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Abstract

We propose a 2D continuous-time Hidden Markov Model (2D CT-HMM) for glaucoma 

progression modeling given longitudinal structural and functional measurements. CT-HMM is 

suitable for modeling longitudinal medical data consisting of visits at arbitrary times, and 2D state 

structure is more appropriate for glaucoma since the time courses of functional and structural 

degeneration are usually different. The learned model not only corroborates the clinical findings 

that structural degeneration is more evident than functional degeneration in early glaucoma and the 

opposite is observed in more advanced stages, but also reveals the exact stages where the trend 

reverses. A method to detect time segments of fast progression is also proposed. Our results show 

that this detector can effectively identify patients with rapid degeneration. The model and the 

derived detector can be of clinical value for glaucoma monitoring.

1 Introduction

Glaucoma is an optic neuropathy characterized by progressive loss of retinal ganglion cells 

and damage of optic nerve. If left untreated, glaucoma may cause irreversible visual field 

deficits and even blindness [1]. Glaucoma has been called the “silent thief of sight” because 

the loss of vision often occurs gradually without patients’ awareness until the disease has 

advanced significantly. It is estimated that over 2.2 million Americans have glaucoma but 

only half of those know they have it [2]. This large undiagnosed population is mainly due to 

unnoticeable symptoms of early glaucoma and the difficulty of consistently screening the 

entire population. In the U.S., more than 120,000 people are blind from glaucoma [3]. 

Worldwide, glaucoma is the second-leading cause of blindness after cataracts [4].

Since the visual field cannot typically be recovered, early identification of glaucoma and its 

progression, and delivery of appropriate treatment are critical to retard the deterioration and 

preserve sight. Clinically, several techniques for structural and functional measurement are 

often utilized for glaucoma monitoring. For example, 3D optical coherence tomography 

(3D-OCT) is used to examine the optic nerve head [5] (Fig. 1), and psychophysical 
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techniques, such as automated perimetry, are applied to assess the status of the visual field 

[1].

Clinical practice has shown that the identification of glaucoma progression is often 

challenging for the following reasons. First, glaucoma is a slowly progressing disease, and it 

is difficult to discriminate between true disease-related changes and natural age-related 

degeneration, in the face of measurement variability and noise. Second, the rate of functional 

and structural progression among subjects can be highly variable, and thus it is hard to 

establish one rule of thumb for progression detection. Third, it is observed that structural and 

functional changes often occur at different times over the disease course. Some subjects can 

experience substantial structural loss before any evidence of visual field deficits emerges [5]. 

Due to these difficulties, there is no widely accepted standard for establishing glaucoma 

progression considering both types of changes.

There are clinical strategies to determine glaucoma progression, usually through subjective 

assessment or statistical analysis of measurements collected over time [1][5]. The statistical 

approaches can be divided into event-based and trend-based methods. In event analysis, 

progression is identified when a follow-up measurement exceeds a pre-established threshold 

of change from baseline visit. In trend analysis, the behavior of a parameter over time is 

monitored, using methods such as linear regression. In current clinical practice, the above 

statistical analysis is generally applied separately for each measurement. There is a lack of 
methods that take into account all types of measurements to determine the true disease 
course for glaucoma progression assessment.

In this paper, we propose to combine longitudinal structural and functional measurements 

and use 2D CT-HMM to decode the underlying true disease stages. We use two hidden state 

dimensions, one is structural and the other is functional, to model the disease status. The 

motivation for using CT-HMM is as follows. Since many chronic diseases have a natural 

interpretation in terms of staged progression [6][7], the discrete state is thus suitable. 

Furthermore, since patients are often monitored at irregular intervals, a continuous-time 

model, rather than discrete-time (DT) [8], is more appropriate for medical data [6]. While 

1D DT-HMM [9], 1D CT-HMM [10], and 1D event-based disease staging system [11] have 

been investigated, to our knowledge, we are the first to propose the 2D CT-HMM for disease 
progression modeling.

