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Abstract

Jointly achieving parsimony and good predictive power in high dimensions is a main challenge in 

statistics. Non-local priors (NLPs) possess appealing properties for model choice, but their use for 

estimation has not been studied in detail. We show that for regular models NLP-based Bayesian 

model averaging (BMA) shrink spurious parameters either at fast polynomial or quasi-exponential 

rates as the sample size n increases, while non-spurious parameter estimates are not shrunk. We 

extend some results to linear models with dimension p growing with n. Coupled with our 

theoretical investigations, we outline the constructive representation of NLPs as mixtures of 

truncated distributions that enables simple posterior sampling and extending NLPs beyond 

previous proposals. Our results show notable high-dimensional estimation for linear models with p 
≫ n at low computational cost. NLPs provided lower estimation error than benchmark and hyper-g 

priors, SCAD and LASSO in simulations, and in gene expression data achieved higher cross-

validated R2 with less predictors. Remarkably, these results were obtained without pre-screening 

variables. Our findings contribute to the debate of whether different priors should be used for 

estimation and model selection, showing that selection priors may actually be desirable for high-

dimensional estimation.
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1. Introduction

Developing high-dimensional methods to balance parsimony and predictive power is a main 

challenge in statistics. Non-local priors (NLPs) are appealing for Bayesian model selection. 

Relative to local priors (LPs), NLPs discard spurious covariates faster as the sample size n 
grows, but preserve exponential rates to detect non-zero coefficients (Johnson and Rossell, 

2010). When combined with Bayesian model averaging (BMA), this regularization has 

important consequences for estimation.

Denote the observations by yn ∈ 𝒴n, where 𝒴n is the sample space. We entertain a collection 

of models Mk for k = 1, …, K with densities fk(yn | θk, ϕk), where θk ∈ Θk ⊆ Θ are 

parameters of interest and ϕk ∈ Φ is a fixed-dimension nuisance parameter. Let pk = dim(Θk) 

and without loss of generality let MK be the full model within which M1, …, MK−1 are 

nested (Θk ⊂ ΘK = Θ). To ease notation let (θ, ϕ) = (θK, ϕK) ∈ Θ×Φ be the parameters under 

MK and p = pK = dim(Θ). A prior density π(θk | Mk) for θk ∈ Θk under Mk is a NLP if it 
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converges to 0 as θk approaches any value θ0 consistent with a sub-model Mk′ (and a LP 

otherwise).

Definition 1

Let θk ∈ Θk, an absolutely continuous measure with density π(θk | Mk) is a non-local prior 

if lim
θk θ0

π(θk | Mk) = 0 for any θ0 ∈ Θk, ⊂ Θk, k′ ≠ k.

For precision we assume that intersections Θk ∩ Θk′ have 0 Lebesgue measure and are 

included in some Mk″, k″ ∈ {1, …, K}. As an example consider a Normal linear model yn ~ 
N(Xnθ, ϕI) where Xn is an n × p matrix with p predictors, θ ∈ Θ = ℝp and ϕ ∈ Φ = ℝ+. As 

we do not know which columns in Xn truly predict yn we consider K = 2p models by setting 

elements in θ to 0, i.e. fk(yn | θk, ϕk) = N(yn; Xk,nθk, ϕkI) where Xk,n is a subset of columns 

of Xn. We develop our analysis considering the following NLPs

πM(θ |ϕk, Mk) = ∏
i ∈ Mk

θi
2

τϕk
N(θi; 0, τϕk) (1)

πI(θ |ϕk, Mk) = ∏
i ∈ Mk

(τϕk)
1
2

πθi
2 exp −

τϕk

θi
2 (2)

πE(θ |ϕk, Mk) = ∏
i ∈ Mk

exp 2 −
τϕk

θi
2 N(θi; 0, τϕk), (3)

where i ∈ Mk are the non-zero coefficients and πM, πI and πE are called the product MOM, 

iMOM and eMOM priors (pMOM, piMOM and peMOM).

A motivation for considering K models is to learn which parameters are truly needed to 

improve estimation. Consider the usual BMA estimate

E(θ |yn) = ∑
k = 1

K
E(θ | Mk, yn)P(Mk |yn) (4)

where P (Mk | yn) ∝ mk(yn)P (Mk) and mk(yn) = ∫ ∫ fk(yn | θk, ϕk)π(θ | ϕk, Mk)π(ϕk | 

Mk)dθkdϕk is the integrated likelihood under Mk. BMA shrinks estimates by assigning small 

P (Mk | yn) to unnecessarily complex models. The intuition is that NLPs assign even smaller 

weights. Let Mt be the smallest model such that ft(yn | θt, ϕt) minimizes Kullback-Leibler 
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divergence (KL) to the data-generating density f*(yn) amongst all (θ, ϕ) ∈ Θ × Φ. For 

instance, in Normal linear regression this means minimizing the expected quadratic error 

E((yn − Xnθ)′(yn − Xnθ)) with respect to f*(yn) (which may not be a linear model and 

include Xn when it is random). Under regular models with fixed P (Mk) and p, if π(θk | Mk) 

is a LP and Mt ⊂ Mk then P(Mk |yn) = Op(n
− 1

2(pk − pt)) (Dawid, 1999). Models with spurious 

parameters are hence regularized at a slow polynomial rate, which we shall see implies E(θi | 

yn) = Op(n−1)r (Section 2), where r depends on model prior probabilities. Any LP can be 

transformed into a NLP to achieve faster shrinkage, e.g. E(θi | yn) = Op(n−2)r (pMOM) or 

E(θi |yn) = Op(e− n)r (peMOM, piMOM). We note that another strategy is to shrink via r, e.g. 

Castillo and Van der Vaart (2012) and Castillo et al. (2014) show that P (Mk) decreasing fast 

enough with pk achieve good posterior concentration. Martin and Walker (2013) propose a 

related empirical Bayes strategy. Yet another option is to consider the single model MK and 

specify absolutely continuous shrinkage priors that induce posterior concentration 

(Bhattacharya et al., 2012). For a related review on penalized-likelihood strategies see Fan 

and Lv (2010).

In contrast our strategy is based upon faster mk(yn) rates, a data-dependent quantity. For 

Normal linear models with bounded P (Mk)/P (Mt) Johnson and Rossell (2012) and Shin et 

al. (2015) showed that when p = O(nα) or p = O(enα
) (respectively) with α < 1 and certain 

regularity conditions pertain one obtains P(Mt |yn) P 1 when using certain NLPs and to 0 

when using any LP, which from (4) implies the strong oracle property E(θ |yn) P
E(θ |yn, Mt). 

We note that when sparse unbounded P (Mk)/P (Mt) are used, consistency of P (Mt | yn) may 

still be achieved with LPs, e.g. setting prior inclusion probabilities O(pK
−γ) for γ > 0 as in 

Liang et al. (2013) or Narisetty and He (2014).

