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Empirical measurement, monitoring, analysis, and reporting of
learning outcomes in higher institutions of developing countries
may lead to sustainable education in the region. In this data
article, data about the academic performances of undergraduates
that studied engineering programs at Covenant University,
Nigeria are presented and analyzed. A total population sample of
1841 undergraduates that studied Chemical Engineering (CHE),
Civil Engineering (CVE), Computer Engineering (CEN), Electrical
and Electronics Engineering (EEE), Information and Commu-
nication Engineering (ICE), Mechanical Engineering (MEE), and
Petroleum Engineering (PET) within the year range of 2002–2014
are randomly selected. For the five-year study period of engi-
neering program, Grade Point Average (GPA) and its cumulative
value of each of the sample were obtained from the Department
of Student Records and Academic Affairs. In order to encourage
evidence-based research in learning analytics, detailed datasets
are made publicly available in a Microsoft Excel spreadsheet file
attached to this article. Descriptive statistics and frequency dis-
tributions of the academic performance data are presented in
tables and graphs for easy data interpretations. In addition, one-
way Analysis of Variance (ANOVA) and multiple comparison post-
hoc tests are performed to determine whether the variations in
the academic performances are significant across the seven
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engineering programs. The data provided in this article will assist
the global educational research community and regional policy
makers to understand and optimize the learning environment
towards the realization of smart campuses and sustainable edu-
cation.

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Engineering Education

ore specific
subject area
Learning Analytics
ype of data
 Tables, graphs, figures, and spreadsheet file

ow data was
acquired
For the five-year study period of engineering program, Grade Point Average (GPA)
and its cumulative value of each of the sample were obtained from the Depart-
ment of Student Records and Academic Affairs.
ata format
 Raw, analyzed

xperimental
factors
Undergraduates with incomplete academic records were excluded
xperimental
features
Descriptive statistics, frequency distributions, one-way ANOVA and multiple
comparison post-hoc tests were performed to determine whether the variations in
the academic performances are significant across the seven engineering programs.
ata source
location
The population sample and the academic performance data provided in this article
were obtained at Covenant University, Canaanland, Ota, Nigeria (Latitude 6.6718o N,
Longitude 3.1581o E)
ata accessibility
 In order to encourage evidence-based research in learning analytics, detailed datasets
are made publicly available in a Microsoft Excel spreadsheet file attached to this article.
Value of the data

� Comprehensive academic performance datasets provided in this article will promote evidence-
based research in the emerging field of learning analytics in developing countries [1–4].

� Easy access to this data will assist the global educational research community and regional policy
makers to understand and optimize the learning environment towards the realization of smart
campuses and sustainable education [5–10].

� With the growing adoption of machine learning and artificial intelligence techniques in different
fields, empirical data provided in this article will help in the development of predictive models for
learning outcomes in engineering undergraduates [11–18].

� Descriptive statistics, frequency distributions, one-way ANOVA and multiple comparison post-hoc
tests that are presented in tables, plots, and graphs will make data interpretation much easier for
useful insights and logical conclusions.

� Detailed datasets that are made publicly available in a Microsoft Excel spreadsheet file attached to
this article will encourage further explorative studies in this field of research.
1. Data

The emerging field of learning analytics may be exploited to improve learning outcomes of
engineering undergraduates in higher institutions of developing countries towards attaining



Table 1
Descriptive statistics of academic performances of undergraduates in CHE.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 4.02 3.49 3.52 3.77 3.79 3.70
Median 4.11 3.53 3.55 3.88 3.90 3.78
Mode 4.15 2.74 3.13 4.06 4.43 3.73
Standard Deviation 0.57 0.69 0.77 0.79 0.67 0.61
Variance 0.32 0.48 0.59 0.63 0.45 0.37
Kurtosis 4.07 2.69 2.40 2.70 3.45 2.39
Skewness −0.97 −0.34 −0.33 −0.64 −0.85 −0.36
Range 2.82 3.24 3.47 3.42 3.41 2.70
Minimum 2.09 1.54 1.47 1.55 1.59 2.16
Maximum 4.91 4.78 4.94 4.97 5.00 4.86
Total Samples 198 198 198 198 198 198

