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Abstract

Ethyl alcohol is a toxin that, when consumed at high levels, produces organ damage and death. 

One way to prevent or ameliorate this damage in humans, is to reduce the exposure of organs to 

alcohol by reducing alcohol ingestion. Both the propensity to consume large volumes of alcohol, 

and the susceptibility of human organs to alcohol-induced damage, exhibit a strong genetic 

influence. We have developed an integrative genetic/genomic approach to identify transcriptional 

networks that predispose complex traits, including propensity for alcohol consumption and 

propensity for alcohol-induced organ damage. In our approach, the phenotype is assessed in a 

panel of recombinant inbred (RI) rat strains and quantitative trait locus (QTL) analysis is 

performed. Transcriptome data from tissues/organs of naïve RI rat strains are used to identify 

transcriptional networks using Weighted Gene Coexpression Network Analysis (WGCNA). 

Correlation of the first principal component of transcriptional coexpression modules with the 

phenotype across the rat strains, and overlap of QTLs for the phenotype and the QTLs for the 

coexpression modules (module eigengene QTL) provide the criteria for identification of the 

functionally related groups of genes that contribute to the phenotype (candidate modules). While 

we previously identified a brain transcriptional module whose QTL overlapped with a QTL for 

levels of alcohol consumption in HXB/BXH RI rat strains and 12 selected rat lines, this module 

did not account for all of the genetic variation in alcohol consumption. Our search for QTL 

overlap and correlation of coexpression modules with phenotype can, however, be applied to any 

organ in which the transcriptome has been measured, and this represents a holistic approach in the 

search for genetic contributors to complex traits.

Previous work has implicated liver/brain interactions, particularly involving inflammatory/immune 

processes, as influencing alcohol consumption levels. We have now analyzed the liver 
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transcriptome of the HXB/BXH RI rat panel in relation to the behavioral trait of alcohol 

consumption. We used RNA-Seq and microarray data to construct liver transcriptional networks, 

and identified a liver candidate transcriptional coexpression module that explained 24% of the 

genetic variance in voluntary alcohol consumption. The transcripts in this module focus attention 

on liver secretory products that influence inflammatory and immune signaling pathways. We 

propose that these liver secretory products can interact with brain mechanisms that affect alcohol 

consumption, and targeting these pathways provides a potential approach to reducing high levels 

of alcohol intake and also protecting the integrity of the liver and other organs.
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Introduction

Alcohol (ethanol) is an environmental toxin that can have adverse effects on organs and 

tissues (as well as cause addiction) in humans. The degree of toxicity caused by alcohol 

ingestion is dependent on the dose (amount) of alcohol consumed (Rusyn and Bataller 2013; 

Szabo and Saha 2015). Individuals vary not only in their susceptibility to alcohol-induced 

toxicity, but also in their level of alcohol exposure, which can be considered a “host factor” 

that is, at least initially, under partial control by the individual (i.e., is part of the individual’s 

behavior or lifestyle) (Garte 2008). However, both susceptibility to alcohol-induced organ 

damage and the predisposition to consume a particular dose of alcohol are also influenced 

by genetics (Rusyn and Bataller 2013).

Our work focuses not only on the consequences of alcohol ingestion, but also on the genetic 

basis for the behavior that results in differential levels of alcohol exposure. We have taken a 

“systems genetic” approach to elucidating the factors that affect alcohol consumption. 

Systems genetics has evolved into a process by which one can identify functional 

relationships among gene products (WGCNA, Langfelder and Horvath 2008; Zhang and 

Horvath 2005), understand the relationships between these gene expression networks and 

physiologic/pathologic processes (Obeidat et al. 2017; Saba et al. 2015), and understand the 

relationships between polymorphisms associated with disease in GWAS analysis and causal 

mechanisms predisposing or progressing the disease state (Civelek et al. 2017). Quantitative 

trait locus (QTL) analysis of complex traits in plants and non-human animals preceded the 

advent of GWAS studies with humans (Lander and Kruglyak 1995; Visscher et al. 2012), 

and was often used to suppose the “candidate genes” that were associated with a particular 

trait (Abiola et al. 2003). GWAS and QTL studies, if based solely on DNA sequence 

variants, have a significant drawback if there is no evidence regarding the organ in which 

particular “candidate genes” are expressed, or the context (network) in which the “candidate 

genes” function (Civelek and Lusis 2014). In addition, the DNA variants identified in QTL 

and GWAS studies are often located not within the coding sequences for genes, but in 

regions of the genome important (but not elucidated) for regulation of gene expression 

(Schaub et al. 2012). The inclusion of quantitative transcriptome information in systems 

genetic approaches generates a key intermediate for understanding the relationship between 
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DNA variants and phenotypic traits (Albert and Kruglyak 2015; Saba et al. 2015; Tabakoff 

et al. 2009). Many of the current systems genetics approaches to understanding the 

relationship between genomics and biology benefit from the wealth of information that has 

been collected and catalogued on the genome and transcriptome sequences of species and 

individuals within those species, and information on the quantitative landscape of the 

transcriptome in various cells and organs (Hermsen et al. 2015; https://

phenogen.ucdenver.edu ; Lappalainen et al. 2013).