Our main contribution is considering parameter estimation under NLPs, as previous work 

focused on model selection. We characterize complexity penalties and BMA shrinkage for 

certain linear and asymptotically Normal models (Section 2). We also provide a fully general 

NLP representation from latent truncations (Section 3) that justifies NLPs intuitively and 

adds flexibility in prior choice. Suppose we wish to both estimate θ ∈ ℝ and test M1 : θ = 0 

vs. M2 : θ ≠ 0. Figure 1 (grey) shows a Cauchy(0, 0.25) prior expressing confidence that θ is 

close to 0, e.g. P (|θ| > 0.25) = 0.5. Under this prior P (θ = 0 | yn) = 0 and hence there is no 

BMA shrinkage. Instead we set P (θ = 0) = 0.5 and, conditional on θ ≠ 0, a Cauchy(0,0.25) 

truncated to exclude (−λ, λ), where λ is a practical significance threshold (Figure 1(top)). 

Truncated priors have been discussed before, e.g. Verdinelli and Wasserman (1996), 

Rousseau (2007). They encourage coherence between estimation and testing, but they cannot 

detect small but non-zero coefficients. Suppose that we set λ ~ G(2.5, 10) to express our 

uncertainty about λ. Figure 1 (bottom) shows the marginal prior on θ after integrating out λ. 

It is a smooth version of the truncated Cauchy that goes to 0 as θ → 0, i.e. a NLP. Section 4 

exploits this construction for posterior sampling. Finally, Section 5 studies finite-sample 

performance in simulations and gene expression data, in particular finding that BMA 

achieves lower quadratic error than the posterior modes used in Johnson and Rossell (2012).
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2. Data-dependent shrinkage

We now show that NLPs induce a strong data-dependent shrinkage. To see why, note that 

any NLP can be written as π(θk, ϕk | Mk) ∝ dk(θk, ϕk)πL(θk, ϕk | Mk), where dk(θk, ϕk) → 0 

as θk → θ0 for any θ0 ∈ Θk′ ⊂ Θk and πL(θk, ϕk) is LP. NLPs are often expressed in this 

form but the representation is always possible since 

π(θk, ϕk | Mk) =
π(θk, ϕk | Mk)

πL(θk, ϕk | Mk)
πL(θk, ϕk | Mk) = dk(θk, ϕk)πL(θk, ϕk | Mk). Intuitively, dk(θk, ϕk) 

adds a penalty term that improves both selection and shrinkage via (4). The theorems below 

make the intuition rigorous. Proposition 1 shows that NLPs modify the marginal likelihood 

by a data-dependent term that converges to 0 for certain models containing spurious 

parameters. The result does not provide precise rates, but shows that under very general 

situations NLPs improve Bayesian regularization. Proposition 2 gives rates for posterior 

means and modes under a given Mk for finite p asymptotically Normal models and growing 

p linear models, whereas gives Proposition 3 Bayes factor and BMA rates.

We first discuss the needed regularity assumptions. Throughout we assume that π(θk, ϕk | 

Mk) is proper, π(ϕk | Mk) is continuous and bounded for all ϕk ∈ Φ, denote by mk(yn) the 

integrated likelihood under π(θk | ϕk, Mk) = dk(θk, ϕk)πL(θk, ϕk) and by 

mk
L(yn) = ∬ f k(yn |θk, ϕk)πL(θk, ϕk | Mk)dθkdϕk that under the corresponding LP. Assumptions 

A1–A5, B1–B4 are from Walker (1969) (W69, Supplementary Section 1) and guarantee 

asymptotic MLE normality and validity of second order log-likelihood expansions, e.g. 
including generalized linear models with finite p. A second set of assumptions for finite p 
models follows.

Conditions on finite-dimensional models

C1 Let A ⊂ Θk × Φ be such that f k(yn |θk
∗, ϕk

∗) for any (θk
∗, ϕk

∗) ∈ A minimizes KL to 

f*(yn). For any (θ∼k, ϕ
∼

k) ∉ A as n → ∞

f k(yn |θk
∗, ϕk

∗)

f k(yn |θ∼k, ϕ
∼

k)
a . s . ∞ .

C2 Let πk, τ
L (θk, ϕk) = N(0; τϕkI). The ratio of marginal likelihoods 

mk, τ(1 + ε)
L (yn)/mk, τ

L (yn) a . s .
c ∈ (0, ∞) as n → ∞, ε ∈ (0, 1).

C3 Let (θ*, ϕ*) minimize KL(f*(yn), fK(θ, ϕ) for (θ, ϕ) ∈ (Θ, Φ). There is a unique 

Mt with smallest pt such that f t(yn |θt
∗, ϕt

∗) = f K(yn |θ∗, ϕ∗) and 

KL( f t(yn |θt
∗, ϕt

∗), f k(yn |θk, ϕk)) > 0, for any k such that Mk ⊄ Mt.

C4 In C3 ϕ* is fixed and θi
∗ = θ0i

∗ an for fixed θ0i
∗  where either an = 1 or lim

n ∞
an = 0

with an ≫ n−1/2 (pMOM) or an ≫ n−1/4 (peMOM, piMOM).
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C1 essentially gives MLE consistency and C2 a boundedness condition that guarantees 

P(θk ∈ N(A) |yn . Mk) P 1 under a pMOM for a certain neighbourhood N(A) of the KL-

optimal parameter values, the key to ensure that dk(θk, ϕk) acts as a penalty term. Redner 

(1981) gives general conditions for C1 that include even certain non-identifiable models. C2 

is equivalent to the ratio of posterior densities under τ and τ(1 + ε) at an arbitrary (θk, ϕk) 

and converging to a constant, which holds under W69 or Conditions D1–D2 below (see 

proof of Proposition 1 for details). C3 assumes a unique smallest model f t(yn |θt
∗, ϕt

∗)

minimizing KL to f*(yn) and that there is no equivalent model Mk ⊅ Mt, e.g. for linear 

models no Mk ⊅ Mt can have pk = pt variables being perfectly collinear with Xt,n. C4 allows 

θ* to be either fixed or to vanishes at rates slower than n−1/2 (pMOM) or n−1/4 (peMOM, 

piMOM), to characterize the ability to estimate small signals. Finally, for linear models we 

consider the following.

Conditions on linear models of growing dimension

D1 Suppose fk(yn | θk, ϕk) = N(yn; Xk,nθk, ϕkI), θk ∈ Θk, pk = dim(θk) = O(nα) and 

α < 1.

D2 There are fixed a, b, n0 > 0 such that a < 1
n l1 Xk, n′ Xk, n < 1

n lk Xk, n′ Xk, n < b for all 

n > n0, where l1, lk are the smallest and largest eigenvalues of Xk, n′ Xk, n.

D1 reflects the common practice that although p ≫ n one does not consider models with pk 

≥ n, which lead to data interpolation. D2 guarantees strong MLE consistency (Lai et al., 

1979) and implies that no considered model has perfectly collinear covariates, aligning with 

applied practice. For further discussion on eigenvalues see Chen and Chen (2008) and 

Narisetty and He (2014). We now state our first result. All proofs are in the Supplementary 

Material.

