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Purpose—The genetic etiology of atrioventricular septal defect (AVSD) is unknown in 40% 

cases. Conventional sequencing and arrays have identified the etiology in only a minority of non-

syndromic individuals with AVSD.

Methods—Whole exome sequencing was performed in 81 unrelated probands with AVSD to 

identify potentially causal variants in a comprehensive set of 112 genes with strong biological 

relevance to AVSD.

Results—A significant enrichment of rare and rare/damaging variants was identified in the gene 

set, compared with controls (odds ratio 1.52, 95% confidence interval 1.35–1.71, p = 4.8 x 10-11). 

The enrichment was specific to AVSD probands compared with a non-AVSD cohort with tetralogy 

of Fallot (odds ratio 2.25, 95% confidence interval 1.84-2.76, p = 2.2 x 10-16). Six genes (NIPBL, 
CHD7, CEP152, BMPR1a, ZFPM2 and MDM4) were enriched for rare variants in AVSD 

compared to controls, including three syndrome-associated genes (NIPBL, CHD7, CEP152). The 

findings were confirmed in a replication cohort of 81 AVSD probands.

Conclusion—Mutations in genes with strong biological relevance to AVSD, including 

syndrome-associated genes, can contribute to AVSD even in those with isolated heart disease. The 

identification of a gene set associated with AVSD will facilitate targeted genetic screening in this 

cohort.
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Introduction

Atrioventricular septal defect (AVSD) is a relatively rare disorder, representing 7% of all 

congenital heart defects (CHD).1 Although AVSD is most often associated with trisomy 21 

or heterotaxy, approximately 40% of patients have neither of these associations. Within this 

etiologically diverse group of patients, approximately 30% have an identifiable genetic 

diagnosis relating to a chromosomal or single gene disorder, 10% have non-diagnostic 

dysmorphic features or extracardiac anomalies, and the remainder have no discernible 

extracardiac anomalies (non-syndromic AVSD).1,2 To date, targeted sequencing,3–5 and 

interrogation for large copy number variants6 have identified the etiology in only a minority 

of non-syndromic individuals with AVSD. Traditional gene discovery strategies are limited 

in AVSD due to locus heterogeneity, possible reduced penetrance and relatively small 

numbers of cases and families. We recently reported results of an unsupervised analysis of 

whole exome sequencing (WES) data in AVSD probands that identified rare causal variants 

in NR2F2.7 To identify additional genetic causes in this cohort, we analyzed for potentially 

causal variants in all known genes with biological relevance to AVSD.
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Methods

Study Population

Patients were prospectively enrolled in an Ontario province-wide Heart Centre Biobank 

registry after informed consent. The study was approved by the Research Ethics Boards of 

the Hospital for Sick Children and all other participating sites.8,9 The primary cohort 

included unrelated probands with AVSD of Caucasian race. Principal component analysis 

was performed to confirm overlap with HapMap individuals of Caucasian ancestry (Figure 

S1). Patients with an identified chromosomal or syndromic disorder, or a situs anomaly were 

excluded. Detailed cardiac and extra-cardiac features were assessed through review of 

medical records, imaging, and dysmorphology assessment, when possible.

Data for replication analysis (n = 81) were obtained from WES of 44 AVSD probands (GO-

CHD, Oxford registry; Leuven, Belgium) provided by the Wellcome Trust Sanger Institute 

(WTSI) (previously described)7, and 37 AVSD probands from the CONCOR registry DNA-

bank of the University Cardiology Institute Netherlands (ICIN) and the Ontario Heart Centre 

Biobank Registry who underwent targeted sequencing. All probands in the replication cohort 

were unrelated, non-syndromic and Caucasian. Sixty-four unrelated Caucasian probands 

from the Heart Centre Biobank Registry with isolated Tetralogy of Fallot (TOF) underwent 

WES as a non-AVSD CHD cohort.

Variant calls from WES of 4300 individuals of European American ancestry from the 

NHLBI Exome Sequencing Project Exome Variant Server10 (EVS) served as controls 

(“EVS Controls”). Additional controls included whole genome sequencing data from 40 

unaffected parents of children with autism spectrum disorders (S. Walker, S.W. Scherer, 

personal communication), and targeted genotyping in 97 unaffected Caucasian population-

matched Ontario controls without heart disease.

Whole Exome Sequencing

WES was performed using the Agilent SureSelect Target Enrichment Kit (V3 50Mb) 

(Agilent Technologies Inc., Santa Clara, CA) for sequence capture and Illumina HiSeq2500 

(75 bp paired-end reads) for sequencing (Illumina Inc., San Diego, CA) to a target depth of 

100X, as previously published.7 The non-AVSD cohort was sequenced using the Agilent 

SureSelect Target Enrichment Kit (V4 51 Mb) (Agilent Technologies Inc., Santa Clara, CA) 

for sequence capture and Illumina HiSeq (90bp paired-end reads) for sequencing (Illumina 

Inc. San Diego, CA) (BGI Genomics, Philadelphia, PA) to a target depth of 50X.