We and others have employed an integrative genomic approach that takes advantage of the 

availability of transcriptional coexpression network and genomic data to identify genetic 

determinants of complex physiological/behavioral traits (Hasin et al. 2017; Saba et al. 2015; 

Tabakoff et al. 2009). The concept behind these approaches is that if expression levels of the 

related transcripts in the network influence a phenotype, then the genomic region that 

regulates the network transcript expression levels (eQTL) should coincide with the genomic 

region that regulates the phenotype (QTL). To implement this approach in the present study, 

the phenotype of voluntary alcohol consumption was assessed in a panel of recombinant 

inbred rat strains. It should be noted, that the rank order of behavioral phenotypes that have a 

strong genetic determinant (for alcohol consumption in our rat panel h2=0.46) can be 

reproduced over many generations in inbred rodents (Wahlsten et al. 2006). Whole 

transcriptome information was gathered from tissues of naive rats of the same HXB/BXH RI 

panel using RNA-Seq and exon array technology (the reproducibility of such information is 

discussed in Marioni et al. (2008)), and transcriptional coexpression networks were 

generated using Weighted Gene Coexpression Network Analysis (WGCNA) (Langfelder 

and Horvath 2008; Zhang and Horvath 2005). All raw and processed data are publically 

available on https://PhenoGen.ucdenver.edu.

While it seems appropriate to assess brain transcriptional coexpression networks when 

investigating the genetic influence on the predisposition to consume alcohol, the approach 

that we have developed and implemented does not have to be limited to an organ or tissue 

that is a priori thought to determine a complex trait. Because a phenotype QTL analysis 

simply identifies genomic regions associated with a quantitative trait, it is feasible that the 

identified area of the genome can regulate transcriptional activity in or from any organ. The 

continued growth of evidence regarding functional consequences of interactions of 

metabolic processes and products of various organs (liver and brain, GI system and brain 

and vice-versa, brown adipose tissue and heart and brain, etc.) dictates the use of a holistic 

approach when considering the possible predisposing or causal genetic factors contributing 

to a trait of interest. When alcohol is consumed, it enters the gut, is absorbed, passes through 

the liver, and is then distributed to brain, heart and other organs. Alcohol can alter the gut 

microbiome and disrupt the intestinal epithelial barrier, resulting in increased intestinal 

permeability. This effect allows for translocation of microbially-derived products such as 

LPS into the circulation, to produce inflammatory responses (Szabo 2015). The brain is also 

exposed to these products, as well as to peripherally-generated hormones, cytokines, 

activated immune cells and other molecules secreted by the liver, gut, adipose tissue and 

other organs in response to alcohol consumption.
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To investigate a possible peripheral organ-brain interaction that can affect alcohol drinking, 

we used RNA-Seq and microarray data on transcript expression from liver of non-alcohol-

exposed rats of the HXB/BXH RI rat panel to generate liver transcriptional networks 

associated with the predisposition to alcohol consumption. Our results suggest that liver 

secretion products, including pro- and anti-inflammatory cytokines, can affect the level of 

voluntary alcohol consumption by rats.

Materials and Methods

Alcohol Consumption and Alcohol Consumption Quantitative Trait Loci (QTL) (all data are 
publically available on https://Phenogen.ucdenver.edu)

We have previously reported data on alcohol consumption levels by male rats of the 

HXB/BXH RI panel (23 RI strains and progenitor strains) (Tabakoff et al. 2009). The rats 

were given 10% alcohol as their only choice of fluid for one week, and were then given a 

choice between 10% alcohol and water. Alcohol consumption data (daily average of grams 

of ethanol consumed per kilogram of body weight) for the second week of the two-bottle 

choice paradigm were used to identify QTLs for voluntary alcohol consumption in this 

model (Saba et al. 2015; Tabakoff et al. 2009). QTLs, including genome-wide p-values via 

permutation, and Bayesian credible intervals, were identified using marker regression with 

alcohol consumption data represented as strain means (21 RI strains with both alcohol 

consumption and genotype information, Online Resource 1). A genetic marker set 

(specifically SNPs) from the STAR consortium (http://www.snp-star.eu/; STAR Consortium 

2008) was used for QTL analyses. Probes from the original arrays that determined this 

marker set were aligned to the RN6 version of the rat genome using BLAT (Kent 2002). 

Markers were retained for QTL analysis if: 1) their probe sequence aligned both perfectly 

and uniquely to the genome, 2) genotypes differed between the progenitor strains (BN-

Lx/Cub and SHR/Ola/pcv), 3) neither progenitor had a heterozygous genotype, and 4) less 

than 5% of the RI strains had a missing or heterozygous genotype call. Markers with large 

genetic distances compared to physical distance (improbable recombination rates, flanked by 

10 cM on each side) as well as double recombinant markers were removed. Genetic 

distances were estimated using the R/qtl package in R (version 1.40–8, Broman et al. 2003).