Table 2
Descriptive statistics of academic performances of undergraduates in CVE.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 3.67 3.13 3.33 3.78 3.91 3.54
Median 3.70 3.09 3.38 3.92 4.01 3.60
Mode 4.02 3.14 2.76 4.17 4.89 3.76
Standard Deviation 0.60 0.69 0.85 0.74 0.71 0.65
Variance 0.36 0.47 0.72 0.54 0.50 0.42
Kurtosis 3.48 2.55 2.28 2.24 2.60 2.27
Skewness −0.47 0.25 −0.15 −0.42 −0.57 −0.06
Range 3.36 3.22 3.94 3.03 3.15 2.96
Minimum 1.60 1.70 0.99 1.94 1.83 1.97
Maximum 4.96 4.92 4.93 4.97 4.98 4.93
Total Samples 152 152 152 152 152 152
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sustainable education in the region [19–21]. Useful information about the academic performances of
undergraduates that studied engineering programs at Covenant University, Nigeria are presented and
analyzed in this data article. Covenant University is located in Ota, Ogun State in Nigeria (Latitude
6.6718o N, Longitude 3.1581o E). It is a private Christian university affiliated with Living Faith Church
Worldwide and a member of the Association of Commonwealth Universities (ACU), Association of
African Universities (AAU), and National Universities Commission (NUC).

A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil
Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Infor-
mation and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engi-
neering (PET) within the year range of 2002–2014 are randomly selected. The earliest year of entry
and the latest year of graduation are 2002 and 2014 respectively. Having excluded undergraduates
with incomplete academic records, 198, 152, 374, 407, 349, 166, 195 undergraduates were pooled from
CHE, CVE, CEN, EEE, ICE, MEE, and PET respectively. The descriptive statistics of the academic per-
formances of undergraduates in each of the seven engineering programs at Covenant University are
presented in Tables 1–7.

The academic performances of engineering undergraduates vary as the students proceed from one
level to another yearly. Fig. 1 shows the variations in the GPA data of all the engineering under-
graduates under investigation. Figs. 2–8 illustrate the differences and trends in the GPA data of
undergraduates in CHE, CVE, CEN, EEE, ICE, MEE, and PET respectively. The frequency distributions of
the GPA data of undergraduates in CHE, CVE, CEN, EEE, ICE, MEE, and PET are shown in Figs. 9–15
respectively. Figs. 16–18 depict the proportions of engineering students that graduated with First



Table 3
Descriptive statistics of academic performances of undergraduates in CEN.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 3.61 3.23 3.38 3.64 3.62 3.50
Median 3.71 3.22 3.51 3.72 3.68 3.56
Mode 4.00 3.20 4.47 4.07 4.25 3.21
Standard Deviation 0.71 0.76 0.90 0.77 0.72 0.69
Variance 0.50 0.58 0.81 0.59 0.52 0.48
Kurtosis 2.58 2.50 2.36 3.33 2.73 2.44
Skewness −0.43 0.03 −0.43 −0.61 −0.45 −0.24
Range 3.20 3.74 4.01 4.40 3.55 3.10
Minimum 1.73 1.19 0.97 0.60 1.39 1.80
Maximum 4.93 4.93 4.98 5.00 4.94 4.90
Total Samples 374 374 374 374 374 374

Table 4
Descriptive statistics of academic performances of undergraduates in EEE.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 4.03 3.49 3.60 3.54 3.58 3.66
Median 4.11 3.48 3.73 3.57 3.64 3.71
Mode 4.13 3.22 3.96 3.48 4.00 3.28
Standard Deviation 0.56 0.73 0.83 0.76 0.74 0.66
Variance 0.31 0.54 0.69 0.58 0.55 0.43
Kurtosis 3.07 2.50 2.56 2.59 2.49 2.43
Skewness −0.61 −0.17 −0.55 −0.38 −0.32 −0.29
Range 3.23 3.56 3.95 3.69 3.58 3.05
Minimum 1.71 1.34 1.05 1.31 1.42 1.83
Maximum 4.94 4.90 5.00 5.00 5.00 4.88
Total Samples 407 407 407 407 407 407

Table 5
Descriptive statistics of academic performances of undergraduates in ICE.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 3.56 3.18 3.30 3.58 3.74 3.47
Median 3.55 3.18 3.36 3.62 3.82 3.51
Mode 3.49 3.06 3.02 3.52 4.00 3.51
Standard Deviation 0.69 0.76 0.88 0.73 0.71 0.68
Variance 0.48 0.57 0.77 0.54 0.50 0.46
Kurtosis 2.57 2.42 2.32 2.66 2.72 2.44
Skewness −0.33 0.06 −0.24 −0.40 −0.48 −0.16
Range 3.32 3.49 3.89 3.49 3.23 3.09
Minimum 1.64 1.39 1.09 1.51 1.75 1.80
Maximum 4.96 4.88 4.98 5.00 4.98 4.89
Total Samples 349 349 349 349 349 349
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Class, Second Class Upper, Second Class Lower, and Third Class in CHE, CVE, CEN, and EEE; ICE and
MEE; and PET respectively.
2. Experimental design, materials and methods