Proposition 1—Let mk(yn), mk
L(yn) be as above.

i. We have: mk(yn) = mk
L(yn)gk(yn), where

gk(yn) = ∬ dk(θk, ϕk)πL(θk, ϕk |yn)dθkdϕk

ii. Assume fk(yn | θk, ϕk) with finite pk satisfies C1 under a peMOM or piMOM 

prior or C2 under a pMOM prior for some A. If A = (θk
∗, ϕk

∗)  is a singleton 

(identifiable models), then gk(yn) P
dk(θk

∗, ϕk
∗). For any A, if

f ∗(yn) = f t(yn |θt
∗, ϕt

∗)

for some t ∈ {1, …, K}, then gk(yn) P 0 when Mt ⊂ Mk, k ≠ t and
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gk(yn) P
c > 0

when Mk ⊆ Mt.

iii. Let fk(yn | θk, ϕk) = N(yn; Xn,kθk, ϕkI), with growing pk, satisfy D1–D2. Let 

(θk
∗, ϕk

∗) minimize KL to f*(yn) with Var(yn − Xk, nθk
∗) = ϕk

∗ < ∞ and π(ϕk
∗ | Mk) > 0. 

Then gk(yn) P
dk(θk

∗, ϕk
∗) and dk(mk, n, ϕk

∗) a . s .
dk(θk

∗, ϕk
∗), where mk, n = Sk, n

−1 Xk, n′ yn, 

Sk, n = Xk, n′ Xk, n + τ−1I. Further, if f ∗(yn) = N(yn; Xt, nθt
∗, ϕt

∗) then gk(yn) P
c with c 

= 0 when either Mt ⊂ Mk or Mt ⊄ Mk but a column in (Xk, n′ , Xk, n)−1Xk, n′ Xt, n

converges to zero. Else, c > 0.

That is, even when the data-generating f*(yn) does not belong to the set of considered 

models, gk(yn) converges to 0 for certain Mk containing spurious parameters, e.g. for linear 

models when either Mt ⊂ Mk or Mt ⊄ Mk but some columns in Xk,n are uncorrelated with 

Xt,n given Xk,n ∩ Xt,n. Propositions 2–3 give rates for the case when f ∗(yn) = f t(yn |θt
∗, ϕt

∗).

Proposition 2—Let (θk, ϕk) be the unique MLE and f k(yn |θk
∗, ϕk

∗) minimize KL to the data-

generating f t(yn |θt
∗, ϕt

∗) for (θk
∗, ϕk

∗) ∈ Θk × Φ. Assume C3–C4 are satisfied.

i. Let fk(y | θk, ϕk) with fixed pk satisfy W69 and θ
∼

k be the posterior mode, with 

sign(θ∼ki) = sign(θki) for i = 1, …, pk under a pMOM, peMOM or piMOM prior. If 

θki
∗ ≠ 0 is fixed then n(θ∼ki − θki)

P
c for some 0 < c < ∞. If θki

∗ = θ0i
∗ an ≠ 0 with an 

→ 0 as in C4 then θ
∼

i − θki = Op(1/nan)) for pMOM and θ
∼

i − θki = Op(1/nan
3)) for 

peMOM, piMOM. If θki
∗ = 0 then n2(θ∼ki − θki)

2 P
c for pMOM and nθ

∼
ki
4 P

c for 

peMOM, piMOM with 0 < c < ∞. Further, any other posterior mode is Op(n−1/2) 

(pMOM) or Op(n−1/4) (peMOM, piMOM).

ii. Under the conditions in (i) E(θki | Mk, yn) = θki + Op(n−1/2) = θki
∗ + Op(n−1/2) for 

pMOM and θki + Op(n−1/4) = θki
∗ + Op(n−1/4) for peMOM/piMOM.

iii. Let fk(yn | θk, ϕk) = N(yn; Xn,kθk, ϕkI) satisfy D1–D2 with diagonal Xn, k′ Xn, k. 

Then the rates in (i)–(ii) remain valid.

We note that given that there is a prior mode in each of the 2pk quadrants (combination of 

signs of θki) there always exists a posterior mode θ
∼

k satisfying the sign conditions in (i). 

Further, for elliptical log-likelihoods given that the pMOM, peMOM and piMOM priors 

have independent symmetric components the global posterior mode is guaranteed to occur in 

the same quadrant as θk. Part (i) first characterizes the behaviour of this dominant mode and 

subsequently the behaviour of all other modes. Conditional on Mk, spurious parameter 
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estimates converge to 0 at n−1/2 (pMOM) or n−1/4 (peMOM,piMOM). Vanishing θi
∗ ≠ 0 are 

captured as long as θi
∗ ≫ n−1/2 (pMOM) or θi

∗ ≫ n−1/4 (peMOM, piMOM). This holds for 

fixed pk or linear models with growing pk and diagonal Xn, k′ Xn, k. We leave further 

extensions as future work.

Proposition 3 shows that weighting these estimates with P (Mk | yn) gives a strong selective 

shrinkage. We denote SSR0 = ∑
θi
∗ = 0

(E(θi |yn) − θi
∗)2, SSR1 = ∑

θi
∗ ≠ 0

(E(θi |yn) − θi
∗)2, 

p0 = ∑i = 1
p I(θi

∗ = 0), p1 = p − p0 and let E
θ∗(SSR0) = ∫ SSR0 f (yn |θ∗, ϕ∗)dyn be the mean 

under the data-generating f(yn | θ*, ϕ*).

Proposition 3—Let E(θi | yn) be as in (4), Mt the data-generating model, BFkt = mk(y)/

mt(y) and an as in C4. Assume that P (Mk)/P(Mt) = o(n(pk−pt)) for Mt ⊂ Mk.

i. Let all Mk satisfy W69, C3 and p be fixed. If Mt ⊄ Mk, then BFkt = Op(e−n) 

under a pMOM, peMOM or piMOM prior if θti
∗ ≠ 0 are fixed and 

BFkt = Op(e
−an

2n
) if θti

∗ = θ0i
∗ an. If Mt ⊂ Mk then BFkt = Op(n

− 3
2(pk − pt)) under a 

pMOM prior and BFkt = Op(e− n) under peMOM or piMOM.

ii. Under the conditions in (i) let an be as in C4 and r = maxkP(Mk)/P(Mt) where pk 

= pt + 1, Mt ⊂ Mk. Then the posterior means and sums of squared errors satisfy

pMOM peMOM-piMOM

E(θi | yn) SSR E(θi | yn) SSR

θi
∗ ≠ 0 θi

∗ + Op(n−1/2)
Op(p1n−1)

θi
∗ + Op(n−1/2)

Op(p1n−1)

θi
∗ = θ0i

∗ an θi
∗ + Op(n−1/2)

Op(p1n−1)
θi
∗ + Op(n−1/4)

Op(p1n−1/2)