Many of the adjacent markers (SNPs) display the same genotype pattern among all the RI 

strains (i.e., no recombination events for any strain between SNPs), which would result in 

the same level of statistical significance (p-value) for all of these SNPs when performing 

QTL analysis. Therefore, we reduced the number of association tests, without losing 

information, by identifying unique strain distribution patterns (SDPs; i.e., the genotypes for 

all strains at a particular SNP) for the 30 RI strains. Alcohol consumption QTLs were 

identified with marker regression of the strain means using the R/qtl package in R. Genome-

wide p-values were determined using permutation (Churchill and Doerge 1994) and 

Bayesian credible intervals (Sen and Churchill 2001) were estimated for significant 

(genome-wide p-value<0.05) and suggestive (genome-wide p-value<0.63, Lander and 

Kruglyak 1995) QTLs.
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Liver RNA Coexpression Networks (data available on https://Phenogen.ucdenver.edu)

RNA Sequencing & Processing—Total RNA isolated from whole liver of 3 alcohol 

naive biological replicates (males) of each of the two progenitor strains of the HXB/BXH RI 

panel was previously sequenced (2 × 100 paired-end reads) (Harrall et al. 2016). For the 

current study, prior to alignment, reads were demultiplexed and trimmed for adaptors and for 

quality using Cutadapt (version 1.9.1; Martin et al 2011). Reads were eliminated if the 

trimmed length of either read fragment was less than 20 nucleotides. Reads were then 

aligned to the RN6 version their respective strain-specific genomes derived from our DNA 

sequencing (Saba et al. 2015) using Bowtie2/TopHat suite of tools (version 2.1.0, Langmead 

et al. 2009) with the default settings. A genome- and transcriptome-guided reconstruction 

was executed for each progenitor strain separately using the Cufflinks algorithm and 

software (version 2.2.1, Trapnell et al. 2010) and the Ensembl Rat Transcriptome (RGSC 

6.0) to guide the reconstruction process. Strain-specific transcriptomes were merged by first 

limiting to high confidence transcripts (defined as transcripts that were at least 200 

nucleotides long and had an average read depth of 10 within a strain (total reads including 

all biological replicates)). Transcripts were merged across strain-specific transcriptomes if 

their exon junctions matched precisely or if they were one-exon transcripts that had 

transcription start sites within 100 base pairs of each other and transcription stop sites within 

100 base pairs of each other. Each of the six parental strain samples was re-quantified using 

the merged transcriptome and RSEM (Li and Dewey 2011). Transcripts were retained in the 

final merged transcriptome if they had an average read depth of at least 18 reads (total reads 

including all biological replicates).

Exon Arrays—Gene expression data were generated from whole liver tissue of naïve 10 

week-old male rats using Affymetrix Rat Exon Arrays 1.0 ST (Affymetrix, Santa Clara, 

CA). Transcript expression was measured in rats from 21 HXB/BXH RI strains (Online 

Resource 1). Two to four rats per strain were used and RNA from each rat was hybridized to 

a separate array, resulting in a total of 108 individual arrays (Harrall et al 2016).

Prior to normalization, individual probes on the array were removed from consideration if 

their nucleotide sequence did not uniquely map to a region in the BN rat reference genome 

(RN6) or if the probe contained a known SNP or indel between the two HXB/BXH RI 

progenitor strains (Saba et al. 2015). Entire probe sets were removed if less than three 

probes remained after filtering. The genomic regions where probe sets aligned were 

compared to the liver reconstructed transcriptome generated from the RNA-Seq data. Probe 

sets were combined into a gene cluster if the entire probe set was contained within the 

transcribed region of a single gene identified in the reconstructed transcriptome. Expression 

values were normalized and summarized into gene level transcripts using robust multichip 

analysis (RMA) (Irizarry RA, 2003) implemented in Affymetrix Power Tools (version 

1.18.0) (http://www.affymetrix.com/partners_programs/programs/developer/tools/

powertools.affx) and ComBat was used to adjust for batch effects (sva version 3.20.0, 

Johnson et al. 2007). The coefficient of determination (R2) from a one-way ANOVA was 

used to estimate broad-sense heritability for each transcript. Those with low heritability (R2 

< 0.20) were not included in further analyses. ComBat batch adjustment, heritability and all 

further statistical analyses were executed in R (version 3.3.1) unless otherwise specified.
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Liver RNA Coexpression Networks (data available on https://
Phenogen.ucdenver.edu)—An unsigned weighted gene co-expression network analysis 

(WGCNA) was performed on the HXB/BXH RI strain mean expression values of the whole 

liver expression data to identify co-expression modules using the wgcna package in R 

(version 1.51, Zhang and Horvath 2005). Data from parental strains were excluded to avoid 

confounding due to population structure. A bi-weight mid-correlation coefficient (robust to 

outliers) as well as a soft thresholding parameter (β) of 9 (default value suggested based on 

sample size; https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/

WGCNA/faq.html) was used to construct the adjacency and connectivity matrices. The 

minimum module size (set to 5) and the deepSplit parameter (set to 4) were altered from the 

default values to allow for the identification of smaller modules. Intramodular connectivity 

of a gene was calculated as the sum of pairwise connectivity measures between a gene and 

all other genes within the module. The nomenclature, hub gene, is used for the gene within 

the module with the highest intramodular connectivity. We used the eigengene, the first 

principal component of the module, to represent the gene expression profile across strains 

for each module for correlation and mapping analyses. The quantitative nature of the 

eigengene allows for the use of QTL analysis, and the module eigengene QTLs (meQTLs) 

were identified as described earlier for the alcohol consumption QTLs. The meQTL analysis 

was performed using data from 19 rat strains for which both genotype and liver 

transcriptome information were available (Online Resource 1).

