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ABSTRACT

The brain operates in a complex way. The temporal complexity underlying macroscopic and
spontaneous brain network activity is still to be understood. In this study, we explored the
brain’s complexity by combining functional connectivity, graph theory, and entropy analyses
in 25 healthy people using task-free functional magnetic resonance imaging. We calculated
the pairwise instantaneous phase synchrony between 8,192 brain nodes for a total of 200
time points. This resulted in graphs for which time series of clustering coefficients (the
“cliquiness” of a node) and participation coefficients (the between-module connectivity of a
node) were estimated. For these two network metrics, sample entropy was calculated. The
procedure produced a number of results: (1) Entropy is higher for the participation coefficient
than for the clustering coefficient. (2) The average clustering coefficient is negatively related
to its associated entropy, whereas the average participation coefficient is positively related to
its associated entropy. (3) The level of entropy is network-specific to the participation
coefficient, but not to the clustering coefficient. High entropy for the participation coefficient
was observed in the default-mode, visual, and motor networks. These results were further
validated using an independent replication dataset. Our work confirms that brain networks
are temporally complex. Entropy is a good candidate metric to explore temporal network
alterations in diseases with paroxysmal brain disruptions, including schizophrenia and
epilepsy.

AUTHOR SUMMARY

In recent years, connectomics has provided significant insights into the topological
complexity of brain networks. However, the temporal complexity of brain networks still
remains somewhat poorly understood. In this study we used entropy analysis to demonstrate
that the properties of network segregation (the clustering coefficient) and integration (the
participation coefficient) are temporally complex, situated between complete order and
disorder. Our results also indicated that “segregated network nodes” may attempt to
minimize the network’s entropy, whereas “integrated network nodes” require a higher
information load, and therefore need to increase entropy. We believe that combining
temporal information from functional brain networks and entropy can be used to test the
decomplexification theory of disease, especially in neurological and psychiatric conditions
characterized by paroxysmal brain abnormalities (e.g., schizophrenia and epilepsy).
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Temporal complexity of brain networks

The brain is complex. One of the most convincing examples of this is the neuron, with its
lognormal firing rate and critical states (Chialvo, 2010). However, not much is known about
the spatiotemporal complexity underlying large-scale brain networks. Nevertheless, it is fea-
sible to estimate the complexity of brain networks in functional magnetic resonance imag-
ing (fMRI) by using measures of signal entropy (Bassett, Nelson, Mueller, Camchong, & Lim,Functional magnetic resonance

imaging (fMRI):
An imaging technique capturing
hemodynamic interactions in the
brain with millimeter resolution.

2012). Entropy reveals the extent to which a signal is temporally ordered (low entropy), un-
correlated (high entropy), or complex (medium entropy). Entropy has been used in a variety
of settings, with notable contributions to cardiovascular disease markers such as heart-rate
variability (Lake, Richman, Griffin, & Moorman, 2002). The entropy of spontaneous brain ac-
tivity signals has received increasing attention, and a few empirical studies have started to
explore the entropy of fMRI signals in healthy people (McDonough & Nashiro, 2014; Wang,
Li, Childress, & Detre, 2014) and in disease populations (Bassett et al., 2012; Sokunbi et al.,
2014).

Connectomics is a relatively new field in which the structure and function of brain
networks is studied (Sporns, Tononi, & Kötter, 2005). Several graph-theoretic measures existGraph theory:

A mathematical research field aiming
to quantify the topological aspects of
networks.

that quantify network properties, including measures of node degree, betweenness centrality,
clustering coefficient, modularity, participation coefficient, and efficiency (Rubinov & Sporns,

Clustering coefficient:
Estimate the proportion of connected
triangles surrounding a node; a high
clustering coefficient is an indicator
of network segregation.

Module:
A collection of segregated nodes in
the brain thought to subserve distinct
functions.

Participation coefficient:
Estimate of how well-connected the
nodes within a given module are to
other brain-wide modules; a measure
of intermodular diversity.

2010). Given this wealth of options, a reductionist approach is appropriate when selecting
the network measures for a study. In the present work, we wanted to use measures that may
reflect topologically “segregated” and “integrated” network activity. The clustering coefficient
(the “cliquiness” of a node) and participation coefficient (the intermodular connectivity of a
node) are graph-theoretic measures that quantify, respectively, brain network segregation and
integration (Guimerà & Nunes Amaral, 2005; Watts & Strogatz, 1998).