θi
∗ = 0

rOp(n−2) Op(p0r2n−4)
rOp(e− n) Op(p0r2e− n)

iii. Let yn ~ N(Xn,kθk, ϕkI) satisfy D1–D2 with diagonal Xn′ Xn and known ϕ. Let ε, 

ε∼ > 0 be arbitrarily small constants and assume that P (θ1 ≠ 0, …, θp ≠ 0) is 

exchangeable with r = P (δi = 1)/P (δi = 0). Then
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pMOM peMOM-piMOM

E(θi | yn, ϕ)
E

θ∗(SSR) E(θi | yn, ϕ)
E

θ∗(SSR)

θi
∗ ≠ 0 θi

∗ + Op(n−1/2)
O(p1/n1−ε)

θi
∗ + Op(n−1/2)

Op(p1/n1−ε)

θi
∗ = θ0i

∗ an θi
∗ + Op(n−1/2)

O(p1/n1−ε)
θi
∗ + Op(n−1/4)

O(p1/n
1
2 − ε

)

θi
∗ = 0

rOp(n−2) Op(p0r2/n4−ε)
rOp(e− n) O(p0r2e−n1/2 − ε

)

where the results for θi
∗ ≠ 0 and θi

∗ = θ0i
∗ an hold as long as r ≫ e−nε∼

 and the result 

for θi
∗ = 0 holds for any r.

BMA estimates for active coefficients are Op(1/ n) of their true value (Op(n−1/4) for 

vanishing θi
∗ under peMOM or piMOM), but inactive coefficients estimates are shrunk at 

rOp(n−2) or rOp(e− n) (to be compared with rOp(n−1) under the corresponding LPs) where r 

are the prior inclusion odds. The condition P(Mk)/P(Mt) = o(npk − pt) for Mt ⊂ Mk ensures 

that complex models are not favoured a priori (usually P (Mk)/P (Mt) = O(1)). The condition 

r ≫ e−nε∼
 in Part (iii) prevents the prior from favouring overly sparse solutions. For instance, 

a Beta-Binomial(1, l) prior on the model size gives r = 1/l, hence any fixed finite l satisfies 

r ≫ e−nε∼
. Suppose that we set l = p, then r ≫ e−nε∼

 is satisfied as long as p = O(enα
) for some 

α < 1.

3. Non-local priors as truncation mixtures

We establish a correspondence between NLPs and truncation mixtures. Our discussion is 

conditional on Mk, hence for simplicity we omit ϕ and denote π(θ) = π(θ | Mk), p = 

dim(Θk).

3.1. Equivalence between NLPs and truncation mixtures

We show that truncation mixtures define valid NLPs, and subsequently that any NLP may be 

represented in this manner. Given that the representation is not unique, we give two 

constructions and discuss their merits. Let πL(θ) be an arbitrary LP and λ ∈ ℝ+ a latent 

truncation.

Proposition 4—Define π(θ | λ) ∝ πL(θ)I(d(θ) > λ), where lim
θ θ0

d(θ) = 0 for any θ0 ∈ Θk

′⊂ Θk, and πL (θ) is bounded in a neighborhood of θ0. Let π(λ) be a marginal prior for λ 
placing no probability mass at λ = 0. Then π(θ) = ∫π(θ | λ)π(λ)dλ defines a NLP.
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Corollary 5—Assume that d(θ) = ∏i = 1
p di(θi). Let π(θ |λ) ∝ πL(θ)∏i = 1

p I(di(θi) > λi) where 

λ = (λ1, …, λp)′ have an absolutely continuous prior π(λ). Then ∫π(θ | λ)π(λ)dλ is a 

NLP.

Example 1—Consider yn ~ N(Xθ, ϕI), where θ ∈ ℝp, ϕ is known and I is the n×n identity 

matrix. We define a NLP for θ with a single truncation point with 

π(θ | λ) ∝ N(θ; 0, τI)I(∏i = 1
p θi

2 > λ) and some π(λ), e.g. Gamma or Inverse Gamma. 

Obviously, the choice of π(λ) affects π(θ) (Section 3.2). An alternative prior is

π(θ | λ1, …, λp) ∝ N(θ; 0, τI) ∏
i = 1

p
I(θi

2 > λi),

giving marginal independence when π(λ1, …, λp) has independent components.

We address the reverse question: given any NLP, a truncation representation is always 

possible.

Proposition 6—Let π(θ) ∝ d(θ)πL(θ) be a NLP and denote h(λ) = Pu (d(θ) > λ), where 

Pu(·) is the probability under πL(θ). Then π(θ) is the marginal prior associated to π(θ | λ) ∝ 
πL(θ)I(d(θ) > λ) and π(λ) = h(λ)/Eu (d(θ)) ∝ h(λ), where Eu (·) is the expectation with 

respect to πL(θ).

Corollary 7—Let π(θ) ∝ πL(θ)∏i = 1
p di(θi) be a NLP,

h(λ) = Pu(d1(θ1) > λ1, …, dp(θp) > λp)

and assume that ∫h(λ)dλ < ∞. Then π(θ) is the marginal prior associated to 

π(θ |λ) ∝ πL(θ)∏i = 1
p I(θi > λi) and π(λ) ∝ h(λ).

Corollary 7 adds latent variables but greatly facilitates sampling. The condition ∫h(λ)dλ < 

∞ is guaranteed when πL(θ) has independent components (apply Proposition 6 to each θi).

Example 2—The pMOM prior with d(θ) = ∏i = 1
p θi

2, πL(θ) = N(θ, 0, τI) can be 

represented as π(θ | λ) ∝ N(θ; 0, τI)I(∏i = 1
p θi

2 > λ) and

π(λ) =
P(∏i = 1

p θi
2/τ > λ/τp)

Eu(∏i = 1
p θi

2)
= h(λ/τp)

τp ,

where h(·) is the survival function for a product of independent chi-square random variables 

with 1 degree of freedom (Springer and Thompson, 1970). Prior draws are obtained by
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1. Draw u ~ Unif(0, 1). Set λ = P −1(u), where P(u) = Pπ(λ ≤ u) is the cdf 

associated to π(λ).

2. Draw θ ~ N(0, τI)I(d(θ) > λ).

As drawbacks, P(u) requires Meijer G-functions and is cumbersome to evaluate for large p 

and sampling from a multivariate Normal with truncation region ∏i = 1
p θi

2 > λ is nontrivial. 

Corollary 7 gives an alternative. Let P (u) = P (λ < u) be the cdf associated to π(λ) = h(λ/τ)
τ

where h(·) is the survival of a χ1
2. For i = 1, …, p, draw ui ~ Unif(0, 1), set λi = P−1 (ui) and 

draw θi ~ N(0, τ)I(θi > |λi|). The function P−1(·) can be tabulated and quickly evaluated, 

rendering efficient computations. Supplementary Figure 1 shows 100,000 draws from 

pMOM priors with τ = 5.