Liver Modules Associated with Voluntary Alcohol Consumption

For a liver module to be associated with voluntary alcohol consumption it was required to 

meet several criteria: 1) its module eigengene had to be significantly correlated with 

voluntary alcohol consumption (g/kg/day) across the RI strains (Pearson Correlation, 

unadjusted p-value < 0.05, using data from the 19 RI strains with genotype and liver 

transcriptome information); 2) the module eigengene had to explain at least 50% of module 

variance; 3) the module had to have a significant (genome-wide p-value < 0.05) meQTL; 

and 4) the peak position of the module’s maximum meQTL had to fall within the 90% 

Bayesian credible interval of an alcohol consumption QTL (Saba et al. 2015). These criteria 

ensured that module eigengene values were genetically driven, were associated with alcohol 

consumption, and that the module eigengene values were regulated from the same region(s) 

of the genome as alcohol consumption.

Further Characterization of Candidate Liver Modules

The UCSC Genome Browser (https://genome.ucsc.edu/) was used to annotate genes that 

were not previously annotated by the Ensembl-guided transcriptome reconstruction. This 

was accomplished by comparing isoforms from the transcriptome reconstruction to Ensembl 

and RefSeq-predicted genes in the same genomic location. To protect against associations 

due solely to co-localization, we examined partial correlations for genes in coexpression 

modules controlling for the module eigengene QTL using the ppcor package (Version 1.0) in 

R (Kim 2015). For purposes of examining connectivity between genes both prior to and after 

partial correlation, an edge represents a pairwise correlation between two genes that is either 

greater than 0.5 (0.3 for partial correlations) or less than −0.5 (−0.3 for partial correlations). 
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The number of edges in a candidate module after partial correlation had to be at least 50% of 

the number of edges in the original module.

Liver cell type-specific transcriptome analysis

Liver cells (hepatocytes, hepatic stellate cells, sinusoidal endothelial cells, Kupffer cells) 

were isolated from livers of alcohol-naïve adult male BN-Lx/CubPrin and SHR/OlaPrin rats 

(parental strains of the HXB/BXH RI panel) as previously described (Harrall et al. 2016). 

RNA from 4 rats per strain and cell type was extracted and hybridized to separate 

Affymetrix Rat Exon Arrays 1.0 ST, and data were analyzed in the same manner as 

described for whole liver. Expression values were normalized and summarized into genes 

using RMA, and ComBat was used to adjust for batch effects. The results of this analysis are 

shown in Online Resource 2.

Results

Identification of Candidate Liver Modules

A total of 735 transcriptional coexpression modules were identified from the liver data. The 

eigengene values of 29 of these modules were significantly correlated (p< 0.05) with the 

phenotype of alcohol consumption. One of these modules (“module 86”, correlation 

coefficient 0.49, p-value = 0.032) had a significant meQTL genome-wide LOD score, and a 

maximum meQTL that overlapped the Bayesian credible interval of a previously-identified 

alcohol consumption QTL on chromosome 1 (Module 86, Figure 1). Sixty percent of the 

variance in this module was explained by the module eigengene. The chromosome 1 alcohol 

consumption QTL included two peaks within the 90% Bayesian credible interval (Sen and 

Churchill 2001) (Figure 1). To determine if this region represented two independent QTLs, 

the QTLs were recalculated after adjustment for their respective maximum peaks. This 

analysis indicated that the two peaks in the chromosome 1 QTL are likely due to linkage 

disequilibrium between the markers (Online Resource 3). Independently, the liver module 

eigengene explained 24% of the genetic variance in alcohol consumption and the previously-

identified brain module eigengene (Saba et al. 2015) explained 35% of the genetic variance, 

calculated using linear regression of strain means.

Characterization of the Liver Candidate Module (Module 86)

The module contained 15 transcripts that are listed in Table 1. A network diagram of the 

module was generated using gene connectivity and pairwise correlations between genes 

within the module (https://www.ncbi.nlm.nih.gov/pubmed/14597658) (Figure 2). Ten 

transcripts in the module were co-localized to chromosome 1 (Table 1), so a partial 

correlation analysis was performed (see Methods) to determine if the correlation among 

transcripts was only a result of independent causal loci in linkage disequilibrium. After the 

partial correlation analysis, there were 41 edges in the module, compared with 74 edges in 

the original module. Thirty-three of the edges after the partial correlation were also in the 

original network, and 8 new edges were detected after the partial correlation (Online 

Resource 4). These results strongly suggest that, although linkage disequilibrium may 

significantly contribute to the coexpression of transcripts in the module, the coexpression 

relationships that are retained within the module after accounting for this linkage 
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disequilibrium (i.e., partial correlation) likely represent biological relationships (Dobrin et 

al. 2009; Doss et al. 2005), that go beyond simple linkage disequilibrium.