AVSD Gene List

A systematic review of the literature was undertaken to curate all genes associated with 

AVSD identified in previous human and animal studies (Table S1). This generated a list of 

112 AVSD genes including 47 associated with human syndromes, 30 with animal models, 

20 with both human and animal references, 9 with isolated AVSD in humans, and 6 reported 

as cardiac modifiers in trisomy 21. Of these 112 genes, 58 were associated with syndromic 

CHD (“syndromic” genes).
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Variant Filtering

Variants in these 112 genes were filtered for quality, leaving only calls with a passing GATK 

score (99% accuracy in read determination)11 and read-depth coverage of ≥ 30. Non-

synonymous, non-synonymous splice, stop-gain and stop-loss variants were prioritized. The 

variants were annotated with Annovar12 to obtain the minor allele frequency (MAF) for 

each variant from 1000Genomes13 and EVS.10 Rare variants, defined as MAF < 0.01 in 

1000G and EVS European American (EA) ancestry, were prioritized, and included novel 
variants i.e. variants not present in either 1000Genomes, EVS datasets or in the Database of 

Single Nucleotide Polymorphisms (dbSNP).14 Variants were annotated with SIFT15 and 

PolyPhen216 and any variant predicted to be pathogenic in at least one program was called 

damaging. Evolutionary conservation was defined as PhyloP score > 0 (range -14 to +6; 

sites predicted to be conserved are assigned positive scores)17 and/or PhastCONS ≥ 0.8 

(range 0-1 where 1 indicates a highly conserved locus).18

Mutation Burden Analysis

The overall burden of rare (including novel) non-synonymous variants and rare synonymous 

variants in the AVSD, EVS and non-AVSD CHD cohorts was assessed across all 112 genes. 

The EVS does not provide sample level information; therefore for consistency the burden 

analysis assumes that each genotype represents an independent sample. Variant data from 

EVS Control and non-AVSD CHD cohorts were filtered in the same manner as the case data. 

To assess mutation burden, Fisher’s exact test was performed across all 112 genes for the 

number of individuals with and without rare and rare/damaging non-synonymous and rare 

synonymous variants in cases and controls. A control burden analysis was also performed 

using a list of 11 autism-spectrum disorder genes19 (refer to Figure S2).

Coverage Analysis

To ensure that a difference in mutation burden across these 112 genes was not secondary to 

differences in coverage of genomic regions between cohorts, coverage analysis was 

performed in cases and controls. Consensus coding sequence exon coordinates for all exons 

in 112 genes were extracted from University of California Santa Cruz Table Browser20 and 

the mean depth per coding base pair was calculated across all BAM files as previously 

described.21 The percentage of bases covered to a depth of ≥ 20 for 112 genes was 

calculated and the distribution was compared between AVSD, EVS and non-AVSD CHD 

cohorts using Student’s T-Test (two-tailed). A nucleotide-by-nucleotide coverage analysis 

was then undertaken to verify adequate case and control coverage at each locus 

corresponding to variant location. Variants were excluded from the mutation burden 

calculation if the average depth of coverage in either cohort was <20.

Variant Validation

All prioritized variants were verified by Sanger’s di-deoxy nucleotide sequencing. The 

amplified products were subjected to di-deoxy nucleotide PCR amplification and were 

sequenced on 3730xl DNA Analyzer (Applied Biosystems, Life Technologies, Grand Island, 

NY) (Table S2.1). The sequence chromatograms were aligned to primer target regions using 

D’Alessandro et al. Page 4

Genet Med. Author manuscript; available in PMC 2018 June 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



CodonCode Aligner (CodonCode Corporation, Centerville, MA). Parental genotypes were 

evaluated if parental DNA was available.

Replication

Genes enriched for rare (including novel) and rare/damaging non-synonymous variants in 

AVSD cases vs. EVS controls on mutation burden analysis were selected for targeted 

sequencing in the replication cohort using Agilent Haloplex Custom Target Enrichment 

(Agilent Technologies Inc., Santa Clara, CA). A custom probe set was designed using 

Agilent SureDesign web-based software to target all coding exons for the prioritized genes 

(earray.chem.agilent.com/suredesign). Sequencing (100 bp paired-end reads, targeted at 

>200X coverage) was performed using Illumina HiSeq2500 (Illumina Inc., San Diego, CA) 

at The Centre for Applied Genomics (TCAG) in The Hospital for Sick Children. Agilent 

SureCall software was used to generate BAM files and perform variant calling. Variants 

were annotated and filtered using the same protocol as for the primary cohort. To assess the 

population frequency of the recurring variant in MDM4 [8:204518457 A>C (K324Q, 

rs41299595)], genotyping was performed in 97 Caucasian controls without heart disease 

from Ontario using a custom-designed TaqMan® SNP Assays (Life Technologies 

Corporation) (Table S2.2). Samples were analyzed using the ViiA™ 7 Real-Time PCR 

System with ViiA™7 software.