3.2. Deriving NLP properties for a given mixture

We show how two important characteristics of a NLP functional form, the penalty and tails, 

depend on the chosen truncation. We distinguish whether a single or multiple truncation 

variables are used.

Proposition 8—Let π(θ) be the marginal of π(θ, λ) = πL(θ)
h(λ) π(λ)∏i = 1

p I(d(θi) > λ), where 

h(λ) = Pu(d(θ1) > λ, …, d(θp) > λ) and λ ∊ ℝ+ with P (λ = 0) = 0. Let dmin(θ) = 

min{d(θ1), …, d(θp)}.

i. Consider any sequence {θ(m)}m≥1 such that lim
m ∞

dmin(θ(m)) = 0 Then

lim
m ∞

π(θ(m))
πL(θ(m))dmin(θ(m))π(λ(m))

= 1,

for some λ(m) ∊ (0, dmin(θ(m)). If π(λ) = ch(λ) then lim
m ∞

π(λ(m)) = c ∈ (0, ∞).

ii. Let {θ(m)}m≥1 be any sequence such that lim
m ∞

d(θ(m)) = ∞. Then 

lim
m ∞

π(θ(m))/πL(θ(m)) = c, where c > 0 is either a positive constant or ∞. In 

particular, if ∫ π(λ)
h(λ) dλ < ∞ then c < ∞.

Property (i) is important as Bayes factor rates depend on the penalty, which we see is given 

by the smallest d(θ1), …, d(θp). Property (ii) shows that π(θ) inherits its tail behavior from 

πL(θ). Corollary 9 is an extension to multiple truncations.

Corollary 9—Let π(θ) be the marginal NLP for π(θ, λ) = πL(θ)
h(λ) ∏i = 1

p I(di(θi) > λi)πi(λi), 

where h(λ) = Pu (d1(θ1) > λ1,…,dp(θp) > λp) under πL(θ) and π(λ) is absolutely 

continuous.
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i. Let {θ(m)}m≥1 such that lim
m ∞

di(θi
(m)) = 0 for i = 1, …, p. Then for some 

λi
(m) ∈ (0, d(θi)), lim

m ∞
π(θ(m))/(πL(θ(m))π(λ(m))∏i = 1

p di(θi
(m))) = 1.

ii. Let {θ(m)}m≥1 such that lim
m ∞

di(θi
(m)) = ∞ for i = 1, …p. Then 

lim
m ∞

π(θ(m))/πL(θ(m)) = c > 0 where c ∈ ℝ+ ∪ {∞}. In particular, if E (h(λ)−1) < 

∞ under π(λ), then c < ∞.

That is, multiple independent truncation variables give a multiplicative penalty ∏i = 1
p di(θi)

and tails are at least as thick as those of πL(θ). Once a functional form for π(θ) is chosen, 

we need to set its parameters. Although the asymptotic rates (Section 2) hold for any fixed 

parameters, their value can be relevant in finite samples. Given that posterior inference 

depends solely on the marginal prior π(θ), whenever possible we recommend eliciting π(θ) 

directly. For instance, Johnson and Rossell (2010) defined practical significance in linear 

regression as signal-to-noise ratios |θi | / ϕ > 0.2, and gave default τ assigning 

P(|θi|/ ϕ > 0.2) = 0.99. Rossell et al. (2013) found analogous τ for probit regression, and also 

considered learning τ either via a hyper-prior or minimizing posterior predictive loss 

(Gelfand and Ghosh, 1998). Consonni and La Rocca (2010) devised objective Bayes 

strategies. Yet another possibility is to match the unit information prior e.g. setting 

V(θi/ ϕ) = 1 which can be regarded as minimally informative (in fact prior e.g. 

V(θi/ ϕ) = 1.074 for the MOM default τ = 0.358). When π(θ) is not in closed-form prior 

elicitation depends both on τ and π(λ), but prior draws can be used to estimate P(|θi|/ ϕ > t)

for any t. An analytical alternative is to set π(λ) so that E(λ) = d(θi, ϕ)when θi/ ϕ = t, i.e. 

E(λ) matches a practical relevance threshold. For instance, for t = 0.2 and π(λ) ~ IG(a, b) 

under the MOM prior we would set E(λ) = b/(a−1) = 0.22/τ, and under the eMOM prior 

b/(a − 1) = e 2 − τ /0.22
. Both expressions illustrate the dependence between τ and π (λ). 

Here we use default τ (Section 5), but as discussed other strategies are possible.

4. Posterior sampling

We use the latent truncation characterization to derive posterior sampling algorithms. 

Section 4.1 provides two Gibbs algorithms to sample from arbitrary posteriors, and Section 

4.2 adapts them to linear models. Sampling is conditional on a given Mk, hence we drop Mk 

to keep notation simple.

4.1. General algorithm

First consider a NLP defined by a single latent truncation, i.e. π(θ | λ) = πL(θ)I(d(θ) > λ)/h(λ), 
where h(λ) = Pu (d(θ) > λ) and π (λ) a prior on λ ∊ ℝ+. The joint posterior is
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π(θ, λ |yn) ∝ f (yn |θ)πL(θ)I(d(θ) > λ)
h(λ) π(λ) . (5)

Sampling from π(θ | yn) directly is challenging as it is highly multi-modal, but 

straightforward algebra gives the following kth Gibbs iteration to sample from π(θ, λ | yn).

Algorithm 1. Gibbs sampling with a single truncation

1. Draw λ(k) ~ π(λ | yn, θ(k−1)) ∝ I(d(θ) > λ)π(λ)/h(λ). When π(λ) ∝ h(λ) as in 

Proposition 6, λ(k) ~ Unif(0, d(θ(k−1))).

2. Draw θ(k) ~ π(θ | yn, λ(k)) ∝ πL(θ | yn)I(d(θ) > λ(k)).

That is, λ(k) is sampled from a univariate distribution that reduces to a uniform when setting 

π(λ) ∝ h(λ), and θ(k) from a truncated version of πL(), which may be a LP that allows 

posterior sampling. As a difficulty, the truncation region {θ : d(θ) > λ(k)} is non-linear and 

non-convex so that jointly sampling θ = (θ1, …, θp) may be challenging. One may apply a 

Gibbs step to each element in θ1, …, θp sequentially, which only requires univariate 

truncated draws from πL(·), but the mixing of the chain may suffer. The multiple truncation 

representation in Corollary 7 provides a convenient alternative. Consider 

π(θ |λ) = πL(θ)∏i = 1
p I(di(θi) > λi)π(λ)/h(λ), where h(λ) = Pu(d1(θ1) > λ1, … dp(θp) > λp). 

The following steps define the k Gibbs iteration:

Algorithm 2. Gibbs sampling with multiple truncations

1. Draw λ(k) π(λ |yn, θ(k − 1)) = ∏i = 1
p Unif(λi; 0, di(θi))

π(λ)
h(λ) . If π(λ) ∝ h(λ) as in 

Corollary 7, λi
(k) Unif(0, di(θi)).