Sample Size and Statistical Considerations and Caveats

When calculating the voluntary alcohol consumption QTL, we used all strains with both 

genotype and phenotype information (21 strains), and we mapped strain means rather than 

phenotypic measures from individual animals. The use of strain means significantly reduces 

the influence of non-genetic variance on our phenotype estimates. With an RI panel, fewer 

loci are expected to contribute a higher proportion of genetic variance than with an outbred 

population. Both factors increase power to detect QTL. Transcriptome data were also 

available on 21 strains and this information was used to identify modules by WGCNA. The 

significant caveat is that the same 21 strains were not available for both phenotypic QTL 

calculations and WGCNA. When examining the association between the module and the 

phenotype, and performing meQTL analysis, we used data from the 19 strains that had 

genotype, phenotype and RNA expression information. If we limited our phenotypic QTL 

analysis to these 19 strains, we retained both phenotypic QTLs and did not identify any 

additional phenotypic QTLs.

The standard recommendation for a minimum sample size for identifying robust modules in 

WGCNA is 20 (https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/

WGCNA/faq.html), with a similar recommendation for co-expression networks in general 

(Ballouz et al. 2015). In our WGCNA analysis, we used within-strain means from the 21 

strains of the HXB/BXH RI panel that had transcriptome data. Again, by using strain means, 

we reduced the non-genetic variance that often contributes to spurious correlations and 

reduces robustness of co-expression networks. In our experience, 20 strains, with multiple 

biological replicates within each strain, is the minimum number of strains needed for our 

approach (e.g., Saba et al 2015). An increase in sample size used for WGCNA has not 

produced a systematic difference in the number of co-expression modules identified.

With regard to statistical significance of correlations and associations in our analysis, a 

formal strategy for multiple testing correction is not as straightforward as in other types of 

analyses. This is a function of the fact that we require the convergence of evidence across 

several different analyses (correlation between module and phenotype; significant module 

eigengene QTL; overlap of phenotypic QTL and module eigengene QTL; retention of 

connections after partial correlation), where each of these analyses is not necessarily 

independent. The application of this series of filters to our data provides confidence that the 

resulting genetically-controlled gene expression module is functionally relevant to the 

genetically-controlled phenotype.

Discussion

Using the criteria that we have established to identify modules of co-expressed groups of 

genes that are associated with a phenotype, we have identified a liver transcriptional module 

associated with a predisposition to consume varying levels of alcohol. It is important to 

reiterate that the transcriptional coexpression module and the transcripts included in the 

module were identified by an analysis with no input about behavioral phenotype, i.e., this 
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module is an inherent characteristic of the rat liver. It is the overlap of the module eigengene 

QTL with the phenotypic QTL, and the correlation of the module eigengene with the 

phenotype across the strains of the RI rat panel, that allows us to propose a functional 

relationship between transcript expression levels and phenotype. The analysis performed for 

this study represents a “data mining” experiment, in which we used our database of rat liver 

transcriptional modules to discover the association of a liver coexpression module with the 

phenotype of voluntary alcohol consumption. These results well illustrate how, using 

catalogued genome and transcriptome data, one can uncover novel possibilities for 

functional relationships between genome, transcriptome and a complex trait phenotype.

We used a modified version of the Formal Concept Analysis (Saba et al. 2015) to investigate 

the functional relationships among the coexpressed gene products, and how these 

relationships may influence the phenotype of voluntary alcohol consumption (Figure 3). The 

function of the transcripts in this module can be primarily related to inflammatory processes. 

The most connected transcript (hub gene) in the module is Cyp2r1, with expression levels 

positively correlated with alcohol consumption. This gene codes for a cytochrome P450 

enzyme that converts cholecalciferol to 25-OH vitamin D3, the major circulating form of the 

vitamin. This intermediate is then converted to the biologically active calcitriol in various 

organs and cells, including brain and immune cells (Schuster 2011). Calcitriol can be formed 

in macrophages, and interacts with the vitamin D receptor to produce complex effects on the 

inflammatory responses of monocytes and macrophages, with an anti-inflammatory effect in 

mature macrophages (Di Rosa et al. 2012). In these macrophages, calcitriol delays activation 

of IL-6, TNFα and toll-like receptors (TLRs) during the inflammatory process (Di Rosa et 

al. 2012). The activity of calcitriol depends on the dimerization of the vitamin D receptor 

with the retinoid receptor (RXR) (Haussler et al. 1997), and the product of another transcript 

in the module, Capn5 (Calpain 5), cleaves the amino terminus of RXRα, reducing its 

nuclear localization (Casas et al. 2003), thus modifying the biologic impact of calcitriol. 

Calcitriol can also act in the hypothalamus to lower food intake (Sisley et al. 2016). Thus 

calcitriol represents a secretory product of liver that can affect both appetite and 

inflammation. Very recently, it has been reported that vitamin D levels are low in alcohol-

dependent subjects, and this difference was suggested to contribute to alcohol “craving” 

(Schuster et al. 2017).

Prcp codes for an enzyme in endothelial cells (prolylcarboxypeptidase) that regulates the 

levels of various hormones by cleaving a C-terminal Pro-X bond (Wang et al. 2014). Plasma 

prekallikrein is a glycoprotein that is mainly synthesized in liver (Bjorkqvist et al. 2013). 