This paper makes three contributions: (1) Introduce a 2D CT-HMM model for progression 

modeling, which can more accurately capture the underlying disease stages. (2) Demonstrate 

an application of fast progression detection using the model. This detector can identify time 

segments of fast progression, and is potentially valuable in clinics. (3) A large dataset is used 

to estimate the model. Our results can be useful in understanding glaucoma progression.

2 Approach

2.1 Formulation of Continuous-Time Hidden Markov Model

The formulation of CT-HMM is as follows [6]. Suppose we have longitudinal data from 

multiple individuals. The data for individual i has ni visits, consisting of irregularly spaced 
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visiting times (ti1, …, tini), and corresponding observational data (oi1, …, oini). The hidden 

states for the data are denoted as (si1, …, sni) where each state is from a discrete set S. The 

observation o is generated conditionally on the hidden state s based on the data emission 

probability p(o|s).

The hidden states evolve with time as an unobserved Markov process. The next state to 

which an individual enters from a specific state, and the time that this transition occurs, are 

governed by a set of transition intensities, qrs, for each pair of states r and s. Each intensity 

represents the instantaneous risk of moving from state r to s, and is defined as qrs = limδt≈0 

p(S(t + δt) = s|S(t) = r)/δt where S(t) represents the state at time t. These intensities form a 

matrix Q, called instantaneous transition intensity matrix, whose rows are defined to sum to 

zero, with the diagonal entries set to qrr = −Σs≠r qrs. The average sojourn time (a single 

period of occupancy) in state r is given by −1/qrr. The probability that the next move from 

state r to s is −qrs/qrr, for r ≠ s.

The transition probability matrix with time parameter t is denoted as P(t), and is computed 

by taking the matrix exponential of Q: P(t) = etQ. The (r, s) entry of P(t), denoted as prs(t), is 

the probability of being in state s at instant (t0 + t) in the future, given that the state at time t0 

is r. Note that prs(t) can be non zero when there is a path from state r to s in the model even 

if qrs is 0.

The model can be fit to longitudinal data by maximizing the data likelihood. We will explain 

our method for parameter estimation in Section 2.3.

2.2 2D State Structure for Glaucoma Progression Modeling

To define the 2D state structure, since the glaucomatous damage is typically irreversible, we 

assume that the degeneration can only increase with time. We also restrict instantaneous 

transitions to pairs of adjacent states (i.e. cannot skip over a state). The three allowed 

transitions (to the right, down, diagonal) from each state and the resulting model are 

illustrated in Fig. 2(a).

We now explain our state definition. Among the available measurements, one structural and 

one functional measurement are selected for state definition. These choices defines the two 

state space dimensions illustrated in Fig. 2(a). Each state can then be thought of as having a 

specified range of these two primary parameters. The visiting data are then dispatched to the 

corresponding states for initializing the parameters of data emission probability p(o|s), where 

multivariate Gaussian distribution is assumed.

2.3 Algorithm for Parameter Estimation

For parameter estimation in CT-HMM, often a numerical method, such as gradient descent, 

is applied directly to maximize the data likelihood [6]. The data likelihood is often 

calculated by summing the probability of all possible hidden state paths. It has been noted 

that there is no widely accepted efficient algorithm for CT-HMM parameter estimation [12], 

mainly due to the more complex formulation compared to DT-HMM. The lack of efficient 

algorithms has limited CT-HMM to applications where either the number of states involved 

is low (e.g. a 3-state disease model [10]), or the amount of allowed transitions is limited.

Liu et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To efficiently estimate the parameters for our large-scale model, we assume that if the 

decoded states for two consecutive visits are instantly-adjacent (i.e. have a qrs link), then the 

state transition takes place exactly at the visiting time of the second visit. This assumption is 

valid when the duration between consecutive visits is not long. We then use a hard EM 

algorithm, which is conceptually similar to the Viterbi-Training (or called the segmental K-

means algorithm) for discrete-time HMM [13], for efficient parameter estimation.