To obtain a realistic characterization of the temporal evolution of brain networks, time-
varying functional connectivity information has been collected using fMRI (Chang & Glover,
2010; Handwerker, Roopchansingh, Gonzalez-Castillo, & Bandettini, 2012; Zalesky, Fornito,
Cocchi, Gollo, & Breakspear, 2014). Moment-to-moment changes that occur in the brain are
challenging to capture with fMRI-based network measures, due to the low-frequency nature
of the hemodynamic response function (Glover, 2011). A commonly used approach for this
purpose is sliding-window analysis, in which correlations within narrow segments of fMRI
data are estimated over time. A promising alternative to sliding-window analysis is instan-
taneous phase synchrony analysis, which considers concurrent functional relationships be-Instantaneous phase synchrony:

A measure that quantifies the
functional relationships between
brain nodes at each fMRI time point.

tween brain regions at the same temporal resolution of fMRI time series (Omidvarnia et al.,
2016; Ponce-Alvarez et al., 2015).

To examine the temporal complexity of brain network properties, we estimated the sam-
ple entropy (SampEn) of clustering-coefficient and participation-coefficient time series, whichSample entropy (SampEn):

The rate of generation of new
information in a signal; a measure of
signal complexity.

were derived from fMRI connectivity matrices using instantaneous phase synchrony. We showed
that quantifying the entropy of brain network properties enables us to link the temporal com-
plexity and topology of functional brain networks, which may be used to characterize (altered)
brain networks in disease.

RESULTS

Participation Coefficient and Clustering Coefficient Are Inversely Related

As can be seen in Figure 1, there is an inverse relationship between clustering-coefficient and
participation-coefficient time series (i.e., time points with high clustering coefficients generally
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Temporal complexity of brain networks

have low participation coefficients, and vice versa). Pearson’s correlation coefficient between
the clustering coefficient and participation coefficient, pooled over all nodes and time points,
was –0.56.

SampEn Is Higher for the Participation Coefficient Than for the Clustering Coefficient

SampEn was significantly higher for the participation coefficient than for the clustering coeffi-
cient (two-sample t-test = 11.06, p < 0.0001; see Figure 2, left). For both network measures,
SampEn values were placed in-between completely regular and random time series (Figure 2,
right).

Relationships Between SampEn and the Participation Coefficient/Clustering Coefficient

The average clustering coefficient was inversely related to the SampEn of clustering coeffi-
cient (Pearson’s correlation coefficient = –0.67; Figure 3A, left). The average participation
coefficient was positively related to the SampEn of a participation coefficient (Pearson’s corre-
lation coefficient = 0.90; Figure 3A, right). Near identical results were obtained from phase-
randomized data where the correlation structure is preserved, and thus the relations between
SampEn and the static measures are preserved. The relationship between SampEn and net-
work activity are therefore likely to be due to the zero-lag correlation structure between nodes,
rather than to nonstationarities.

Figure 1. Scatterplot of participation-coefficient versus clustering-coefficient time series. Shown
are all time points and nodes over the group of subjects. The dashed line corresponds to the best
linear fit.
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Figure 2. (Left) Average SampEn values over all nodes for the clustering coefficient and partici-
pation coefficient (a single value per subject). (Right) Node-wise SampEn distributions for all
25 subjects for the clustering coefficient (blue) and the participation coefficient (red). The regu-
lar distribution (black) was generated using sine waves of different frequencies, and the random
distribution (green) was generated with MATLAB’s rand function (akin to the illustrative example
seen in Figure 6). For the regular and random data, we generated signals equal in number and
length to those in the fMRI data (blue and red).

SampEn Is Only Network-Specific for the Participation Coefficient

We evaluated the average SampEns of the clustering coefficient and the participation coef-
ficient within a number of functionally well-defined brain network nodes from the default
mode network, salience network, frontoparietal network, primary sensory (visual and motor)

Figure 3. Scatterplots of average clustering coefficients (blue)/participation coefficients (red) and
the SampEn of each network measure for the original fMRI data (A) and the phase-randomized fMRI
data (B). Each point denotes a group-averaged node value. The dashed lines correspond to the best
linear fit.
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networks, and cerebellum. These network nodes were defined using principal component
analysis. This was done by calculating the first five principal components of the average
group-level instantaneous phase synchrony data obtained in Step 3 in Materials and Meth-
ods (see Supplementary Information 1 (Pedersen et al., 2017) for more information). SampEn
varied between specific network nodes for the participation coefficient (one-way ANOVA:
F = 13.2, p < 0.0001), but not for the clustering coefficient (one-way ANOVA: F = 1.1, p =

0.39). Bonferroni-corrected post-hoc analysis revealed seven out of 15 significant compar-
isons, mostly in the primary visual cortex, default mode network, and primary motor network
(see the paired differences in Figure 4, right).