Prekallikrein circulates bound to high molecular weight kininogen (HK), and prekallkrein is 

brought to the surface of endothelial cells when they bind HK (Joseph and Kaplan 2005). 

Prolylcarboxypeptidase (the protein product of Prcp) activates prekallikrein when it is bound 

to HK on endothelial cells (Shariat-Madar et al. 2004). The kallikrein formed from this 

reaction activates Factor XII to Factor XIIa, which further increases activation of 

prekallikrein. Kallikrein also cleaves HK to release bradykinin, an inflammatory mediator 

that activates constitutive bradykinin BK2 receptors and the inducible BK1 receptors to 

release nitric oxide and prostaglandins, as well as activate the MAPK and NFκB pathways 

(Bjorkqvist et al. 2013; Dutra 2017). Bradykinin, when administered in combination with 

the angiotensin converting inhibitor, captopril (which increases bradykinin levels by 
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inhibition of kininase II), has been reported to reduce alcohol intake and increase water 

intake by rats (Robertson et al. 1993). It is also of particular interest that bradykinin can 

disrupt the function of the blood brain barrier (Easton and Abbott 2002). Therefore, 

bradykinin derived from prekallikrein via an initial action of the prolylcarboxypeptidase can 

potentially affect alcohol consumption by its own central actions, and/or by increasing 

inflammation and enhancing the ability of cytokines and hormones released from the liver to 

enter the brain. The BK1 receptor has also been implicated in regulation of energy balance 

and food intake (Mori et al. 2008). These findings suggest that bradykinin, like calcitriol, 

can influence both inflammatory processes and appetite/food intake.

Some of the other correlated transcripts in the module can also be related to prekallikrein 

metabolism. The product of Galnt18 (polypeptide N-acetylgalactosaminyltransferase 18) is 

one of a large family of enzymes that control mucin-type O-glycosylation, the step where 

the first glycan is attached to a serine or threonine residue in a protein, forming an N-

acetylgalactosamine (GalNAc) α1-O-serine/threonine linkage in O-glycoproteins (Bennett 

et al. 2012; Kong et al. 2015). These reactions take place in the Golgi apparatus (Bennett et 

al. 2012). There are up to 20 GalNAc-Ts that all catalyze the initiation step where GalNAc is 

attached to serine and threonine residues. These enzymes have been divided into 9 families 

based on phylogenetic and genomic analysis (Bennett et al. 2012), and they have different, 

but overlapping substrate specificities (Schjoldager and Clausen 2012). It appears that the in 
vivo GalNAc O-glycosylation of proteins may be more dependent on the enzymes that are 

expressed in a particular cell than on substrate specificity of the enzymes as assessed in vitro 

(Kong et al. 2015). Our data show that Galnt18 is expressed at the highest level in liver 

sinusoidal endothelial cells, similar to Prcp (Online Resource 2). There is little or no 

information available regarding substrate specificity of GalNAc-T18 (Kong et al. 2015), 

however this enzyme does have an identified activity (Raman et al. 2012), and it has been 

characterized as a chaperone-like protein that can modulate the activity of GalNAc-T2, 

which is highly expressed in liver (Bennett et al. 2012). Factor XII, which is involved in the 

formation of bradykinin from prekallikrein, is subject to mucin-type Threonine 309 

glycosylation, and could be a substrate of GalNAc-T2 and/or –T18.

Another member of the module, Serpinh1, also known as Hsp47, is an endoplasmic 

reticulum (ER)-resident collagen-specific chaperone that binds to procollagen in the ER, and 

is involved in the transport of procollagen to the Golgi apparatus (Miyata et al. 2013). Our 

data show a high level of Hsp47 expression in hepatic stellate cells (Online Resource 2), and 

increased expression of Hsp47 in hepatic stellate cells has been implicated in liver fibrosis 

(Ishida and Nagata 2011). Inflammation and cell death are key processes in the development 

of liver fibrosis, involving the inflammasome response and activation of hepatic stellate cells 

(Alegre et al. 2017). Expression levels of Hsp47 may therefore reflect the baseline degree of 

liver inflammation (and predisposition to the development of fibrosis) in the rats of the RI 

panel. Hsp47 expression levels are also affected by the level of O-glycosylation in the Golgi 

apparatus, where O-glycosylation is associated with procollagen maturation and is necessary 

for glycoprotein trafficking (Miyata et al. 2013). This relationship suggests a functional 

interaction between Hsp47 and Galnt18, which is also expressed in hepatic stellate cells 

(Online Resource 2).
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Several of the other transcripts in the module can be linked to inflammatory processes 

through the activity of TNFα. Tmem9b is a highly connected transcript that codes for a 

lysosomal transmembrane protein that is required for activation of the NFκB and MAPK 

pathways by TNFα (Dodeller et al. 2008). This activation leads to the production of the 

cytokine IL-6, which has context-dependent pro- and anti-inflammatory effects, and the 

inflammatory chemokine, IL-8 (Dodeller et al. 2008; Dong and Zheng 2015; Rothaug et al. 