2. Draw θ(k) π(θ |yn, λ(k)) ∝ πL(θ |yn)∏i = 1
p I(di(θi) > λi

(k)) .

Now the truncation region in Step 2 is defined by hyper-rectangles, which facilitates 

sampling. As in Algorithm 1, by setting the prior conveniently Step 1 avoids evaluating π(λ) 

and h(λ).

4.2. Linear models

We adapt Algorithm 2 to a linear regression yn ~ N(Xθ, ϕI) with the three priors in (1)-(3). 

We set the prior ϕ ~ IG(aϕ/2, bϕ/2). For all three priors, Step 2 in Algorithm 2 samples from 

a multivariate Normal with rectangular truncation around 0, for which we developed an 

efficient algorithm. Kotecha and Djuric (1999) and Rodriguez-Yam et al. (2004) proposed 

Gibbs after orthogonalization strategies that result in low serial correlation, which Wilhelm 

and Manjunath (2010) implemented in the R package tmvtnorm for restrictions l ≤ θi ≤ u. 

Here we require sampling under di(θi) ≥ l, a non-convex region. Our adapted algorithm is in 

Supplementary Section 3 and implemented in R package mombf. An important property is 

that the algorithm produces independent samples when the posterior probability of the 

truncation region becomes negligible. Since NLPs only assign high posterior probability to a 
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model when the posterior for non-zero coefficients is well shifted from the origin, the 

truncation region is indeed often negligible. We outline the algorithm separately for each 

prior.

4.2.1. pMOM prior—Straightforward algebra gives the full conditional posteriors

π(θ |ϕ, yn) ∝ ∏
i = 1

p
θi

2 N(θ; m, ϕS−1)

π(ϕ |θ, yn) = IG
aϕ + n + 3p

2 ,
bϕ + sR

2 + θ′θ/τ
2 ,

(6)

where S = X′X + τ−1I, m = S−1X′yn and sR
2 = (yn − Xθ)′(yn − Xθ) is the sum of squared 

residuals. Corollary 7 represents the pMOM prior in (1) as

π(θ |ϕ, λ) = N(θ; 0, τϕI) ∏
i = 1

p
I

θi
2

τϕ > λi
1

h(λi)
(7)

marginalized with respect to π(λi) = h(λi) = P
θi
2

τϕ > λi |ϕ , where h(·) is the survival of a chi-

square with 1 degree of freedom. Algorithm 2 and simple algebra give the kth Gibbs iteration

1.
ϕ(k) IG

aϕ + n + 3p

2 ,
bϕ + sR

2 + (θ(k − 1))′θ(k − 1)/τ
2

2.
λ(k) π(λ |θ(k − 1), ϕ(k), yn) = ∏i = 1

p I
(θi

(k − 1))2

τϕ(k) > λi

3.
θ(k) π(θ |λ(k), ϕ(k), yn) = N(θ; m, ϕ(k)S−1)∏i = 1

p I
θi

2

τϕ(k) > λi .

Step 1 samples unconditionally on λ, so that no efficiency is lost for introducing these latent 

variables. Step 3 requires truncated multivariate Normal draws.

4.2.2. piMOM prior—We assume dim(Θ) < n. The full conditional posteriors are
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π θ |ϕ, yn ∝ ∏
i = 1

p τϕ
θi

2 e

− τϕ

θi
2

N θ; m, ϕS−1

π ϕ |θ, yn = e
−τϕ∑i = 1

p θi
−2

IG ϕ;
aϕ + n − p

2 ,
bϕ + sR

2

2 ,

(8)

where S = X′X, m = S−1X′yn and sR
2 = yn − Xθ ′ yn − Xθ . Now, the piMOM prior is πI(θ | 

ϕ) =

N θ; 0; τNϕI ∏
i = 1

p
τϕ

πθi
2e

− ϕτ

θi
2

N θi; 0, τNϕ
= N θ; 0; τNϕI ∏

i = 1

p
di θi, ϕ . (9)

In principle any τN may be used, but τN ≥ 2τ guarantees d(θi, ϕ) to be monotone increasing 

in θi
2, so that its inverse exists (Supplementary Section 4). By default we set τN = 2τ. 

Corollary 7 gives

π θ |ϕ, λ = N θ; 0, τNϕI ∏
i = 1

p
I d θi, ϕ > λi

1
h λi

(10)

and π λ = ∏i = 1
p h λi , where h(λi) = P(d(θi, ϕ) > λi) which we need not evaluate. 

Algorithm 2 gives the following MH within Gibbs procedure.

1. MH step

a.
Propose ϕ∗ ∼ IG ϕ;

aϕ + n − p

2 ,
bϕ + sR

2

2

b.
Set ϕ(k) = ϕ* with probability min 1, e

ϕ k − 1 − ϕ∗ τ∑i = 1
p θi

−2
, else 

ϕ(k) = ϕ(k−1).

2. λ k ∏i = 1
p Unif λi; 0, d θi

k − 1 , ϕ k

3. θ k N θ; m, ϕ k S−1 ∏i = 1
p I d θi, ϕ k > λi

k .

Step 3 requires the inverse d−1(·), which can be evaluated efficiently combining an 

asymptotic approximation with a linear interpolation search (Supplementary Section 4). As a 
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token, 10,000 draws for p = 2 variables required 0.58 seconds on a 2.8 GHz processor 

running OS X 10.6.8.

4.2.3. peMOM prior—The full conditional posteriors are

π θ |ϕ, yn ∝ ∏
i = 1

p
e

− τϕ

θi
2

N θ; m, ϕS−1 ; π ϕ |θ, yn ∝ e

−∑i = 1
p τϕ

θi
2

IG ϕ; a∗

2 , b∗

2 , (11)

where S = X′X + τ−1I, m = S−1X′yn, a* = aϕ + n + p, b∗ = bϕ + sR
2 + θ′θ/τ. Corollary 7 gives

π θ |ϕ, λ = N θ; 0, τϕI ∏
i = 1

p
I e

2 − τϕ

θi
2

> λi
1

h λi
(12)

and π λi = h(λi) = P e

2 − τϕ

θi
2

> λi |ϕ . Again h(λi) has no simple form but is not required by 

Algorithm 2, which gives the kth Gibbs iteration

1.

ϕ(k) e

−∑i = 1
p τϕ

θi
2

IG ϕ; a∗
2 , b∗

2

a.
Propose ϕ∗ IG ϕ; a∗

2 , b∗
2

b.
Set ϕ(k) = ϕ* with probability min 1, e

(ϕ(k − 1) − ϕ∗)τ∑i = 1
p (θi

(k − 1))−2
, 

else ϕ(k) = ϕ(k−1).