Replication Dataset: Human Connectome Project

To test whether our results were reproducible, we used task-free fMRI data from the Human
Connectome Project (Van Essen et al., 2013). In this analysis we used a network parcellation
scheme with fewer nodes (than in the analyses above), which allowed us to estimate SampEn
over a range of network density thresholds.

The results from this replication dataset were similar to our original results. That is, partic-
ipation coefficients had higher SampEn over a range of thresholds than did clustering coeffi-
cients (Figure 5, left). Also, the average clustering coefficient was negatively correlated with
its SampEn, and the average participation coefficient was positive correlated with its SampEn
(Figure 5, right).

DISCUSSION

In this study, we combined functional connectivity, graph theory, and entropy to elucidate
the temporal complexity of brain network properties. Although a few studies have previ-
ously measured complexity and SampEn on the basis of fMRI signals (e.g., Bassett et al., 2012;

Figure 4. Group-level SampEn values of specific brain networks for the clustering coefficient (left)
and the participation coefficient (right). Error bars = standard deviations. Lines = Bonferroni-
corrected statistically significant pair-wise difference.
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Figure 5. Results from a replication dataset over a range of network density thresholds (from π/4
to π/24). (Left) SampEn values of the participation coefficient (red) and clustering coefficient (blue),
averaged over all nodes (akin to the results in Figure 2). (Right) Pearson’s correlation coefficients
between the average clustering coefficient (blue) and participation coefficient (red) and their asso-
ciated SampEns (akin to the results in Figure 3). Means and standard deviations are displayed as
lines and shaded colors, respectively.

McDonough & Nashiro, 2014; Sokunbi et al., 2014; Wang et al., 2014), the present study was,
to our knowledge, the first to directly assess the complexity of temporal fMRI network prop-
erties. We observed that the clustering-coefficient and participation-coefficient signals were
more complex than regular, predictable systems (minimal entropy: see Figure 2, black distribu-
tion), but less uncertain than a random, uncorrelated system (maximal entropy: see Figure 2,
green distribution). This is further evidence that human brain networks are situated between
temporal order and disorder—that is, at a high level of complexity. The wider implications of
the divergent relationship between the clustering coefficient and the participation coefficient,
and their associated temporal complexity, will be discussed in the following sections.

SampEns of the Clustering Coefficient and the Participation Coefficient Are Differentially Expressed

The inverse relationship between the clustering coefficient and the participation coefficient
suggests that the brain transits between network “segregation” and “integration.” This is in
line with a recent study demonstrating that the brain switches between two distinct states of
network segregation or integration (Shine et al., 2016).

Thus, the entropy of these processes may be of significance, since the “segregated” brain
may attempt to minimize its own entropy—that is, nodes with high clustering coefficients
display low SampEn (Figure 3, left). These particular nodes have a temporal pattern that is
inclined toward temporal regularity, or predictability. This is consistent with existing theories
of entropy in living systems. According to Erwin Schrödinger, any living system operates on the
basis of negentropy—it will strive to minimize its own entropy (see What Is Life: The Physical
Aspect of the Living Cell, published in 1944). In other words, living systems may need to be
temporally ordered to function optimally in an otherwise chaotic world (Mahulikar & Herwig,
2009).
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On the other hand, when the brain displays high “integration” (a high participation co-
efficient), SampEn is also high (Figure 3A, right). This finding may relate to the excessive
information load imposed on these particular nodes when capturing between-module con-
nectivity. This result resembles findings by Bassett et al. (2012), who found that wavelet en-
tropy was positively related to node-wise fMRI strength (i.e., connectivity between a node and
all other nodes in the network) in both healthy people and patients with schizophrenia. Us-
ing resting-state electroencephalogram recordings, Mišić, Vakorin, Paus, and McIntosh (2011)
demonstrated that nodal measures of distributed connectivity (global efficiency, degree, and
betweenness centrality) were positively correlated with SampEn. These studies reinforce the
notion that the extent (or diversity) of network information may be related to the entropy, or
unpredictability, of brain signals.