Results

Of 260 individuals with AVSD enrolled in the Heart Centre Biobank Registry, 83 probands 

were eligible for inclusion and underwent WES (Table 1). Variants in 112 genes from 81 

unrelated probands (2 probands did not sequence) were filtered to identify 163 unique rare 

variants, of which 91 were predicted to be damaging (Figure S3).

The AVSD Cohort was enriched for rare and rare/damaging variants

A mutation burden analysis across all 112 genes was conducted to assess for enrichment of 

rare variants in the AVSD cohort compared with EVS Controls. There was no difference 

between the two cohorts in the frequency of rare synonymous variants (1.6% vs. 1.6%; Odds 

Ratio 1.01, p = 0.9). The frequency of rare non-synonymous variants however, was higher in 

the AVSD cohort (3.2%) compared to the EVS Controls (2.1%) (OR 1.52, p = 4.8 x 10-11), 

as was the frequency of rare/damaging variants in the AVSD (1.5%) versus EVS Controls 

(1.2%) (OR 1.26, p = 0.01) (Figure 1, Table S3.1). We also observed an enrichment of rare 

non-synonymous variants in the AVSD cohort vs. EVS controls when comparing only the 

subset of 58 syndromic genes (OR 1.32, p=0.001) (Table S3.1). There was no enrichment of 

rare or rare damaging non-synonymous variants in the AVSD cohort compared with the EVS 

cohort when the same analysis was conducted with a control set of 11 autism-spectrum 

genes (Figure S2).

To assess whether the enrichment was specific to AVSD or also seen in other forms of CHD, 

mutation burden was compared to a non-AVSD CHD cohort (TOF). Again, there was no 

significant difference between the cohorts in the frequency of rare synonymous variants 

(1.6% vs. 1.4%; OR 1.12, p = 0.3) (Figure 1, Table S3.2). However, the AVSD cohort was 
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enriched for rare non-synonymous variants in the 112 genes (3.2% vs. 1.4%; OR 2.33, p = 

2.2 x 10-14) and rare damaging non-synonymous variants (1.5% vs. 0.7%; OR 2.11, p = 2.1 

x 10-6) compared with the non-AVSD CHD cohort. Enrichment of variants in the AVSD vs. 

non-AVSD CHD cohort was also seen when analysis was limited to only 58 syndromic 

genes (Table S3.2)

To ensure that enrichment of variants in the AVSD cohort was not related to differences in 

coverage between cohorts, we compared coverage across the 112 genes in the AVSD cohort 

versus EVS Control and non-AVSD CHD cohorts. The mean percentage of bases covered to 

a depth of ≥ 20 for all 112 genes was similar between the AVSD (83.0 ± 22%) versus the 

non-AVSD CHD cohort (81.8 ± 14.6%, p = 0.63) but lower than the EVS controls (89.7 

± 18.9%, p = 0.02). Therefore the higher mutation burden in AVSD cases was not due to 

underreporting of variants in controls or in non-AVSD CHD cohort (Figure S4). The 

enrichment for rare and rare/damaging variants in AVSD cases remained significant when 

analysis was corrected for nucleotide-by-nucleotide coverage by excluding variants that did 

not meet the depth cut-offs in both cohorts (Tables S3.1, 3.2).

Genotype-phenotype associations

As reported previously, NR2F2 was significantly enriched for both rare and rare/damaging 

variants.7 Besides NR2F2, six genes showed significant enrichment for rare and novel non-

synonymous variants, with MDM4 remaining significant after correction for multiple testing 

across 112 genes. These genes, NIPBL, CHD7, CEP152, BMPR1a, ZFPM2 and MDM4, 
were prioritized for validation by Sanger sequencing, replication, and determination of 

inheritance patterns (Table 2; Figure S5). Across the 6 prioritized genes, 23 probands had 

rare/novel damaging variants (Tables 3, 4 and S4). Given that many of these genes are 

syndrome-associated, patients were further assessed for extra-cardiac anomalies. Genotype-

phenotype associations for individual genes are described below.

NIPBL—Six AVSD probands (7.4%) had rare non-synonymous variants in NIPBL 
compared with 2.3% in EVS controls (OR 3.3, p=0.02) (Table 2). The M1318V and S2471T 

variants were novel, highly conserved and predicted to be damaging (Tables 3 and S4). The 

N105D and N393K variants were each previously seen in a single individual among 4300 

EVS EA controls, and not in the other control datasets. Both variants are conserved and the 

N105D variant is predicted to be damaging. The A179T variant (AVSD_65) was also 

identified in one individual in the replication cohort (Table S5) and in one non-AVSD CHD 

proband. Although it has been previously reported in 29 individuals in the EA EVS, and in 