In this formulation, we consider the optimization problem maxS f(S,O|λ), which is called 

state-optimized likelihood in [13], for iterative update of the model parameter λ. In E-step, 

given the current λ, we aim to find a single best state path S* (hence the name hard) for each 

data sequence O = o1, …on with visiting time T = t1, …tn by Viterbi decoding [8]:

p(S∗, O ∣ λ) = max
S∗ = s1, …, sn

{π(s1)p(o1 ∣ s1) ∏
k = 2

n
p(ok ∣ sk)Psk − 1, sk

(tk − tk − 1)}

where π(s) is the initial state probability, p(o|s) is the data emission probability, and Pr,s(t) is 

the entry of transition probability matrix P(t) computed from Q.

In the decoded state sequence S*, there can be two consecutive decoded states r, s that are 

not instantly-adjacent (i.e. qrs is 0). This can happen when the time gap between the two 

visits is long or very rapid degeneration occurs. In this case, we would like to also utilize this 

transition information to help estimate the qij parameters, where i,j are intermediate states in 

the path between state r and s. We determine the most probable inner path Srs between r and 

s, by requiring that intermediate states are distinct and adjacent, and the duration t between 

the two visits is divided uniformly into each intermediate state (an example is illustrated in 

Fig. 2(b)). This can be formulated as:

p(Srs ∣ λ) = maxSrs = s1, …sl, l ∈ lrs, si ≠ s j, 1 ≤ i ≤ j ≤ l ∏
u = 1

l − 1
Psu, su + 1

( t
l )

where lrs is the set of all possible lengths of distinct state paths between state r, s. This best 

inner path Srs can also be efficiently found using Viterbi allgorithm.

In M-step, we update the model parameters as follows. Let Nrs denote the number of 

transitions from states r to s, and Tr represent the total time staying at state r from all data, 

computed from the results in E-step. It has been proved in [12] that if the state transitions are 

assumed to happen at the visiting times, then the optimized value for Q matrix entries are : 

qrs = Nrs/Tr for r ≠ s, and qrr = −Σr≠s qrs. We then do iterative update of the model parameters 

by alternating the E-step and M-step until a fixed point is reached.

2.4 Application: Detect State Transitions with Fast Progression

By using the learned model, we can construct a detector to find state transitions within a data 

sequence which have faster progression than the average model. First, the Viterbi algorithm 

is applied to find the hidden state sequence for longitudinal data. Then, the transition link list 

can be derived from the states, each with its own duration t. For example, if the state 
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sequence is 4 → 4 → 7 → 7 → 7 → 9, then the transition link list is 4(t = t3 − t1) → 7(t 
= t6 − t3) → 9. For each link from state sa to sb with a duration t, we compute P(t) and 

derive s* = argmaxs Psa,s(t), which is the most probable next state from state sa after duration 

t, according to the average model. We can then check if the end-state sb of the patient’s link 

is structurally and/or functionally worse than s*. If so, then a structural and/or functional 

faster progression is detected. Note that in practice, we ignore the first link for detection, 

since there is an unknown duration in the first state before the first visit. The proposed 

detector analyzes the decoded state sequence and state duration by segments, which can thus 

detect local fast changes, and can be potentially useful in clinical applications.

3 Experimental Results

We collected a dataset of 372 eyes with glaucoma or glaucoma suspect (highly likely to have 

glaucoma but show no visual field defect at the base visit), with a total of 1618 visits traced 

with an average history of 3.1 ± 0.9 years. The functional measurements used in this study 

are the visual field index (VFI), mean deviation (MD), and pattern standard deviation (PSD) 

of the visual field test from automated perimetry. The structural measurements utilized are 

the average thickness of retinal nerve fiber layer (RNFL) from 3D-OCT optic disc images, 

and the average thickness of ganglion cell complex (GCC) from 3D-OCT macular images, 

both are automatically extracted by 3D-OCT machines (RTVue-100 by Optovue). We use 

VFI and RNFL as the primary index for 2D state definition. VFI range 

[100-99-98-95-92-90-85-80-70-60-0] and RNFL range [130-125-120-…-60-0] are used to 

define the states, which are specified empirically based on the available data (see Fig. 3(a) 

for details).