Network-specific entropy was a feature of participation-coefficient, but not of clustering-
coefficient, time series (Figure 4). This finding implies that the participation coefficient is a
metric that enables network-specific characterization. This is in line with the seminal work
of Guimerà and Nunes Amaral (2005) on the participation coefficient. These authors demon-
strated that in several network types, the clustering coefficient is not able to capture
network-specific processes, but on the contrary, the participation coefficient was important for
quantifying between-network connectivity in a range of networks (Guimerà & Nunes Amaral,
2005). In line with previous fMRI studies, we believe that the participation coefficient may
be a unique and alternative measure of brain network activity (see Power, Schlaggar, Lessov-
Schlaggar, & Petersen, 2013).

On the Dynamics of fMRI Connectivity

Instantaneous phase synchrony is a relatively new way of deriving time-resolved connectivity
using fMRI (see Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012; Omidvarnia et al.,
2016; Ponce-Alvarez et al., 2015). Glerean et al. (2012) showed that instantaneous phase
synchrony and correlation-based sliding window analysis detected comparable temporal prop-
erties. But they demonstrated that instantaneous phase synchrony was superior at achiev-
ing optimal temporal resolution (a single repetition time), especially since the reliability of
correlation-based sliding windows decreases as the temporal window shrinks. This was also
the case in our data. As can be seen in Supplementary Information 2 (Pedersen et al., 2017),
we observed that instantaneous phase synchrony time series are similar to correlation-based
sliding windows time series at short window lengths (<60 s).

The phase-randomized fMRI analysis that preserved the underlying correlational nature of
our data suggests that the results were not predominantly driven by nonstationarities inherent in
the data. This finding is concordant with Allen et al. (2014), who observed no changes in time-
varying functional connectivity data after applying the same phase randomization procedure
that we used (Prichard & Theiler, 1994). This ties in with a recent finding by Hindriks et al.
(2016), who argued that dynamic fMRI connectivity methods may not detect nonstationarities
in short resting-state scans of fMRI (∼ 10 min). Although the main point of the present study
was to generate network time series appropriate for SampEn analysis, it will remain important
for future studies to statistically evaluate the dynamic nature of fMRI data. Nevertheless, it
is possible that our entropy findings signify persistent phase relationships between nodes that
facilitate spontaneous brain network activity. It is also tempting to speculate that entropy may
be partly constrained by the underlying structural network topology, given the significant role
of network structure in shaping functional connectivity (Deco et al., 2013; Honey et al., 2009;
Shen, Hutchison, Bezgin, Everling, & McIntosh, 2015).
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Why Should We Combine Functional Connectivity and Entropy?

Measures such as SampEn can be used to observe brain network changes that are associ-
ated with stereotypical paroxysmal diseases (e.g., schizophrenia and epilepsy). Regarding
this point, Goldberger (1996) have proposed decomplexification theory, which posits thatDecomplexification theory:

The theory that specific aspects of
disease cause the brain to lose its
“normal entropy”.

(nearly all) disease properties have an inherent tendency to be temporally ordered. These
include (1) electrocardiograms during congestive heart failure, (2) autism and repetitive be-
haviors, (3) obsessions/compulsions, (4) Parkinsonian tremors, and (5) electroencephalograms
of epileptic seizures (see Goldberger, 1996, for further information). This is in line with a recent
study by Nedic et al. (2015), who demonstrated that patients with concurrent temporal-lobe
epilepsy and hippocampal sclerosis show more temporally regular fMRI activity (estimated
with an autocorrelation measure) proximate to the epileptogenic lesion. This finding reinforces
that brain network nodes that are affected by disease may be temporally regular.

Limitations

This study has several limitations. First, graph-theoretic fMRI results are dependent on their
semi-arbitrary parameters. These parameters include the method of calculating of statistical
dependence between nodes (e.g., correlation coefficients or phase synchrony), total number
of nodes, thresholding, and binarization of the data. For example, introducing more or fewer
connections in a graph (thereby increasing or decreasing the network density threshold) is likely
to have profound effects on the interpretation of fMRI network measures (e.g., Zalesky et al.,
2010). However, our replication dataset analysis suggests that our results are broadly consis-
tent over a range of network density thresholds (Figure 5). Also, binarizing the data can result
in the loss of valuable network information. In this study, we constructed large brain graphs
to obtain rich spatial and temporal network information. Whether voxel-level (high spatial
resolution) or node-level (low spatial resolution) brain networks are best remains a debated
issue in fMRI (Stanley et al., 2013). Voxel-level networks avoid the need to define “biologi-
cally plausible” brain nodes and are robust against fragmentation. These high-resolution brain
graphs are computationally demanding, however. Additionally, high-resolution brain graphs
may contain “spurious” intracortical connections, although Hayasaka and Laurienti (2010)
found that local connections had a minimal effect in sparse voxel-level graphs.