2.
λ(k)∏i = 1

p Unif λi; 0, e
2 − τϕ/(θi

(k − 1))2

3.
θ(k) N(θ; m, ϕ(k)S−1)∏i = 1

p I θi
2 > | ϕτ

log(λi
(k)) − 2

|

5. Examples

We assess our posterior sampling algorithms and the use of NLPs for high-dimensional 

estimation. Section 5.1 shows a simple yet illustrative multi-modal example. Section 5.2 

studies p ≥ n cases and compares the BMA estimators induced by NLPs with benchmark 
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priors (BP, Fernández et al. (2001)), hyper-g priors (HG, Liang et al. (2008)), SCAD (Fan 

and Li, 2001), LASSO (Tibshirani, 1996) and Adaptive LASSO (ALASSO, Zhou (2006)). 

For NLPs and BP we used R package mombf 1.6.0 with default prior dispersions τ = 0.358, 

0.133, 0.119 for pMOM, piMOM and peMOM (respectively), which assign 0.01 prior 

probability to |θi/ ϕ | < 0.2 (Johnson and Rossell, 2010), and ϕ ~ IG(0.01/2, 0.01/2). The 

model search and posterior sampling algorithms are described in Supplementary Section 5. 

Briefly, we performed 5,000 Gibbs iterations to sample from P(Mk|yn) and subsequently 

sampled θk given Mk, yn as outlined in Section 4.2. For HG we used R package BMS 0.3.3 

with default alpha=3 and 105 MCMC iterations in Section 5.2, for the larger example in 

Section 5.3 we used package BAS with 3 × 106 iterations as it provided higher accuracy at 

lower running times. For LASSO, ALASSO and SCAD we set the penalization parameter 

with 10-fold cross-validation using functions mylars and ncvreg in R packages parcor 0.2.6 

and ncvreg 3.2.0 (respectively) with default parameters. The R code is in the supplementary 

material. For all Bayesian methods we set a Beta-Binomial(1,1) prior on the model space. 

This is an interesting sparsity-inducing prior, e.g. for Mk with pk = pt + 1 it assigns 

P(Mk)/P(Mt) = 1/(p − pt). From Proposition 3 if p > n this penalty more than doubles the 

shrinkage of E(θi|yn) under LPs, i.e. they should perform closer to NLPs. Also note that BP 

sets θk|ϕk, Mk N(0; gϕXk, n′ Xk, n) with g = max{n, p2}, which in our p ≥ n simulations induces 

extra sparsity and thus shrinkage. We assess the relative merits of each method without any 

covariate pre-screening procedures.

5.1. Posterior samples for a given model

We simulated n = 1, 000 realizations from yi ~ N(θ1x1i + θ2x2i, 1), where (x1i, x2i) are 

drawn from a bivariate Normal with E(x1i) = E(x2i) = 0, V(x1i) = V(x2i) = 2, Cov(x1i, x2i) = 

1. We first consider θ1 = 0.5, θ2 = 1, and compute posterior probabilities for the four 

possible models. We assign equal a priori probabilities and obtain exact mk(yn) using 

pmomMarginalU, pimomMarginalU and pemomMarginalU in mombf (the former has 

closed-form, for the latter two we used 106 importance samples). The posterior probability 

assigned to the full model under all three priors is 1 (up to rounding) (Supplementary Table 

1). Figure 2 (left) shows 900 Gibbs draws (100 burn-in) obtained under the full model. The 

posterior mass is well-shifted away from 0 and resembles an elliptical shape for the three 

priors. Supplementary Table 2 gives the first-order auto-correlations, which are very small. 

This example reflects the advantages of the orthogonalization strategy, which is particularly 

efficient as the latent truncation becomes negligible.

We now set θ1 = 0, θ2 = 1 and keep n = 1000 and (x1i, x2i) as before. We simulated several 

data sets and in most cases did not observe a noticeable posterior multi-modality. We portray 

a specific simulation that did exhibit multi-modality, as this poses a greater challenge from a 

sampling perspective. Table 1 shows that the data-generating model has highest posterior 

probability. Although the full model was clearly dismissed in light of the data, as an exercise 

we drew from its posterior. Figure 2 (right) shows 900 Gibbs draws after a 100 burn-in, and 

Supplementary Table 2 shows a low auto-correlation. The samples adequately captured the 

multiple modes.

ROSSELL and TELESCA Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2018 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.2. High-dimensional estimation

5.2.1. Growing p, fixed n and θ—We perform a simulation study with n = 100 and 

growing p = 100, 500, 1000. We set θi = 0 for i = 1, …, p − 5, the remaining 5 coefficients to 

(0.6, 1.2, 1.8, 2.4, 3) and residual variances ϕ = 1, 4, 8. Covariates were sampled from x ~ 

N(0, Σ), where Σii = 1 and all correlations set to ρ = 0 or ρ = 0.25. We remark that ρ are 

population correlations, the maximum sample correlations when ρ = 0 were 0.37, 0.44, 0.47 

for p = 100, 500, 1000 (respectively), and 0.54, 0.60, 0.62 when ρ = 0.25. We simulated 

1,000 data sets under each setup.

Figure 3 shows sum of squared errors (SSE) averaged across simulations for ϕ = 1, 4, 8, ρ = 

0, 0.25. pMOM and piMOM perform similarly and present a lower SSE as p grows than 

other methods in all scenarios. To obtain more insight on how the lower SSE is achieved, 

Supplementary Figures 2–3 show SSE separately for θi = 0 (left) and θi ≠ 0 (right). The 

largest differences between methods were observed for θi = 0, the performance of pMOM 

and piMOM coming closer for smaller signal-to-noise ratios |θi | / ϕi. For θi ≠ 0 differences 

in SSE are smaller, iMOM slightly outperforming MOM. For all methods as |θi | / ϕi

decrease the SSE worsens relative to the oracle least squares (Supplementary Figures 2–3, 

right panels, black horizontal segments).

5.2.2. Growing p, θ = O(n−1/4)—We extend the simulations by considering p = 100, 500, 

1000 and ρ = 0, 0.25 as before in a setting with vanishing θ = O(n−1/4). Specifically, we set n 
= 100, 250, 500 for p = 100, 500, 1000 (respectively), θi = 0 for i = 1, …, p − 5 as before 

and the remaining 5 coefficients to n−1/4(0.6, 1.2, 1.8, 2.4, 3) and ϕ = 1. The goal is to 

investigate if NLP shrinkage rate comes at a cost of reduced precision when the coefficients 

are truly small. Note that n−1/4 is only slightly larger than the n−1/2 error of the MLE, and 

hence represents fairly small coefficients.

Figure 4 shows the total SSE and Supplementary Figure 4 that for zero (left) and non-zero 

(right) coefficients. MOM and iMOM present the lowest overall SSE in most situations but 

HG and ALASSO achieve similar performance, certainly closer than the earlier sparser 

scenario with fixed θ, n = 100 and growing p.

