4.4. Model-based design and evaluation of closed-loop fluid resuscitation controllers: 
Prospects

Mathematical models of physiological systems have the potential to contribute to the design 

and evaluation of closed-loop fluid resuscitation controllers. In the design phase, it enables 

the control designer to easily acquire insights on system dynamics and influence of each 

physiological component on the performance of closed-loop controllers via analysis and 

simulation. This in turn lends confidence to the efficacy of model-based closed-loop 

controllers by conferring on them sufficient level of performance and robustness against 

conceivable physiological variability and challenging clinical scenarios, which are hard to 

achieve with empiric and rule-based controllers designed by iterative trial and error 

processes. In the evaluation phase, mathematical models can facilitate the evaluation of 

closed-loop fluid resuscitation controllers in the forms of in-silico and hardware-in-the-loop 

test methods, similarly to the physiological closed-loop controllers in other domains (e.g., 

artificial pancreas (Dassau et al., 2009; Kovatchev, Breton, Dalla Man, & Cobelli, 2009)). 

By leveraging such non-clinical test methods, it is possible to perform rigorous stress testing 

of closed-loop fluid resuscitation controllers in a wide range of clinical scenarios, enabling 

the study of the behavior of the closed-loop controllers under worst-case clinical scenarios. 

Therefore, computational simulations incorporating mathematical models with established 

validity and utility for pre-clinical evaluation may be used as complementary evidence for 

the evaluation of closed-loop fluid resuscitation controllers, potentially obviating or reducing 

Bighamian et al. Page 15

Control Eng Pract. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time and cost required to conduct a large-scale animal study. From these perspectives, the 

mathematical model developed in this paper may serve as a viable initial step towards 

model-based design and evaluation of closed-loop fluid resuscitation controllers.

5. Conclusion

A lumped-parameter model that may be useful in the development and evaluation of closed-

loop algorithms for fluid resuscitation in critically ill patients was developed and analyzed. It 

was demonstrated that the model was equipped with several desired characteristics required 

for a model to be used as a control design and testing tool, including simplicity, 

transparency, and accuracy. Moving forward, follow-up efforts are begin made to further 

investigate and improve the model as well as to translate the model into clinically impactful 

closed-loop controllers and evaluation tools.
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Box I

ℋ(t) =
∂ f x(t), u(t), υ(t), ΩVB

∂ΩVB

=

−K p∫ u(τ)dτ

(1 + αu)2
K p∫ υ(τ)dτ

(1 + αυ)2
∫ u(τ)dτ
1 + αu

− ∫ υ(τ)dτ
1 + αυ

− ΔVB(t) eB(τ)dτ

−∫ u(τ)dτ
(1 + αu)2

∫ υ(τ)dτ
(1 + αυ)2 0 0

0 0 0 0
0 0 0 0

(20)
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Fig. 1. 
A lumped-parameter model of hemodynamic responses to blood volume perturbation. The 

model consists of (a) a control-theoretic model to relate blood volume perturbation to blood 

volume; (b) a simple physics-based model to relate blood volume to stroke volume (SV) and 

cardiac output (CO); and (c) a phenomenological model to relate cardiac output to blood 

pressure (BP). (a) The left and right compartments represent intravascular and extravascular 

volumes, while the flow through the valve represents fluid shift between the two volumes. 

Fluid infusion (u) and loss (υ; including hemorrhage and urine) act on the intravascular 

volume to alter blood volume (VB), which in turn alters interstitial fluid volume (VISF). The 

magnitude of valve opening is a function of the discrepancy between target versus actual 

changes in blood volume. αu: fluid gain distribution ratio. αυ: fluid loss distribution ratio. 

rB: target change in blood volume in the steady state. ΔVB: change in blood volume from 

VB0 = VB(0) (VB(t) = VB0 + ΔVB(t)). ΔVISF: change in interstitial fluid volume from VISF0 

= VISF(0) (VISF(t) = VISF0 + ΔVISF(t)). (b) Stroke volume and cardiac output are computed 

from blood volume by Guyton’s cardiac output-venous return (CO-VR) theory combined 

with the Frank–Starling mechanism and left ventricular pressure–volume loop theory. HR: 

heart rate. PMS: mean systemic pressure. PCV: central venous pressure. VLV: left ventricular 

volume. PLV: left ventricular pressure. Ved: left ventricular end diastolic volume. Ves: left 

ventricular end systolic volume. Pd: diastolic pressure. Pes: end-systolic pressure. (c) Blood 

pressure is computed from cardiac output via a logistic function model of total peripheral 

resistance (TPR). BP0: nominal blood pressure. TPR0: nominal total peripheral resistance.
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Fig. 2. 
Measured versus model-reproduced hemodynamic responses to (a) crystalloid (Lactate 

Ringer’s) and (b) colloid (Hextend) infusion as well as hemorrhage. BV: blood volume. 

ISFV: interstitial fluid volume. RBCV: red blood cell volume. SV: stroke volume. CO: 

cardiac output. MAP: mean arterial blood pressure.

Bighamian et al. Page 22

Control Eng Pract. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Blood volume (BV), cardiac output (CO), and mean arterial pressure (MAP) errors 

associated with all 11 crystalloid animals and 5 colloid animals. (a) Error distribution in 

time.
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Fig. 4. 
Time evolution of normalized parametric sensitivity functions (indicating percent change in 

the hemodynamic responses caused by unit percent perturbation in each parameter from the 

nominal value) in response to simulated hemorrhage and crystalloid infusion. (a): 

Hemorrhage and fluid infusion scenario. (b): Sensitivity functions (19) for control-theoretic 

BV model (5) ( VB(t)). (c): Sensitivity functions (21) for physics-based CO model (12) (

CO(t)). (d): Sensitivity functions (22) for phenomenological BP model (14) ( BP(t)).
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