Second, we note that the dynamic modular decomposition we used will generate random
community labels for each time point. But this has no bearing on calculation of the participa-
tion coefficient, which is a measure that is sensitive only to the spatial composition of mod-
ules, not to their (arbitrary) label. This is clearly demonstrated in our group-consensus partition
of the Louvain community algorithm (see Supplementary Information 3) (Bassett et al., 2013;
Betzel et al., 2013; Lancichinetti & Fortunato, 2012). Nodes that belong to the same module
over time conform to well-known resting-state networks, including the default-mode network
(see Supplementary Information 3 (Pedersen et al., 2017)). Further work may benefit from
adopting the framework of Bassett et al. (2013; see also Mucha, Richardson, Macon, Porter, &
Onnela 2010), who used time-resolved modular decompositions as a function of time, in
which the decomposition at one time point was informed by previous time points.

Third, during time points with no internetwork connections, the participation coefficient
returns a nodal value of 0, and the time-varying interpretation becomes sparse. Using simula-
tions, we demonstrated that SampEn decreases when a signal becomes sparse (Supplementary
Information 4 (Pedersen et al., 2017)). The SampEn of the participation coefficient (Figure 4,
red) is therefore unlikely to be influenced by the inherent sparseness in this measure.
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Conclusion

By quantifying the entropy of dynamic brain networks, we were able to reconcile information
about the temporal complexity and spatial topology of distinct brain network properties. We
believe that combining network analysis and entropy may be useful to characterize dynamic
brain networks in disease states.

MATERIALS AND METHODS

Step 1: fMRI Voxels Into Uniform Brain Parcellation

Using a uniform parcellation algorithm (Zalesky et al., 2010), we down-sampled the fMRI im-
ages (Nvoxel = 51,603) associated with T = 200 volumes (X =xn [t] ∈ RNvoxel×T, n = 1, . . . ,
Nvoxel; t = 1, . . . ,T) into equal-sized brain nodes (Nnode = 8, 192) that included the cerebel-
lum and subcortical structures of 25 healthy subjects. This resulted in a subject-specific 2-D
matrix Y =ym[t] ∈ RNnode×T (m = 1, . . . ,Nnode; t = 1, . . . ,T). Each row of the matrix Y rep-
resents the average fMRI time series of a single node. For all 25 subjects, the pair-wise instan-
taneous phase coherence between nodes was estimated as we describe in the next section.

Step 2: Instantaneous Phase Extraction

The pair-wise instantaneous phase coherence across nodes in Y was used as a time-varying
measure of brain connectivity (Ponce-Alvarez et al., 2015). To this end, the concept of ana-
lytic signals based on the Hilbert transform (Mormann, Lehnertz, David, & Elger, 2000) was
employed to extract the phase information of the mean fMRI time series in Y. Let zm1 [t] and
zm2 [t] be the analytic associates of two rows in Y—that is ym1 [t] and ym2 [t]. In other words,

zm1 [t] = ym1 [t] + jỹm1 [t] = am1 [t]e
jϕm1 [t] (1)

zm2 [t] = ym2 [t] + jỹm2 [t] = am2 [t]e
jϕm2 [t] (2)

where j =
√−1, the tilde symbols mean Hilbert transforms, am1 [t] and am2 [t] are instantaneous

amplitudes, and the functions ϕm1 [t] and ϕm2 [t] represent the instantaneous phases of ym1 [t]
and ym2 [t], respectively. The original signals are assumed to satisfy Bedrosian’s theorem—
namely, the instantaneous amplitudes are slow-varying signals, and exponential terms are
narrow-band signals having nonoverlapping spectra with instantaneous amplitudes (Bedrosian,
1963). The two signals ym1 [t] and ym2 [t] are said to be phase-locked of order 1:1 if

|ϕm1 [t]− ϕm2 [t]| ≈ 0. (3)

Step 3: Instantaneous Phase Synchrony Matrices

The outcome of Step 2 for each subject-specific matrix Y is another same-size matrix Z =

zm[t] ∈ RNnode×T (m = 1, . . . , Nnode; t = 1, . . . , T) including all analytic associates that have
instantaneous phase information.