We now analyze the estimated Q matrix. In Fig. 3(a), the strongest instantaneous transition 

from each state is illustrated by a blue link. There are several L shape patterns in the top-left 

area, which reveals that structural degeneration has higher tendency than functional 

degeneration in the early stages. However, when the disease status reaches the corner of L, 

the trend starts to reverse. We can find a few long horizontal lines when structural values are 

in the middle and low range. This implies that more rapid functional changes may occur at 

these states while structural loss slows down. When structural and/or functional values are 

low, there are more diagonal links. This tells us that at more advanced disease stages, 

degeneration in both dimensions tend to happen together.

In Fig. 3(b), the state sojourn time (−1/qrr) is shown. States with magenta color represent a 

sojourn time of less than 2 years, which are mostly in the bottom-right area, where more 

severe stages reside. In Fig. 3(c), the behavior of P(t) matrix with t set to 10 years is 

illustrated, where the most probable next state from each state after t years is shown by the 

blue link. The results show that there is more rapid degeneration when disease is in more 

advanced status. From Fig. 3(b)(c), it is found that that some results are not smooth, which is 

likely due to the lack of sufficient data and over-fitting in some states.

We then evaluate the method for detecting local fast progression. This detector can partition 

eyes to four groups: eyes with both structural (S) and functional (F) fast progression, eyes 

with only S, only F, and the others (relatively stable). In Table 1, the mean slopes of each 
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parameter from each group are shown. We found that for each group of S and/or F fast 

progression, there is slope of associated parameters significantly different (t-test, p=0.05) 

from the corresponding slope in the relatively stable group. This tells that the method can 

effectively identify patients of fast degeneration. One example is shown in Fig. 3(d).

4 Conclusion

In this paper, we propose to use 2D CT-HMM to statistically characterize patterns of 

glaucoma progression. Longitudinal measurements are considered together to decode the 

underlying disease stages along structural and functional dimensions, which can help 

clinicians capture a patient’s severity in a global and intuitive way. By interpreting the 

estimated average model, we have gained insight into glaucoma progression. The results not 

only corroborate clinical findings that structural degeneration usually precedes functional 

degeneration at early stages and the trend reverses later, but also reveal the exact states 

where the reverse occurs. A method to detect time segments of local fast progression is also 

proposed. This method provides an alternative way to detect patients whose progression is 

faster than the population average, which is potentially useful in clinics. Our results suggest 

that the 2D CT-HMM model could be profitably applied to other longitudinal medical data.
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Fig. 1. 
Examples of OCT Images of optic nerve head. The OCT enface (left image) is a 2D image 

generated by projecting the 3D-OCT volume along the z (depth) axis. The horizontal slice 

(right image) corresponds to the green line in the enface. In the glaucoma case (b), the 

retinal nerve fiber layer (RNFL), the topmost layer of the retina that looks bright in OCT 

images, is apparently thinner than the normal case (a).
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Fig. 2. 
(a) The 2D state structure for glaucoma progression. The blue arrows are the allowed 

instantaneous transition (qrs ≥ 0). (b) An example of hidden state decoding. The blue path 

represents the decoded states for the longitudinal data. The green path represents a possible 

inner state path between the two non-adjacent states for visit 2 and 3. The duration t between 

visits 2 and 3 is uniformly distributed across the intermediate states to obtain a coarse 

explanation of progression.
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Fig. 3. 
(a) Visualization of the estimated Q matrix. The strongest degeneration links (with largest 

qrs for each state r) are shown in blue. Each qrs value is shown along its link. (b) The state 

sojourn time of each state. Magenta state: ≤ 2 years, blue: > 2 years, black : lack of transition 

data. (c) Visualization of P(t) matrix with t = 10 years. For each state r, the most probable 

next state after 10 years (s* = argmaxs Pr,s(t)) is shown by a blue link. Yellow state: next 

state is itself. (d) An example of the Viteribi state decoding result (thick path), and the 

detected fast progression links (light blue: functional fast, red: both structural and functional 

fast) from an eye with 7 visits. Data for each measurement type is also shown with linear 

regression slope.
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