2016). Lyve1 (lymphatic vessel endothelial hyaluronan receptor 1) is another highly 

connected transcript associated with TNFα activity. This transcript codes for a hyaluronan-

binding protein that is expressed in liver sinusoidal endothelial cells (Online Resource 2) and 

in activated macrophages (Arimoto et al. 2010; Pinto et al. 2012). The high molecular 

weight forms of the hyaluronan polymer are anti-inflammatory, while the lower molecular 

weight forms are pro-inflammatory and lead to the release of TNFα (Jackson 2009). The 

conversion of the longer forms of hyaluronan to the shorter forms depends on internalization 

of hyaluronan into lymphatic endothelial cells, and Lyve1 is the likely protein that mediates 

this internalization (Jackson 2009). Expression of Lyve1 is positively correlated with 

expression of Tmem9b, suggesting a cooperative interaction in regulating the activity of 

TNFα.

Ripply1 (ripply1 homolog (zebrafish)) codes for a protein that associates with a family of 

proteins that act as transcriptional repressors, the Groucho/Transducin-Like Enhancer of 

split (Gro/TLE) co-repressor proteins (Kaul et al. 2015; Kawamura et al. 2008). These 

proteins do not directly bind DNA, but are recruited by DNA-bound repressor proteins. 

Ripply family proteins act as specific adaptors that recruit the global Gro/TLE proteins and 

can convert transcription factors from activators to repressors (Kawamura et al. 2008). TLE1 

is highly expressed in macrophages, and inhibits LPS induction of TNFα, i.e., has anti-

inflammatory effects (De Paoli et al. 2016). In addition to the full-length Gro/TLE proteins, 

mouse and human AES (amino terminal enhancer of split) and ESG (enhancer of split 

groucho) proteins have been identified, and protein-protein interactions between AES and 

the p65 subunit of NFκB have been identified (Tetsuka et al. 2000). This interaction 

inhibited TNFα–dependent activation of the NFκB and MAPK pathways. The positive 

correlation of Ripply and Tmem9b expression levels suggests that the products of these 

transcripts can generate a feedback loop to control the activity of TNFα.

The module also contains Acer3 (alkaline ceramidase 3), which is one of a heterogeneous 

family of ceramidases, with the major function of hydrolyzing ceramides to generate 

sphingosine which is phosphorylated to sphingosine-1 phosphate. Ceramides are bioactive 

lipids that mediate many cellular processes, and are increased in cells exposed to cytokines 

(TNFα, IL-1β (Hanna et al. 2001; Rolz et al. 2003) and vitamin D (Mao and Obeid 2008)), 

among other stresses. Acer3 is active under alkaline conditions and its activity is stimulated 

by Ca2+. The enzyme efficiently hydrolyzes long-chain unsaturated ceramides, 

phytoceramides or dihydroceramide (Mao and Obeid 2008). It has been shown that Acer3 

affects the immune response by regulating the levels of C18:1 ceramide in macrophages and 

other cells of the innate immune system. In response to LPS, expression of Acer3 is 

downregulated, leading to increased levels of C18:1 ceramide and expression of pro-

inflammatory cytokines (Wang et al. 2016). These findings demonstrate that the enzyme 

encoded by Acer3 per se can have an anti-inflammatory effect in macrophages, and 
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interestingly, Acer3 expression is strongly negatively correlated with Tmem9b, Lyve1, 
Serpinh1 and Prcp, the products of which are associated with pro-inflammatory effects.

The function of the remaining annotated transcripts in the module (Tmc3, rnf141, 
LOC100910710) is, at this time, less clear, but their presence in the liver coexpression 

module (Module 86) may suggest “guilt by association” for their involvement in 

inflammatory processes in the liver and/or liver/brain communication.

The functions of the products of the transcripts in Module 86 indicate that this module is a 

component of inflammatory processes active in liver. There is a plethora of information 

available regarding ethanol potentiating or suppressing liver inflammation (Lowe, et al. 

2017). The role of inflammation and innate immune signaling in alcohol consumption has 

also recently been the subject of investigation. Several studies with mice have demonstrated 

that various chemokines, chemokine receptors, cytokines and inflammatory pathways have 

effects on alcohol intake (Karlsson et al. 2016; Robinson et al. 2014; Truitt et al. 2016). It is 

particularly noteworthy that many of the transcripts and signaling pathways represented in 

our candidate coexpression module have opposing effects, i.e., are pro- or anti-inflammatory. 

This result suggests that it is the balance among these opposing forces (e.g., differences in 

level of expression of the “opposing” transcripts) in each rat strain that influences the 

variation in predisposition to consume alcohol and may, as well, influence liver 

inflammation in response to alcohol ingestion. The products of two of the transcripts, 

Cyp2r1 and Prcp, also implicate Module 86 in pathways related to food intake and energy 

metabolism. We and others have noted that the caloric content of alcohol is an important 

contributor to alcohol intake by rats, and that peripherally-produced peptides that regulate 

appetite and consummatory behavior also influence the intake of alcohol and other drugs 

(Engel and Jerlhag 2014; Tabakoff et al. 2009).