We quantified the instantaneous phase difference between the two phase signals ϕm1 [t]
and ϕm2 [t] obtained from two typical rows of the analytic associate matrix Z as follows:

dm1,m2 [t] = | sin (ϕm1 [t]− ϕm2 [t])| (4)
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The sine operator handles the phase-wrapping issue and removes the ambiguity of phase values
over time. Repeating this procedure for all nodes and all time points results in a 3-D matrix
D = dm1,m2 [t] ∈ RNnode×Nnode×T(m1, m2 = 1, . . . ; Nnode, t = 1, . . . , T) whose elements are
restricted to the interval [0,1]. A value close to 1 reflects a high phase difference between x
and y and a near-zero value implies a high level of phase synchrony. In other words, each time
point of the 3-D matrix D is associated with a 2-D phase connectivity matrix representing all
possible pair-wise phase comparisons among brain nodes. The matrix is symmetric in its first
two dimensions.

Step 4: Binary Thresholding of Instantaneous Phase Synchrony Matrices

Next, the instantaneous phase synchrony graphs were thresholded and binarized. Threshold-
ing is a somewhat arbitrary, albeit necessary, step for interpreting brain graphs in a meaning-
ful way (Langer, Pedroni, & Jäncke, 2013). There is currently no gold-standard approach for
thresholding functional brain graphs (Achard & Bullmore, 2007). A reasonable way, however,
would be to threshold graphs over multiple network densities covering a biologically plau-
sible range of brain connections (see Pedersen, Omidvarnia, Walz, & Jackson, 2015, for an
example). By a “network density,” we mean the proportion of connected nodes to all possible
links in a network. A multiple-thresholding approach, on the other hand, is computationally
demanding for large-size functional graphs with a high number of nodes. In this study, we
thresholded and binarized the graphs such that edges were only drawn between nodes with
a phase difference less than π/16. This was done to ensure that only high-phase-synchrony
values between nodes would remain in the graphs. On average, 6.34% (±0.0018 standard
deviation over subjects, ±0.0019 standard deviations over time points) of all possible edges
were preserved in the thresholded connectivity matrices. The low variance at this thresh-
old across both subjects and time points suggests that this threshold is stable. All networks
displayed a small-world topology (average small-worldness = 1.92 ± 0.28 standard devia-
tion; a network adheres to a small-world configuration at values >1) and is consistent with
other studies combining graph theory and fMRI. Small-worldness was calculated by dividing
the whole-brain averaged normalized clustering coefficient and the characteristic path length
(across time points and subjects). A total of 500 random networks were calculated for these
two normalized metrics. None of the resulting binary networks were fragmented, and the size
of the largest subgraph (i.e., the largest network component) was equal to Nnode=8, 192 for all
subjects and time points.

Step 5: Network Analysis and Null Model

To calculate network properties from the thresholded brain graphs, we used MATLAB-
implemented functions from the Brain Connectivity Toolbox (www.brain-connectivity-toolbox.
net/) and Boost Graph Library (https://www.cs.purdue.edu/homes/dgleich/packages/matlab_
bgl/). We chose two biologically interpretable graph measures of brain connectivity—that is,
the clustering coefficient and the participation coefficient.

The clustering coefficient, or CC (Watts & Strogatz, 1998), quantifies the proportion of neigh-
boring nodes of a given node i that are clustered together. This measure is mathematically
described for node i as

CCi =
2ti

ki (ki − 1)
, (5)
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Figure 6. Examples of signals having different SampEn values. Top row (black signal): A regular
signal. Middle row (brown signal): A fractal Brownian-motion signal. Bottom row (green signal): A
random signal.

where ti denotes the number of triangles surrounding node i and ki is its degree (i.e., number
of network-wide links connected to it). The values CCi always range within [0, 1].