Because NLPs assign high prior density to a certain range of |θi | / ϕ values, we conducted a 

further study when θ contains an ample range of non-zero coefficients (i.e. both large and 

small). To this end, we set n = 100, 250, 500 for p = 100, 500, 1000 with ϕ = 1 as before, θi 

= 0 for i = 1, …, p − 11, vanishing (θp−10, …, θp−6) = n−1/4 (0.6, 1.2, 1.8, 2.4, 3) and fixed 

(θp−5, …, θp) = (0.6, 1.2, 1.8, 2.4, 3). Figure 5 shows the overall MSE and Supplementary 

Figure 5 that for θi = 0 and θi ≠ 0 separately. The lowest overall MSE is achieved by iMOM 

and MOM, followed by HG and BP, whereas ALASSO is less competitive than in the earlier 

simulations where all θi = O(n−1/4). Overall, these results support that NLPs remain 

competitive even with small signals and that their performance relative to competing 

methods is best in sparse situations, agreeing with our theoretical findings.
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5.3. Gene expression data

We assess predictive performance in high-dimensional gene expression data. (Calon et al., 

2012) used mice experiments to identify 172 genes potentially related to the gene TGFB, 

and showed that these were related to colon cancer progression in an independent data set 

with n = 262 human patients. TGFB plays a crucial role in colon cancer and it is important 

to understand its relation to other genes. Our goal is to predict TGFB in the human data, first 

using only the p = 172 genes and then adding 10,000 extra genes that we selected randomly 

from the 18,178 genes with distinct Entrez identifier contained in the experiment. Their 

absolute Pearson correlations with the 172 genes ranged from 0 to 0.892 with 95% of them 

being in (0.003,0.309). Both response and predictors were standardized to zero mean and 

unit variance (data and R code in Supplementary Material). We assessed predictive 

performance via the leave-one-out cross-validated R2 coefficient between predictions and 

observations. For Bayesian methods we report the posterior expected number of variables in 

the model (i.e. the mean number of predictors used by BMA), and for SCAD and LASSO 

the number of selected variables.

Table 1 shows the results. For p = 172 all methods achieve similar R2, that for LASSO being 

slightly higher, although pMOM, piMOM and BP used substantially less predictors. These 

results appear reasonable in a moderately dimensional setting where genes are expected to 

be related to TGFB. However, when using p = 10, 172 predictors important differences 

between methods are observed. The BMA estimates based on pMOM and piMOM remain 

parsimonious (6.5 and 10.3 predictors, respectively) and the cross-validated R2 increases 

roughly to 0.62. The BP prior dispersion parameter g = 1722 induces strong parsimony, 

though relative to NLPs the non-selectiveness of this penalty causes some loss of prediction 

power (R2 = 0.586). For the remaining methods the number of predictors increased sharply 

and R2 did not improve relative to the p = 172 case. Predictors with large marginal inclusion 

probabilities in pMOM/piMOM included genes related to various cancer types (ESM1, 

GAS1, HIC1, CILP, ARL4C, PCGF2), TGFB regulators (FAM89B) or AOC3 which is used 

to alleviate certain cancer symptoms. These findings suggest that NLPs effectively detected 

a parsimonious subset of predictors in this high-dimensional example. We also note that 

computation times were highly competitive. BP and NLPs are programmed in mombf in an 

identical manner (piMOM has no closed-form expressions, hence the higher time) whereas 

HG is implemented in BAS with a slightly more advanced MCMC model search algorithm 

(e.g. pre-ranking variables and considering swaps). NLPs focus P (Mk | yn) on smaller 

models, which alleviates the cost required by matrix inversions (non-linear in the model 

size). NLPs also concentrate P (Mk | yn) on a smaller subset of models, which tend to be 

revisited and hence the marginal likelihood need not be recomputed. Regarding the 

efficiency of our posterior sampler for (θ, ϕ), we ran 10 independent chains with 1,000 

iterations each and obtained mean serial correlations of 0.32 (pMOM) and 0.26 (piMOM) 

across all non-zero coefficients. The mean correlation between Ê(θ | yn) across all chain 

pairs was > 0.99 (pMOM and piMOM). Supplementary Section 5 contains further 

convergence assessments.
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6. Discussion

We showed how combining BMA with NLPs gives a coherent joint framework encouraging 

model selection parsimony and selective shrinkage for spurious coefficients. Beyond theory, 

the latent truncation construction motivates NLPs from first principles, adds flexibility in 

prior choice and enables effective posterior sampling even under strong multi-modalities. We 

obtained strong results when p ≫ n in simulations and gene expression data, with 

parsimonious models achieving accurate cross-validated predictions and good computation 

times. Note that these did not require procedures to pre-screen covariates, which can cause a 

loss of detection power. Interestingly, NLPs achieved low estimation error even in settings 

with vanishing coefficients: their slightly higher SSE for active coefficients was 

compensated by a lower SSE for inactive coefficients. That is, NLPs can be advantageous 

even with sparse vanishing θ, although of course they may be less competitive in non-sparse 

situations. An important point is that inducing sparsity via P (Mk) (e.g. Beta-Binomial) or 

vague π(θk | Mk) (e.g. the BP) also performed reasonably well, although relative to the NLP 

data-adaptive sparsity there can be a loss of detection power.

Our results show that it is not only possible to use the same prior for estimation and 

selection, but may indeed be desirable. We remark that we used default informative priors, 

which are relatively popular for testing, but perhaps less readily adopted for estimation. 

Developing objective Bayes strategies to set the prior parameters is an interesting venue for 

future research, as well as determining shrinkage rates in more general p ≫ n cases, and 

adapting the latent truncation construction beyond linear regression, e.g. generalized linear, 

graphical or mixture models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Marginal priors for θ ∈ ℝ (estimation prior Cauchy(0, 0.0625) shown in grey). Top: mixture 

of point mass at 0 and Cauchy(0, 0.0625) truncated at λ = 0.25; Bottom: same as top with λ 
~ IG(3, 10)
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Figure 2. 
900 Gibbs draws when θ = (0.5, 1)′ (left) and θ = (0, 1)′ (right) and posterior density 

contours. Top: MOM (τ = 0.358); Middle: iMOM (τ = 0.133); Bottom: eMOM (τ = 0.119)

ROSSELL and TELESCA Page 22

J Am Stat Assoc. Author manuscript; available in PMC 2018 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Mean SSE when ϕ = 1, 4, 8 (top, middle, bottom), ρ = 0, 0.25 (left, right). Simulation 

settings: n = 100, p = 100, 500, 1000 and 5 non-zero coefficients 0.6, 1.2, 1.8, 2.4, 3.0.
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Figure 4. 
Mean SSE when non-zero θ = n−1/4 (0.6, 1.2, 1.8, 2.4, 3.0), ρ = 0, 0.25 (left, right), ϕ = 1. 

Simulation settings: (n = 100, p = 100), (n = 250, p = 500), (n = 500, p = 1000)
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Figure 5. 
Mean SSE when non-zero (θp−10, …, θp−6) = n−1/4(0.6, 1.2, 1.8, 2.4, 3), (θp−5, …, θp) = 

(0.6, 1.2, 1.8.2.4, 3) and ρ = 0, 0.25 (left, right), ϕ = 1. Simulation settings: (n = 100, p = 

100), (n = 250, p = 500), (n = 500, p = 1000)
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