1000G and dbSNP, it is listed in the Human Gene Mutation Database as a potentially disease 

causing variant (Table S4). An additional variant I314V was identified in the replication 

cohort (Table S5), which has not been previously reported in public datasets. NIPBL 
mutations are known to be associated with Cornelia de Lange syndrome (CDL). However, 

none of the AVSD probands with NIPBL variants had clinical characteristics of CDL (Table 

4) although 2 probands had associated semilunar valve anomalies (AVSD_33 and 

AVSD_72), which are commonly associated with CDL.
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CHD7—Nine AVSD probands (11.1%) had rare non-synonymous variants in CHD7 
compared with 5.0% of EVS controls (OR = 2.3, p=0.04) (Table 2). The T93A, Y1325H, 

A2105V and S2383C variants were all novel or exceptionally rare (Y1325H seen in 1 EVS 

individual). All were conserved and the A2105V, Y1325H and S2383C variants were 

predicted to be damaging. The M340V and M2527L variants seen in probands and in the 

replication cohort (Table S5) were also seen in the EVS dataset (62 and 43 individuals) and 

were predicted to be benign. Three additional rare non-synonymous variants were identified 

in the replication cohort: A1950T, P2083S and L935F (Table S5). None of the variants were 

seen in 40 unaffected parents from an Ontario-based cohort of families with autism spectrum 

disorders. CHD7 mutations are known to be associated with CHARGE syndrome. However, 

six of nine probands with CHD7 variants had isolated cardiac disease. One proband had 

dysmorphic features and extra-cardiac anomalies but none of the diagnostic features of 

CHARGE syndrome. The other two probands had single minor anomalies, unrelated to 

CHARGE syndrome (Table 4).

CEP152—Rare non-synonymous variants in CEP152 were seen in 9.7% of AVSD cases 

compared with 4.3% in EVS controls (OR = 2.4, p=0.03) (Table 2). The L581I variant was 

novel, while the T1524A, L1105V, W960R, I294V, and S85R variants were all rare. Only 

the W960R variant was highly conserved and predicted to be damaging. Two additional 

variants were identified in the replication cohort, G181D and R115Q (Table S5). None of the 

variants were seen in 40 unaffected parents from an Ontario-based cohort of families with 

autism spectrum disorders. All variants were heterozygous and none of the probands had 

features consistent with Seckel syndrome, dwarfism or microcephaly, known to be 

associated with defects in CEP152 (Table 4).

BMPR1a—Rare non-synonymous variants in BMPR1a were identified with in 3.7% of 

AVSD cases compared with 0.7% in EVS controls (OR = 5.3, p = 0.02) (Table 2). All three 

variants (R478H, D429V and P481S) were exceptionally rare and predicted to be damaging 

(Table 4). Two probands (AVSD_2 and AVSD_17) had isolated cardiac disease, and 

AVSD_57 also had learning and psychiatric disabilities and cervical spine anomalies. 

AVSD_17 and AVSD_57 both had a left superior vena cava to coronary sinus (Table 4).

ZFPM2—Rare non-synonymous variants in ZFPM2 were seen in 13.6% of AVSD cases 

compared with 6.7% of EVS controls (p = 0.03, OR = 2.2). Two variants (P361S and 

G885S) were exceptionally rare in EVS and absent in the other control datasets. Both these 

variants were conserved and the P361S variant was predicted to be damaging. Six of the 9 

AVSD probands with ZFPM2 variants had a second variant in one of the 6 priority genes, 

including 2 probands with 2 heterozygous ZFPM2 variants. Of these, AVSD_53 had 

associated anomalies including pulmonary atresia with major aortopulmonary collaterals, 

and multiple extracardiac anomalies including a diaphragmatic hernia (P361S and E30G). 

The E30G, D98N, M544I and V631I variants in the AVSD cohort and the S210T variant in 

the non-AVSD TOF cohort were also identified in the replication cohort, along with 

D1051Y, a novel variant. Additionally, 5 individuals in the non-AVSD CHD cohort had 

ZFPM2 variants, none of which recurred in the AVSD cohort.
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MDM4—Rare non-synonymous variants in MDM4 were seen in 7.4% of AVSD cases 

compared with 1.2% of EVS controls (OR = 5.0, p = 3.2 x 10-4). One variant, K324Q was 

seen in 5 (unrelated) probands (MAF = 0.061), and also in 1 unaffected autism control (S. 

Walker and S.W. Scherer personal communication) and 40 EVS individuals (MAF = 

0.0047). As this single variant was seen with a high frequency in our cohort, genotyping was 

undertaken in 97 unaffected controls. The K324Q variant was seen at a lower frequency in 

controls (2/97 or 2.1%) compared to AVSD cases (6.1%) (p = 0.003). The P338A variant 

identified in AVSD_29 was seen in 4 EVS individuals, but not in 1000G or in unaffected 

autism controls. An additional three variants were identified in the replication cohort (Table 

S5). All the probands with MDM4 variants had isolated cardiac disease.