The participation coefficient, or PC (Guimerà & Nunes Amaral, 2005), quantifies the
diversity of information between network modules. For node i, the metric is written as

PCi = 1 − ∑m∈M

(
ki(m)

ki

)2

, (6)

where the parameter M denotes a set of modules that subdivide the network into nonoverlap-
ping partitions, and the parameter ki(m) counts the number of connections between node i
and all nodes in module m. The participation coefficient always takes values in the range [0,
1]; 0 means that all nodal connections are either intramodular or intermodular to the same
module. A value of 1 means that all nodal connections are intermodular (with connections
to a variety of modules). In this study, M was calculated for each time point and subject, us-
ing a Louvain community structure algorithm with a community affiliation vector of γ = 2
(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). We chose γ = 2 in contrast to γ = 1 to
allow for a finer spatial distinction between modules, since this reduces the probability of zero
values for the participation coefficient (i.e., a node having only intranetwork connections). This
clustering method contains heuristics that may cause run-to-run variability. To estimate the ex-
tent of this variability, we randomly selected 50 of the instantaneous phase synchrony matrices
used in this study and calculated the average modularity of each (the Q-score) 200 times. The
average Q-score over the runs was 0.59 with a standard deviation of 0.002 (coefficient of vari-
ance = 0.003). Thus, the run-to-run variability of the Louvain community structure algorithm
used in this study appears to be low. The median number of modules across subjects was
6 (minimum number of modules = 1; maximum number of modules = 14).

Our main results were also compared to results generated from fMRI phase-randomized data
in which the fMRI time series were phase-shuffled in the Fourier domain while preserving the
power spectral magnitude and the correlational nature of the data (Prichard & Theiler, 1994).
Thus, the only aspect we changed was the inherent dynamics of the original fMRI time series.
This manipulation therefore tested whether the underlying fMRI connectivity data were likely
to be nonstationary—that is, did the statistical distribution change over time?
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Step 6: Entropy Analysis in the Time Domain

The last analysis step was devoted to the extraction of SampEn (Richman & Moorman, 2000)
from the clustering-coefficient and participation-coefficient time series, from the original fMRI
data as well as from the phase-randomized surrogates. SampEn is related to “the rate of gen-
eration of new information” in a signal. For example, periodic signals with high self-similarity
will generate trivial “new” information by evolving in time (i.e., low SampEn), whereas biolog-
ical signals with less self-similarity will have more information (i.e., high SampEn). Figure 6
illustrates three signals with different SampEn values. See also Supplementary Information 5
(Pedersen et al., 2017) for example time series of real fMRI clustering coefficients and partici-
pation coefficients.

Mathematically, SampEn(m, r, N) estimates the conditional probability that two templates
of a signal will remain similar over time, when self-matches have been already excluded (see
Richman & Moorman, 2000, and Sokunbi et al., 2013, for overviews). Here, the term “tem-
plate” refers to m-dimensioanal vectors made by the delayed time points in the original signal.
This is governed by four parameters: N, m, τ, and r, where N denotes the number of time
points in the entire signal, m and τ specify the segmented and delayed templates in the original
signal, and r is a threshold controlling the level of similarity between templates. The measure
is defined as

SampEn(m, r, N) = −ln
(

Um+1(r)
Um(r)

)
, (7)

where ln denotes the natural logarithm and Um(r) is defined as

Um(r) =
1

N − mτ ∑N−mτ

i=1 Cm
i (r). (8)

Equation (8) is based on the probability functions Cm
i (r) formed by the average number of

m-length templates Xj = [xj, xj+τ, . . . , xj+(m−1)τ] (1 ≤ j ≤ N − mτ), which are closely
similar to the template Xi (i �= j):

Cm
i (r) =

Bi

N − (m + 1) τ
. (9)

The level of “similarity” is quantified by the value Bi as the number of templates Xj whose
distance to the template Xi is less than or equal to r:

d
∣∣Xi, Xj

∣∣ ≤ r. (10)

The distance metric d between two time series is defined as the maximum difference be-
tween their corresponding time points—that is, d

∣∣Xi, Xj
∣∣ = max0≤k<m−1

∣∣∣Xi+k − Xj+k

∣∣∣. In
this study, the parameter r was set to 0.2 times the standard deviation of the original signal
allowing for the comparison of signals with different amplitudes. This adaptive tolerance pa-
rameter is important because biological signals such as clustering coefficient and participation
coefficient time series may change and fluctuate at different amplitude scalings. See Supple-
mentary Information 6 (Pedersen et al., 2017) for illustrations of the amplitude changes and en-
tropy. With the total length of N = 200 for the datasets of this study, we chose the parameters m
and τ in SampEn (m, r, N) as 2 and 1, respectively. One of the advantages of SampEn is its relia-
bility when estimating only a few time points. In Supplementary Information 7 (Pedersen et al.,
2017), we use simulated data to demonstrate that 200 time points (the same length as our
fMRI data) is sufficient to obtain stable SampEn values (see also Yentes et al., 2013). Although
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our SampEn parameters are in line with previous studies (McIntosh, Kovacevic, & Itier, 2008;
Sokunbi et al., 2014), deciding upon optimal parameters for SampEn is still an open issue
(Alcaraz, Abásolo, Hornero, & Rieta, 2010).