The central nervous system is usually considered as the source of motivation to consume 

alcohol. However, there is evidence that cytokines can mediate communication between the 

periphery and brain (D'Mello and Swain 2014). Such communication has been invoked to 

explain how peripheral activation of TL4 by LPS can influence alcohol consumption 

(Mayfield et al. 2013). The production of cytokines in the brain (microglia) can be induced 

by peripheral immune or inflammatory signals, including bradykinin, which can generate 

neuroinflammation through interaction with the BK1 receptor (Asraf et al. 2017; D'Mello 

and Swain 2011). Our systems genetic approach provides evidence for how peripheral 

inflammation, as well as liver secretory products that may affect appetite and energy 

metabolism, can influence brain function and alcohol consumption. These results emphasize 

the importance of considering the whole body to understand the genetic factors that affect 

the predisposition to consume alcohol, and potentially the effects of alcohol exposure that 

contribute to organ (liver) damage.

It has to be noted that, for the current analysis, both transcriptome and behavioral phenotype 

data are from adult male rats. The age range and gender were chosen to reflect these 

parameters used in a majority of phenotypic studies with rats. This may, however, limit the 

generality of the results, for instance, it is known that female rodents have QTLs for alcohol 

consumption that differ from males (Vanderlinden et al. 2015; Vendruscolo et al. 2006), and 
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rats of different ages also exhibit differences in drinking behavior (Wang et al. 2003). 

Nevertheless, because of the nature of the RI panel (genetically identical animals over 

generations), and the fact that we identify genetically-controlled transcriptional networks 

that are associated with the predisposition to consume alcohol in sexually mature males, the 

current data could be used as the foundation to compare and contrast the genetically-

mediated networks that predispose voluntary alcohol consumption across characteristics 

such as sex and age, as well as the influence that environmental factors may have on the 

modulation of the alcohol drinking phenotype.

In summary, while many studies have been performed that implicate alcohol-induced 

inflammation as leading to organ damage, particularly alcoholic liver disease (Lowe et al. 

2017), less emphasis has been placed on the role of individual differences in immunity or 

inflammation that may contribute to an individual’s predisposition to consume alcohol. Our 

findings suggest that targeting inflammatory processes in the periphery may be a novel 

approach to reducing alcohol consumption and alcohol-induced organ damage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alcohol consumption QTLs and liver module 86 eigengene QTL (meQTL)
Strain means and R/qtl were used to calculate both the QTLs for voluntary alcohol 

consumption (Saba et al. 2015), and meQTL for module 86. The horizontal lines represent 

genome-wide significant (p<0.05, solid line) and genome-wide suggestive (p<0.63) LOD 

scores (Lander and Kruglyak 1995). The location and significance of the module 86 meQTL 

(red) and the alcohol consumption QTLs (black) are shown.

Hoffman et al. Page 18

Mamm Genome. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Liver transcriptional coexpression module associated with alcohol consumption
The figure shows pairwise connections between gene products in Module 86. A green edge 

represents a negative correlation between two nodes, and a red edge represents a positive 

correlation between two nodes. The thickness of each edge represents the strength of each 

correlation (i.e., a correlation with a larger magnitude has a thicker line), and edges are only 

visible if their associated correlation coefficient is greater than |0.50|. Cyp2r1 is the hub 

(most connected) gene product and its expression levels are positively correlated with 

alcohol consumption.
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Figure 3. Functional relationships among transcripts in the liver transcriptional coexpression 
module associated with alcohol consumption (Module 86)
Each of the transcripts in the coexpression module is circled in blue. The ⨁ and ⊝ signs 

indicate the effects of the transcript products on the activity of the indicated pathway. The 

module eigengene is positively correlated with the phenotype of alcohol consumption across 

the HXB/BXH RI strains, as indicated by the arrow on the left. The correlations among the 

transcripts are indicated in Figure 2. ↑BBB = increase in permeability of the blood-brain 

barrier; PreK = prekallikrein; K = kallikrein; BK = bradykinin; BK1R and BK2R = 

bradykinin 1 and 2 receptors, respectively.
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Table 1

Transcripts in the Liver Coexpression Module

Gene Symbol Gene Name Location
Connectivity

within module 86

Cyp2r1 Cytochrome P450, family 2, subfamily r, polypeptide 1 Chr1:184.1 Mb 1.006

Rnf141 Ring finger protein 141 Chr1:175.6 Mb 0.925

Lyve1 Lymphatic vessel endothelial hyaluronan receptor 1 Chr1:175.7 Mb 0.823

Tmem9b TMEM9 domain family, member B Chr1:174.4 Mb 0.803

Capn5 Calpain 5 Chr1:163.1 Mb 0.793

Serpinh1 Serpin family H member 1 (Hsp47) Chr1:164.3 Mb 0.600

Ripply1 Ripply transcriptional repressor 1 ChrX:111.1 Mb 0.458

Tmc3 Transmembrane channel-like 3 Chr1:145.7 Mb 0.422

Acer3 Alkaline ceramidase 3 Chr1:163.1 Mb 0.421

Prcp Prolylcarboxypeptidase Chr1:157.7 Mb 0.365

LOC100910710 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 12-like Chr6:192.9 Mb 0.215

Galnt18 Polypeptide N-acetylgalactosaminyl-transferase 18 Chr1:176.3 Mb 0.151

Unannotated2 0.183

Unannotated1 0.070

Aida (intronic) Axin interactor, dorsalization associated Chr13:101.7 Mb 0.057
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