Compound mutations

Of the 34 probands with variants in the 6 prioritized genes, 8 probands had more than one 

rare or rare/damaging non-synonymous variant in more than one gene, of which 6 had a 

second mutation in ZFPM2 as detailed above. Additionally, AVSD_15 had variants in 

CHD7, NIPBL and CEP152 and AVSD_72 had variants in CEP152 and NIPBL. 
Interestingly, AVSD_15 and AVSD_72 shared the same NIPBL variant (N393K), which was 

seen only in one individual in the EVS.

Discussion

We conducted a comprehensive gene analysis using next-generation sequencing in a cohort 

of unrelated AVSD probands to identify genomic variants associated with AVSD. The 

strength of our approach included a comprehensive gene selection methodology identifying 

genes with biological associations to AVSD, the majority of which have not been 

systematically examined in a large cohort of patients with AVSD. There are three important 

findings from our study.

First, genes with known biological associations to AVSD were enriched for rare and rare/

damaging non-synonymous variants compared to healthy controls. Mutation burden analysis 

at the gene level suggested an association between six genes (NIPBL, CHD7, CEP152, 

BMPR1a, ZFPM2 and MDM4) and AVSD of which the association with MDM4 remained 

significant after multiple testing. We used stringent methods to ensure that the results 

remained true when analysis was adjusted for gene-by-gene and nucleotide-by-nucleotide 

coverage between cases and controls.

Second, we demonstrated enrichment of variants in 112 genes not only in AVSD cases 

compared to EVS controls, but also in comparison to a non-AVSD cohort of TOF probands. 

This enrichment suggests that at least some of the associations were specific to AVSD and 

not to CHD in general and that there may be gene-specific cardiac phenotypes related to 

unique genetic contributions to cardiac morphogenesis.22,23 While a recent paper analyzed 

all CHD phenotypes together to identify de novo mutations,24 our results suggest the 

importance of studying probands with distinct cardiac phenotypes in order to improve the 

specificity of the observed associations and improve the predictive ability for clinical 

applications like prenatal and reproductive counselling in the future.
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Finally, “syndromic” genes were enriched for mutations despite the absence of classic 

syndromic features. These mutations were seen in patients with either isolated cardiac 

disease or subtle manifestations that did not meet diagnostic criteria for a clinical syndrome. 

In particular, three of the top-ranked associated genes were “syndromic” genes i.e. NIPBL, 

CHD7 and CEP152 suggesting that a search for mutations should include “syndromic” 

genes regardless of clinical phenotype.

An important “syndromic” gene was NIPBL, a causal gene for autosomal dominant CDL 

(OMIM 122470), a developmental disorder. Approximately 50% CDL patients have NIPBL 
variants, typically with milder phenotypes in those with missense mutations.25,26 Thirty 

percent of CDL patients have CHD, including septal defects, semilunar valve anomalies or 

AVSD.1,27 To our knowledge, isolated CHD has not previously been reported with NIPBL 
mutations.28 In our cohort, NIPBL was enriched for rare and rare-damaging variants. Yet, 

none of the probands had features of CDL syndrome (Table 4), although we cannot rule out 

subtle manifestations, as we were unable to re-contact all the probands for dysmorphology 

assessment. These findings suggest a contributory role for NIPBL not only in CHD 

associated with CDL syndrome, but also in cases with isolated AVSD.

Another “syndromic” gene enriched for variants was CHD7, the only gene known to cause 

CHARGE syndrome (OMIM 214800), a rare autosomal dominant condition with a 

prevalence of up to 1:8500.29 This was not unique to AVSD but was also seen in the TOF 

cohort, a lesion type known to be associated with CHARGE syndrome. Approximately 75% 

of individuals with CHARGE syndrome have CHD.29 Mutations in CHD7 are identified in 

over 90% of patients with the CHARGE phenotype and incomplete penetrance has not 

previously been reported.30 CHD7 was also recently reported as part of the H3K4me gene 

mutations associated with CHD.24 In our study, none of the 9 individuals with CHD7 
mutations had features of CHARGE syndrome.

CEP152, another syndromic gene, is involved in regulation of cellular response to DNA 

damage in Seckel syndrome.31 Seckel syndrome (OMIM 210600) is a rare autosomal 

recessive disorder characterized by severe growth retardation, microcephaly and mental 

retardation, as well as partial AVSD and other forms of CHD.33,33 CEP152 was enriched 

for rare non-synonymous heterozygous variants in AVSD probands, none of whom had 

features of Seckel syndrome. While at a variant level, a causal role for CEP152 appears less 

compelling, its role as a phenotype modifier cannot be excluded. Together, these findings 

reiterate that absence of obvious syndromic features should not preclude a search for 

mutations in “syndromic” genes.