For the five-year study period of engineering program, Grade Point Average (GPA) and its
cumulative value of each of the sample were obtained from the Department of Student Records and



Table 6
Descriptive statistics of academic performances of undergraduates in MEE.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 3.92 3.33 3.13 3.60 3.78 3.54
Median 4.00 3.32 3.04 3.73 3.96 3.57
Mode 4.00 3.69 3.13 4.55 4.30 3.95
Standard Deviation 0.60 0.72 0.87 0.76 0.73 0.66
Variance 0.36 0.52 0.76 0.58 0.54 0.43
Kurtosis 3.12 2.19 2.06 2.74 2.70 2.25
Skewness −0.69 0.03 0.05 −0.57 −0.67 −0.14
Range 2.67 3.32 3.58 3.72 3.25 2.89
Minimum 2.20 1.55 1.40 1.25 1.73 1.99
Maximum 4.87 4.87 4.98 4.97 4.98 4.88
Total Samples 166 166 166 166 166 166

Table 7
Descriptive statistics of academic performances of undergraduates in PET.

First Year GPA Second Year GPA Third Year GPA Fourth Year GPA Fifth Year GPA Cumulative GPA

Mean 3.86 3.24 3.32 3.54 3.71 3.54
Median 3.91 3.18 3.33 3.54 3.75 3.56
Mode 3.78 2.48 3.74 3.61 3.20 3.83
Standard Deviation 0.62 0.71 0.73 0.69 0.65 0.59
Variance 0.38 0.50 0.54 0.48 0.42 0.35
Kurtosis 3.83 2.54 2.46 2.67 2.39 2.43
Skewness −0.88 −0.04 −0.15 −0.03 −0.18 −0.01
Range 3.29 3.74 3.64 3.55 2.83 2.73
Minimum 1.64 1.22 1.18 1.45 2.13 2.07
Maximum 4.93 4.96 4.82 5.00 4.95 4.80
Total Samples 195 195 195 195 195 195

Fig. 1. Boxplot of GPA data of undergraduates in the seven engineering programs (2002–2014).
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Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed
datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article.
Descriptive statistics and frequency distributions of the academic performance data are presented in
tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA)
and multiple comparison post-hoc tests are performed to determine whether the variations in the



Fig. 2. Boxplot of GPA data of undergraduates in CHE (2002–2014).

Fig. 3. Boxplot of GPA data of undergraduates in CVE (2002–2014).

Fig. 4. Boxplot of GPA data of undergraduates in CEN (2002–2014).
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Fig. 5. Boxplot of GPA data of undergraduates in EEE (2002–2014).

Fig. 6. Boxplot of GPA data of undergraduates in ICE (2002–2014).

Fig. 7. Boxplot of GPA data of undergraduates in MEE (2002–2014).
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Fig. 8. Boxplot of GPA data of undergraduates in PET (2002–2014).

Fig. 9. Histogram distributions of GPA data of undergraduates in CHE.
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academic performances are significant across the seven engineering programs. Data showing whe-
ther there are significant differences in the GPA data of the engineering undergraduates throughout
their five-year study period are presented in Tables 8–13. The boxplots of the GPA distribution by
program are shown in Figs. 19–24. The results of the post-hoc test conducted to understand the
extent of significant variations in cumulative GPA across engineering Programs at Covenant University
are presented in Table 14. Multiple comparison plots of Cumulative GPA data in Figs. 25–31 reveal
groups (i.e. other engineering programs at Covenant University) whose statistical means are sig-
nificantly different.



Fig. 10. Histogram distributions of GPA data of undergraduates in CVE.

Fig. 11. Histogram distributions of GPA data of undergraduates in CEN.
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Fig. 12. Histogram distributions of GPA data of undergraduates in EEE.

Fig. 13. Histogram distributions of GPA data of undergraduates in ICE.
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Fig. 14. Histogram distributions of GPA data of undergraduates in MEE.

Fig. 15. Histogram distributions of GPA data of undergraduates in PET.
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Fig. 16. Proportions of class of degree in CHE, CVE, CEN, and EEE.

Fig. 17. Proportions of class of degree in ICE and MEE.