fMRI Parameters and Preprocessing

The task-free fMRI data of 25 healthy control subjects (eyes closed) were included in our anal-
ysis (mean age = 24.6 years, ±3.6 standard deviation). The study was approved by the Austin
Health Human Research Ethics Committee, Austin Hospital, Melbourne, Australia. All subjects
gave written informed consent to participate in the study.

Data were recorded using a 3-Tesla Siemens Skyra MRI system (Erlanger, Germany) with
44 slices (3 mm thick), a repetition time (TR) of 3 s, an echo time of 30 ms, a flip angle of
85◦, and a voxel size of 3 × 3 × 3 mm. In all, 10 min (200 time points) of fMRI data were ob-
tained per subject. We used SPM12 (Friston, Ashburner, Kiebel, Nichols, & Penny, 2007) and
DPABI (Yan, Wang, Zuo, & Zang, 2016) for preprocessing the data in MATLAB R2016a (Math-
Works Inc., Natick, Massachusetts, US). The initial preprocessing steps included slice-time cor-
rection, realignment, and co-registration to the subject’s own T1-weighted space. Each fMRI
volume was then segmented into separate tissue types (gray matter, white matter, and cere-
brospinal fluid) using DARTEL (Ashburner, 2007). The average signal from the cerebrospinal
fluid and white matter, as well as 24 motion parameters (Friston, Williams, Howard,
Frackowiak, & Turner, 1996), was regressed out from the fMRI data.

Images were normalized into the Montreal Neurological Institute (MNI) space with an
isotropic voxel size of 3 × 3 × 3 mm. The data were band-pass filtered within the frequency
band of 0.03–0.07 Hz. This frequency interval satisfies Bedrosian’s theorem’s requirements for
fMRI phase synchrony estimation, and it is also minimally affected by different artifacts includ-
ing respiration (lower-frequency) and cardiac (higher-frequency) artifacts (Glerean et al., 2012;
see also Omidvarnia et al., 2016, for a discussion on the Bedrosian requirement and fMRI
phase synchrony). To counteract adverse effects due to excessive in-scanner head movement,
all brain volumes associated with a frame-wise displacement of 0.5 mm or higher were ex-
cluded (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) and replaced using a cubic spline
temporal interpolation. This interpolation procedure has been used in previous dynamic fMRI
connectivity studies (Thompson & Fransson, 2015). An average of 3.9% (±3.5% standard
deviation) of the fMRI time points were interpolated for each subject.

Replication Dataset

We also analyzed the task-free fMRI data of ten healthy subjects (age range = 22–35 years)
from the Human Connectome Project (Van Essen et al., 2013) (left–right encoded, first ses-
sion, Q1 release) with 72 slices (2 mm thick), TR of 0.72 s, echo time of 58 ms, flip angle
of 90◦, and voxel size of 2 × 2 × 2 mm. In total, 14.4 min (1,200 time points) of multiband
fMRI data were obtained per subject. We decided to download the unprocessed fMRI data
(www.humanconnectome.org/) to ensure that these data were preprocessed in the same way
as the previous analysis, but without slice-time correction.

We changed several parameters from the previous analysis, to determine the overall repro-
ducibility of our network entropy approach. First, we used a coarser parcellation scheme, with
1,024 nodes. This allowed us to estimate SampEn over a range of network density thresholds
We selected the following six thresholds with the average network density percentages pre-
sented in parentheses: π/4 (26%), π/8 (13%), π/12 (9%), π/16 (7%), π/20 (5%), and π/24
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(4%). As compared to the original analysis, we set the Louvain modularity parameter to γ = 1
instead of γ = 2. This was done to test whether this parameter influenced our results. We
noted that the combination of this modularity parameter with the coarser parcellation scheme
introduced more sparsity in the participation-coefficient time series. To avoid interpreting spu-
riously low SampEn values in the participation-coefficient time series, we calculated SampEn
for nonzero data only (see Supplementary Information 4 (Pedersen et al., 2017) for an expla-
nation of this issue). This was feasible because of the high degrees of freedom present in this
data (the total number of time points per subject was 1,200).
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