Three patients had three exceptionally rare or novel variants in BMPR1a (Table 3 and Table 

S4) that were highly conserved and predicted damaging. One proband (AVSD_17) had 

unbalanced AVSD with coarctation, the same cardiac phenotype as described previously in a 

patient with a 10q22q23 deletion encompassing BMPR1a.34 Bmpr1a (Alk3) knockout mice 

show embryonic lethality between E10.5 and E11.5 with failure of endocardial cushion 

formation, failure of AV valve and adjacent septal formation, consistent with a specific and 

critical role in the formation of the AV canal.22,23 Our findings are consistent with prior 

human and animal studies that implicate BMPR1a in the development of isolated AVSD.
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ZFPM2 is a zinc-finger nuclear protein expressed in the developing heart and known to alter 

GATA4 transcriptional activity.35,36 Knock-out mouse models demonstrate cardiac defects 

including AVSD,36,37 DORV, TOF and coronary artery anomalies. ZFPM2 variants have 

also been reported in patients with conotruncal defects, but not with AVSD.38,39 The 

enrichment of variants in ZFPM2 in 9 probands in our primary AVSD cohort and 8 probands 

in the replication cohort is a new finding. Nonetheless, it is unclear if ZFPM2 variants play a 

causal or a modifier role in AVSD since the variants frequently co-segregated with variants 

in other candidate genes (Table S4), and although rare, were seen in multiple EVS cases. 

Also, the E30G variant was not specific to AVSD and has not been associated with 

functional effects on GATA4-mediated transcription and is therefore likely to be a benign 

polymorphism. 40 This is in contrast to the majority (4 of 5) of the variants identified in the 

non-AVSD TOF cohort, which were novel (Table S4).

Six AVSD probands had variants in MDM4, a p53 inhibitor, with MDM4 showing the 

strongest association with AVSD compared to the other five genes. MDM4 is involved in 

regulating endocardial EMT and subsequent proliferation of mesenchyme in the endocardial 

cushions. A mouse model heterozygous for Mdm2 and Mdm4 had impaired atrioventricular 

valvuloseptal development with significantly reduced mesenchymal cell density at the 

endocardial cushions.41 Two rare/damaging and conserved variants were identified, one of 

which was a recurring variant (K324Q) seen in five probands. The variant frequency was 

higher than controls suggesting that this variant may be potentially disease causing in AVSD 

cases.

There were some limitations to our study. Functional validation of individual variants was 

beyond the scope of this study; however all variants were in genes with known association 

with CHD. We did not assess for structural variation, frame-shift variants, or non-coding 

regulatory variants. A paucity of parental samples limited our ability to ascertain 

transmission of the variants or perform segregation analysis. Additionally, local control data 

was limited; our control population was derived from public datasets therefore we corrected 

for two limitations, coverage and population stratification.

In summary, a biology-guided approach allowed us to identify enrichment of variants in 

genes that play a central role in cardiac development in general and in AV canal 

development in particular. There is compelling data to support a contributory role for 

NIPBL, CHD7, BMPR1a, and MDM4 gene variants whereas the role of ZFPM2 variants 

and of CEP152 requires further investigation. The enrichment of variants in “syndromic” 

genes highlights the importance of not excluding these genes when investigating patients 

with non-syndromic phenotypes. Targeted search for variation in lesion-specific genes 

within next-generation sequencing data has the potential to reduce time and cost for 

bioinformatics analysis and increase the specificity and predictive accuracy of the observed 

associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutation burden analysis across 112 genes with biological relevance to AVSD.
All rare, non-synonymous variants in the gene were collapsed for each individual to allow a 

patient level analysis. Odds ratio (OR) for the number of individuals with rare non-

synonymous (blue), rare/damaging non-synonymous (red) and synonymous (green) variants 

across 112 genes in the AVSD cohort compared to EVS controls and non-AVSD CHD 

cohort with p values are shown. The AVSD cohort showed enrichment of rare non-

synonymous variants (OR 1.5, p = 4.7 x 10-11) and rare damaging non-synonymous variants 

(OR 1.3, p = 0.01) compared to EVS cohort. The AVSD cohort showed a similar enrichment 

of rare non-synonymous variants (OR 2.3, p = 2.2 x 10-14) and rare damaging non-

synonymous variants (OR 2.1, p = 2.1x10-6) compared to the non-AVSD CHD cohort. There 

was no difference between the cohorts in rare synonymous variants (AVSD vs. EVS, OR 1.0, 

p = 0.9; and AVSD vs. non-AVSD CHD, OR = 1.2 p = 0.2).
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Table 1
Primary Cohort Characteristics (n = 81 unrelated probands)

Male (n) (%) 43 (53.1%)