Fig. 18. Proportions of class of degree in PET.
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Table 8
ANOVA test on first year GPA data of engineering programs at Covenant university.

Source of
variation

Sum of
squares

Degree of
freedom

Mean
squares

F Statistic Prob4F

Columns 69.15 6 11.52 28.95 2.99×10–33

Error 730.21 1834 0.40
Total 799.36 1840

Table 9
ANOVA test on second year GPA data of engineering programs at Covenant university.

Source of
variation

Sum of
squares

Degree of
freedom

Mean
squares

F statistic Prob4F

Columns 34.02 6 5.67 10.58 1.43×10–11

Error 983.13 1834 0.54
Total 1017.15 1840

Table 10
ANOVA test on third year GPA data of engineering programs at Covenant university.

Source of
variation

Sum of
squares

Degree of
freedom

Mean
squares

F statistic Prob4F

Columns 36.48 6 6.08 8.55 3.47×10-9

Error 1304.02 1834 0.71
Total 1340.51 1840

Table 11
ANOVA test on fourth year GPA data of engineering programs at Covenant university.

Source of
variation

Sum of
squares

Degree of
freedom

Mean
squares

F statistic Prob4F

Columns 12.99 6 2.16 3.83 8.53×10-4

Error 1037.83 1834 0.57
Total 1050.82 1840

Table 12
ANOVA test on fifth year GPA data of engineering programs at Covenant university.

Source of
variation

Sum of
squares

Degree of
freedom

Mean
squares

F statistic Prob4F

Columns 17.80 6 2.97 5.87 4.44 × 10-6

Error 926.63 1834 0.51
Total 944.43 1840

Table 13
ANOVA test on cumulative GPA data of engineering programs at Covenant university.

Source of
variation

Sum of
squares

Degree of
freedom

Mean
squares

F statistic Prob4F

Columns 12.13 6 2.02 4.70 9.39×10-5

Error 789.25 1834 0.43
Total 801.38 1840
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Fig. 19. First year GPA data of all engineering programs.

Fig. 20. Second year GPA data of engineering programs at Covenant university.

 

Fig. 21. Third year GPA data of engineering programs at Covenant university.
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Fig. 22. Fourth year GPA data of engineering programs at Covenant university.

Fig. 23. Fifth year GPA data of engineering programs at Covenant university.

Fig. 24. Cumulative GPA data of engineering programs at Covenant university.
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Table 14
Post-hoc test on cumulative GPA for engineering programs at Covenant university.

Groups compared Lower limits for
95% confidence
intervals

Mean
difference

Upper limits for
95% confidence
intervals

p-value

CHE CVE −0.0469 0.1617 0.3703 0.2507
CHE CEN 0.0331 0.2031 0.3731 0.0078
CHE EEE −0.1222 0.0453 0.2129 0.9853
CHE ICE 0.0590 0.2310 0.4031 0.0015
CHE MEE −0.0450 0.1585 0.3621 0.2455
CHE PET −0.0333 0.1618 0.3570 0.1798
CVE CEN −0.1447 0.0414 0.2274 0.9948
CVE EEE −0.3002 −0.1164 0.0675 0.5029
CVE ICE −0.1186 0.0693 0.2573 0.9321
CVE MEE −0.2203 −0.0032 0.2139 1.0000
CVE PET −0.2091 0.0001 0.2094 1.0000
CEN EEE −0.2963 −0.1577 −0.0192 0.0139
CEN ICE −0.1160 0.0280 0.1719 0.9976
CEN MEE −0.2249 −0.0445 0.1358 0.9909
CEN PET −0.2121 −0.0412 0.1296 0.9919
EEE ICE 0.0446 0.1857 0.3268 0.0020
EEE MEE −0.0649 0.1132 0.2913 0.4979
EEE PET −0.0520 0.1165 0.2849 0.3898
ICE MEE −0.2549 −0.0725 0.1099 0.9047
ICE PET −0.2421 −0.0692 0.1037 0.9020
MEE PET −0.2009 0.0033 0.2076 1.0000

Fig. 25. Multiple comparison test on cumulative GPA for CHE.
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Fig. 26. Multiple comparison test on cumulative GPA for CVE.

Fig. 27. Multiple comparison test on cumulative GPA for CEN.

Fig. 28. Multiple comparison test on cumulative GPA for EEE.
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Fig. 30. Multiple comparison test on cumulative GPA for MEE.

Fig. 29. Multiple comparison test on cumulative GPA for ICE.

Fig. 31. Multiple comparison test on cumulative GPA for PET.
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