Mean Age at Screening (years) 14.3 ± 13

ATRIOVENTRICULAR SEPTAL DEFECT TYPE n %

Partial 34 42.0

Complete 23 28.4

Unbalanced 11 13.6

Intermediate 10 12.3

Unknown 3 3.7

OTHER ASSOCIATED CARDIAC LESIONS n %

None 49 60.5

Left Sided Lesion 18 22.2

Arterial or Venous Anomaly 6 7.4

Right Sided Lesion 4 4.9

Conotruncal 3 3.7

Unknown 1 1.2

EXTRACARDIAC ANOMALIES 18 22.2

FAMILY HISTORY OF CONGENITAL HEART DISEASE 10 12.3
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Table 3
Rare Non-Synonymous Variants in Prioritized AVSD Genes

Gene Genomic Position Base Change Amino Acid Change Rare or Novel* Predicted Damaging?* Conserved?* Proband ID

NIPBL 5:36958288 A>G N105D Rare Yes Yes AVSD_88

NIPBL 5:36962301 G>A A179T Rare No Yes AVSD_65

NIPBL 5:36976188 T>G N393K Novel No Yes AVSD_15
AVSD_72

NIPBL 5:37006555 A>G M1318V Novel Yes Yes AVSD_33

NIPBL 5:37058993 T>A S2471T Novel Yes Yes AVSD_25

CHD7 8:61654268 A>G T93A Novel No Yes AVSD_15

CHD7 8:61655009 A>G M340V Rare No Yes AVSD_13
AVSD_50
AVSD_66
AVSD_71

CHD7 8:61748826 T>C Y1325H Rare Yes Yes AVSD_79

CHD7 8:61765598 C>T A2105V Novel Yes Yes AVSD_26

CHD7 8:61768745+ C>G S2383C Novel Yes Yes AVSD_49

CHD7 8:61769418 A>C M2527L Rare No Yes AVSD_73

CEP152 15:49030841 T>C T1524A Rare No No AVSD_19

CEP152 15:49048132 G>C L1105V Rare No No AVSD_20

CEP152 15:49048567 A>G W960R Rare Yes Yes AVSD_63
AVSD_64
AVSD_72

CEP152 15:49064725 G>T L581I Novel Yes No AVSD_41

CEP152 15:49076311 T>C I394V Rare No No AVSD_15

CEP152 15:49089864 A>C S85R Rare No No AVSD_38

BMPR1a 10:88681396 A>T D429V Novel Yes Yes AVSD_17

BMPR1a 10:88683223 G>A R478H Rare Yes Yes AVSD_57

BMPR1a 10:88683231 C>T P481S Novel Yes Yes AVSD_2

ZFPM2 8:106431420 A>G E30G Rare Yes Yes AVSD_53
AVSD_74

ZFPM2 8:106456600 G>A D98N Rare Yes Yes AVSD_25
AVSD_10
AVSD_24

ZFPM2 8:106813787 C>T P361S Rare Yes Yes AVSD_53

ZFPM2 8:106813942 G>A M544I Rare No Yes AVSD_38
AVSD_46

ZFPM2 8:106814597 G>A V631I Rare Yes Yes AVSD_74
AVSD_50

ZFPM2 8:106815359 G>A G885S Rare No Yes AVSD_45

MDM4 1:204518457 A>C K324Q Rare Yes Yes AVSD_10
AVSD_39
AVSD_80
AVSD_85
AVSD_87

MDM4 1:204518499 C>G P338A Rare Yes Yes AVSD_29
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* Genomic position for human genome assembly 37/build 105. ** Refer to the Supplementary Table 4 for additional detail + With the exception of 
this variant, all variants in Table 3 were covered to a depth of ≥ 30 in the AVSD and EVS cohorts (nucleotide-by-nucleotide coverage assessment)
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Table 4
Clinical characteristics of AVSD Probands with Rare Non-Synonymous Variants in 
Prioritized AVSD Genes

Proband ID Sex AVSD Type Other Cardiac Lesions Extracardiac anomaly Gene Variant Validated? Transmitted?

AVSD_15* M Partial Double outlet LAVV None NIPBL 5:26976188 T>G o Paternal

AVSD_72* M Complete BAV (partial fusion) migraines, extra help in 
reading/math

NIPBL 5:26976188 T>G Yes Unknown

AVSD_88 F Partial None None NIPBL 5:36958288 A>G o Unknown

AVSD_65 F Partial None None NIPBL 5:36962301 G>A Yes Unknown

AVSD_33 M Unbalanced DORV, PS None NIPBL 5:37006555 A>G Yes Unknown

AVSD_25* M Intermediate None None NIPBL 5:37058993 T>A Yes Unknown

AVSD_15* M Partial Double outlet LAVV None CHD7 8:61654268 A>G o Maternal

AVSD_13 F Complete CoA, hypoplastic arch, 
PDA

LD CHD7 8:61655009 A>G Yes Unknown

AVSD_50*# M Complete None None CHD7 8:61655009 A>G Yes Maternal+

AVSD_66# F Partial None None CHD7 8:61655009 A>G Yes Unknown

AVSD_71 M Partial None hernia CHD7 8:61655009 A>G Yes Unknown

AVSD_79 F Intermediate RSCA,vertebral from AA None CHD7 8:61748826 T>C Yes Paternal

AVSD_26 F Partial None None CHD7 8:61765598 C>T Yes Maternal

AVSD_49 M Intermediate None None CHD7 8:61768745 C>G Yes Not Paternal

AVSD_73 M Unbalanced HLV & AA, CoA, LPV 
stenosis

sagittal synostosis, 
hypospadias, 

cryptorchidism, DD, 
IUGF, nephrocalcinosis

CHD7 8:61769418 A>C Yes Unknown

AVSD_19 F Complete Secundum ASD LD CEP152 15:49030841 T>C Yes Paternal

AVSD_20 M Partial None None CEP152 15:49048132 G>C Yes Unknown

AVSD_63 F Intermediate Secundum ASD, 
multiple VSD

None CEP152 15:49048567 A>G o Unknown

AVSD_64 M Complete None Hirschsprung CEP152 15:49048567 A>G Yes Maternal

AVSD_72* M Complete BAV (partial fusion) migraines, extra help in 
reading/math

CEP152 15:49048567 A>G Yes Unknown

AVSD_41 M Complete None None CEP152 15:49064725 G>T Yes Unknown

AVSD_15* M Partial Double outlet LAVV None CEP152 15:49076311 T>C o Paternal

AVSD_38*# M Partial None None CEP152 15:49089864 A>C Yes Unknown

AVSD_17 F Unbalanced CoA, LSVC to CS None BMPR1a 10:88681396 G>T Yes Maternal

AVSD_57# M Complete multiple VSD, LSVC to 
CS

LD, psychiatric, 
cervical spine 

anomalies

BMPR1a 10:88683223 G>A Yes Unknown

AVSD_2 F Complete None None BMPR1a 10:88683231 C>T Yes Unknown

AVSD_53* F Complete PA/MAPCAS, LSVC to 
CS

Bilateral coloboma, 
bicornuate uterus, 

Bockdalek 
diaphragmatic hernia, 

midline spleen, 
hydrocephalus

ZFPM2 8:106431420 C>G Yes Unknown
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Proband ID Sex AVSD Type Other Cardiac Lesions Extracardiac anomaly Gene Variant Validated? Transmitted?

AVSD_74*# F Partial None None ZFPM2 8:106431420 C>G Yes Unknown

AVSD_10* M Partial PDA None ZFPM2 8:106456600 G>A Yes Unknown

AVSD_24 M Complete None None ZFPM2 8:106456600 G>A Yes Paternal

AVSD_25* M Intermediate None None ZFPM2 8:106456600 G>A Yes Unknown

AVSD_53* F Complete PA/MAPCAS, LSVC to 
CS

Bilateral coloboma, 
bicornuate uterus, 

Bockdalek 
diaphragmatic hernia, 

midline spleen, 
hydrocephalus

ZFPM2 8:106813787 C>T Yes Unknown

AVSD_38*# M Partial None None ZFPM2 8:106813942 G>A Yes Unknown

AVSD_46 M Complete None None ZFPM2 8:106813942 G>A Yes Unknown

AVSD_50*# M Complete None None ZFPM2 8:106814597 G>A Yes Paternal

AVSD_74*# F Partial None None ZFPM2 8:106814597 G>A Yes Unknown

AVSD_45 F Partial PDA Congenital rubella 
syndrome, epilepsy, 
hearing impairment, 

blindness, psychiatric 
disorder

ZFPM2 8:106815359 G>A Yes Unknown

AVSD_10* M Partial PDA None MDM4 1:204518457 A>C Yes Unknown

AVSD_39 F Complete LVOTO None MDM4 1:204518457 A>C Yes Paternal

AVSD_80 M Unknown LVOTO None MDM4 1:204518457 A>C Yes Unknown

AVSD_85 M Complete LSVC to CS, RAA None MDM4 1:204518457 A>C Yes Unknown

AVSD_87 F Partial PDA None MDM4 1:204518457 A>C Yes Unknown

AVSD_29 F Partial PDA None MDM4 1:204518499 C>G Yes Paternal

Genomic position for human genome assembly 37/build 105. All variants are heterozygous. * probands with > 1 variant, o sample/validation not 
available, +Inherited from mother also affected with AVSD, # of CHD family history
Abbreviations: M – male, F – female; AA - aortic arch, ASD - atrial septal defect, BAV - bicuspid aortic valve, CoA - coarctation of the aorta, 
DORV - double outlet right ventricle, HLV - hypoplastic left center ventricle, LAVV - left center atrioventricular valve, LPV - left center 
pulmonary vein, LSVC to CS - left center superior vena cava to the coronary sinus, LVOTO - left center ventricular outflow tract obstruction, PA/
MAPCAS - pulmonary atresia with major aortopulmonary collaterals, PDA - patent ductus arteriosus, RAA - right aortic arch, RSCA - right 
subclavian artery, VSD - ventricular septal defect
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